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Abstract: Problem statement: Compression is useful because it helps reduce the consumption of 
expensive resources, such as hard disk space or transmission bandwidth. For effective data 
compression, the compression algorithm must be able to predict future data accurately in order to build 
a good probabilistic model for compression. Lossless compression is essential in cases where it is 
important that the original and the decompressed data be identical, or where deviations from the 
original data could be deleterious. Approach: Prediction by Partial Matching (PPM) data compression 
technique had utmost performance standard and capable of very good compression on a variety of 
data. In this research, we had introduced PPM technique to compress the data and implemented the 
algorithm on Altera FLEX10K FPGA device that allows for efficient hardware implementation. The 
PPM algorithm was modeled using the hardware description language VHDL. Results: Functional 
simulations were commenced to verify the functionality of the system with both 16-bit input and 32-bit 
input. The FPGA utilized 1164 logic cells with a maximum system frequency of 95.3MHz on Altera 
FLEX10K. Conclusion: The proposed approach is computationally simple, accurate and exhibits a 
good balance of flexibility, speed, size and design cycle time. 
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INTRODUCTION 

 
 Data compression is an essential process due to the 
need to reduce the average time required to send 
messages and reduce the data size for storage purposes. 
The ultimate goal of data compression is to represent an 
information source, e.g., a text file, binary information, 
an image or a video signal, as accurately as possible 
using the fewest possible number of bits (Cleary and 
Witten, 1984). There is a vital need for lossless 
compression especially for text and binary compression 
as it is important to ensure that the restructured text is 
identical to the original text, because a very small 
difference or variation in statement can lead to total 
different meaning. PPM is a “finite context” statistical 
modeling technique that  can  be  viewed  as  blending 
several “fixed-order context” models to predict the next 
character in the input sequence. The “Prediction by 
Partial Matching” data compression scheme is capable 
of very good compression on a wide variety of source 
data. The adaptive nature of the scheme and the 
flexibility afforded by arithmetic coding, mean that 
an effective compression model will be built for any 

input file that is reasonably homogeneous (Moffat, 
1990). The original algorithm was first published in 1984 
by Cleary and Witten (1984) and a series of 
improvements was described by Moffat (1990) 
culminating in a careful implementation, called PPMC, 
which has become the benchmark version. This still 
achieves results superior to virtually all other 
compression methods, despite many attempts to better it. 
 Developed PPMZ which uses an adaptive second 
level model to estimate the optimum value as a function 
of the order, the total character count, number of unique 
characters and the last one or two bytes of context. 
Shkarin (2002) developed PPMII which is similar to 
PPMZ as it also uses a secondary escape model. PPMII 
does not use statistics from the longest matching 
context. Instead, PPMII inherits the statistics of shorter 
contexts to set the initial estimate when a longer context 
is encountered for the first time. PPMONSTR and 
PPMD are based on PPMII. PPMONSTR is a variation 
of PPMD that trades compression rate for execution 
speed. This project will concentrate on the original 
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version of PPM. Other methods such as those based on 
Ziv and Lempel (1977; 1978) are more commonly used 
in practice, but their attractiveness lies in their relative 
speed rather than any superiority in compression. Indeed, 
their compression performance generally falls distinctly 
below that of PPM in practical benchmark tests (Bell et 
al., 1990). 
 The Field-Programmable Gate Arrays (FPGA) 
offers a potential alternative to speed up the hardware 
realization (Coussy et al., 2009; Marufuzzaman et al., 
2010; Reaz et al., 2007a). From the perspective of 
computer-aided design, FPGA comes with the merits of 
lower cost, higher density and shorter design cycle 
(Choong et al., 2005; Akter et al., 2008). It comprises a 
wide variety of building blocks. Each block consists of 
programmable look-up table and storage registers, 
where interconnections among these blocks are 
programmed through the hardware description language 
(Reaz et al., 2003; 2004; 2005). This programmability 
and simplicity of FPGA made it favorable for 
prototyping digital system. FPGA allows the users easily 
and inexpensively realize their own logic networks in 
hardware. FPGA also allows modifying the algorithm 
easily and the design time for the hardware becomes 
shorter by using FPGA (Ibrahimy et al., 2006). 
 In this study, a unified framework for FPGA 
realization of PPM is designed by means of using a 
standard hardware description language VHDL for two 
different input sizes 16-bit and 32-bit. The use of 
VHDL for modeling is especially appealing since it 
provides a formal description of the system and allows 
the use of specific description styles to cover the 
different abstraction levels (architectural, register 
transfer and logic level) employed in the design (Reaz 
et al., 2006; 2007b). In the computation of method, the 
problem is first divided into small pieces; each can be 
seen as a submodule in VHDL. Following the software 
verification of each submodule, the synthesis is then 
activated. It performs the translations of HDL code into an 
equivalent netlist of digital cells. The synthesis helps 
integrate the design work and provides a higher feasibility 
to explore a far wider range of architectural alternative 
(Mohd-Yasin et al., 2004). The method provides a 
systematic approach for hardware realization, facilitating 
the rapid prototyping of the data compression system.  

 
METERIALS AND METHODS 

 
 For effective data compression, the compression 
algorithm must be able to predict future data accurately 
in order to build a good probabilistic model for 
compression (Bell et al., 1990). The PPM compression 

scheme would operate on binary data as computer-
based data is represented and transmitted using binary 
digits. The PPM involves two steps, the generation of 
the adaptive model and the compression/decompression 
using arithmetic coding (Cleary and Witten, 1984). The 
generation of the adaptive model uses Markov 
modeling to build a probabilistic distribution of binary 
digits. The Markov predictor of an order j predicts the 
next bit based on the j preceding bits. Adaptive 
coding allows the model to be constructed 
dynamically by both encoder and decoder during the 
course of the transmission and has been shown to 
incur a smaller coding overhead than explicit 
transmission of the model’s statistics (Cleary and 
Witten, 1984). A block diagram of a complete data 
compression system is shown in Fig 1. 
 Data that has been compressed need to be 
decompressed to return it to its original form. 
Therefore, a decompressor comes hand-in-hand with a 
compressor. Compression is dependent upon the fact 
that data is redundant and that its generation was based 
on a fixed set of rules. If those rules are known, we can 
accurately predict the data. The data compression can 
be viewed as a branch of information theory whose 
primary objective is to minimize the sum of data to be 
transmitted. 
 
PPM Implementation: As mentioned earlier, PPM 
involves two steps, the generation of an adaptive model 
(predictor stage) and the compression or coding stage 
(Cleary and Witten, 1984).  
 Both the encoder and decoder of a PPM system, 
adapts the model of coding dynamically to the message 
statistics as the transmission proceeds (Langdon and 
Rissanen, 1981). Adaptive coding is effective 
because what is happening is counted and used as the 
basis of subsequent coding so that the counts only 
needs to be incremented in the event that a character 
is correctly predicted (Moffat, 1990). It should also 
be noted that text statistics in reality are not 
homogeneous and so well behaved, thus requiring a 
need for the adaptive coding method (Cleary and 
Witten, 1984). In PPM, the adaptive model is 
generated using a Markov predictor. 
 

 
 
Fig. 1: A basic compression system 
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 The bases of the PPM algorithm of order m are set 
of (m + 1) Markov predictors. A Markov predictor of 
order j predicts the next bit based upon the j 
immediately preceding bits. It is just a very simple 
Markov chain. There will be 2j possible patterns if there 
is j number of bits. The transition frequency is built by 
the predictor in proportion to the observed frequencies 
of a ‘1’ or a ‘0’ that occur, given that the predictor has 
seen the bit pattern associated with that state. The 
predictor builds the transition frequency just by 
recording the number of times a ‘1’ or a ‘0’ occurs in 
the (j+1) th bit following the preceding j bits. A Markov 
chain is built at the same time that it is used for 
prediction and often the chain is incomplete. Figure 2 
shows an example of the 4-state Markov chain. Let 
there be an input sequence of ‘010101101’ bits and the 
order of the Markov predictor are to be 2. The next bit 
is to be predicted based on the two immediately 
preceding bits of ‘01’. From observation, it can be 
noted that the pattern ‘01’ occurs three times 
throughout the current input sequence. The frequency 
counts of the bit following ‘01’ are as such: ‘0’ follows 
‘01’ twice and ‘1’ follows ‘01’ once. Therefore, the 
predictor should predict the next bit to be ‘0’ with a 
probability of 2/3 (Mudge et al., 1996). 
 A 0th order Markov predictor simply predicts the 
next bit based on the relative frequency in the input 
sequence. For simplicity, the 0th order Markov 
predictor is adopted for this project and it assumed that 
each bit encountered by the Markov predictor is novel. 
Figure 3 shows the flowchart for a Markov predictor. 

 
Arithmetic encoder and decoder: Arithmetic coding 
is one approach to generate variable length codes and is 
one of the best algorithms that can be used in lossless 
data compression. For the case of PPM, where the 
modeling and coding stages of the lossless data 
compression have to be kept separate, arithmetic coding 
is a particularly well suited method to adopt. 
 Arithmetic coding replaces a sequence of symbols 
with a coding range of real numbers between 0 and 1. 
The range accorded to a symbol will depend on the 
probability of that particular symbol, the higher the 
probability, the higher the range, which assigns to it. 
The gist of arithmetic coding is the generation of a tag 
from that range for a sequence encoded. The tag is a 
floating-point value that corresponds to a binary 
fraction. Eventually this binary fraction will become the 
binary code for the sequence. In practice, the generation of 

the tag and the binary code are one in the same process. 
The arithmetic coding is divided into two phases. The first 
phase generates a unique identifier or tag for a given 
sequence of symbols and the second phase gives a unique 
binary code to the tag (Sayood, 1996). 
 The arithmetic encoder is used to generate a tag. 
The tag generated by the arithmetic encoder has to fall 
within the probability line of 0-1. The symbols are 
given a range based on their probability. The higher the 
probability, the higher is the range that is given to it. 
Once the ranges and the probability line are defined, the 
symbols are then encoded where each symbol defines 
where the output floating point number lands. The 
algorithm for arithmetic encoding is:  
 
Low = 0 
High = 1 
 
Loop for all symbols: 
 
Range = High – Low 
High = Low + Range * Q(x) 
Low = Low + Range * Q(x-1) 
 
Where: 
 
 Q(x) = High range of symbol being encoded 
 Q(x- 1) = Low range of symbol being encoded 
 
 The tag can actually be any real number between 
0.47265625 and 0.578125. For the purpose of this 
project, the tag is taken as the value of the low range, 
0.47265625. The tag is useless if it cannot be 
deciphered. The decoder is used to recover t he 
original data.  
 

 
 
Fig. 2: The (incomplete) 4-state markov chain 
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Fig. 3: Flowchart of the markov predictor 
 
The algorithm for decoding is:  
 
Loop for all symbols: 
 
Range = Q(x) – Q(x – 1) 
Tag = Tag-Q(x – 1) 
Tag = Tag / Range  
 
Where: 
Q(x) = High range of symbol being decoded 
Q(x- 1) = Low range of symbol being decoded  
 
Software implementation: The whole design is 
described using IEEE-compliant VHDL language. 
Optimization to the VHDL code was performed to 
reach an even higher speed. As described earlier, the 
PPM module carries out probability distribution using 
Markov predictor followed by arithmetic encoding and 
decoding. A bottom-up approach is adopted here, 
whereby the PPM module is split into sub-modules with 
each sub-module being coded, verified and validated 
separately before being combined to produce the final 
design. The three sub-modules are the Markov 
predictor, arithmetic encoder and arithmetic decoder. 
However, for the design of this project, the Markov 

predictor would be combined with the arithmetic 
encoder and referred to as the Markov model. Thus, the 
total number of sub-modules is two. Each distinct 
module performs a specific function as stated in the 
next sub-sections. 
 
Markov model: The Markov predictor builds the 
probability distribution from the input symbols seen 
and the arithmetic encoder generates a unique identifier 
or tag based on the probability distribution of symbols. 
Figure 4 shows the block diagram of a Markov model. 
 The input to the Markov model sub-module is 
bit_stream1_1, where a string of binary bits would be 
read in accordance with the clock cycle, clock1. The 
control signal enable1 is used to select between the 
Markov model sub-module and the arithmetic 
decoder sub-module. The probability of ‘1’ and ‘0’ 
occurring will then be calculated and the probability 
of both will be outputted separately in real values 
(floating-point values) through two output ports, 
prob0_0 and prob1_0. The values of these 
probabilities are universal to all sub-modules. The 
Markov predictor needs to calculate all probabilities 
before the arithmetic encoder can start encoding. 
 After the probabilities have completely been 
calculated and the values have been outputted, the 
arithmetic encoding would be carried out to produce the 
tag in real value. The string of bits is then encoded 
based on the probability according to the clock cycle, 
clock1. The outcome is a series of ranges in real values 
signifying the high and low range of each bit occurring 
at the input. For these ranges of highs and lows, the tag 
is generated and outputted at output_tag1. After the tag 
has successfully been generated, the sub-module would 
output a high bit to port trigger_decoder for the decoder 
to start decoding. 
 
Arithmetic decoder: The arithmetic decoder takes the 
tag generated by the encoder, decodes it and output the 
results as a string of bits. The output string of bits for 
the decoder should be similar to the input string of bits 
for the Markov model. This sub-module consists of four 
input ports, one clock signal, one control signal and one 
output port. Figure 5 shows a block diagram of an 
arithmetic decoder. 
 The input to the arithmetic decoder is the tag in 
real value together with the probability of ‘1’ and ‘0’ 
(prob0_1 and prob1_1) also in real values and the 
trigger signal, decode. The tag is then decoded with 
reference to clock2. Once again, the control signal 
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enable2 is used to select between the two sub-modules. 
The output is a string of bits, output_bits similar to that 
of the input string of bits of the Markov model. 
 
PPM model: The PPM main module consists of the 
two sub-modules; Markov model and arithmetic 
decoder. It does not have any input ports corresponding 
to clock signals or control signals but has one output 
port. The output is a value that needs to be checked to 
ensure correct operation of the module. The output is a 
string of bits, output_bit. Figure 6 below shows the 
complete top-level view of a PPM module. 
 

 
 
Fig. 4: Block diagram of Markov model 
 

 
 
Fig. 5: Block diagram of arithmetic decoder 
 

 
 
Fig. 6: Top-level view of PPM model 

Hardware implementation: Hardware implementation 
is the unique abstract of this study, it is not sufficient by 
only performing software simulations. The physical 
hardware layout is generated using the synthesis tool 
Quartus II version 5.0. The compilation process is 
repeated with different synthesis options in order to 
tradeoff between area and speed properly. The project 
was successfully configured and downloaded to the 
FLEX10K EPF10K30BC356-3 FPGA, tested and 
validated. The FLEX10K family provides the density, 
speed and features to integrate entire systems, including 
multiple 32-bit buses into a single chip.  
 

RESULTS AND DISCUSSION 
 
 An extensive experimental investigation was 
conducted in order to demonstrate the efficiency and 
feasibility of the proposed method. Functional 
simulation is performed to test the logic function of the 
hardware design and it is presented to verify the 
correctness of all the modules involved. The results of 
classification used different 16-bit inputs and later 
expanded to using a few different 32-bit inputs. 
 
16-bit input: The test vectors have been predetermined 
before the simulation was carried out. Therefore the 
first 16-bit input to the PPM module to test its 
functionality is “1101011011011000” in binary or 
“D6D8” in hexadecimal. The simulation results are 
shown in Fig. 7, using the following input/output: 
 
bit_stream1 = 16-bit input 
s01 = probability of ‘0’ 
s02 = probability of ‘1’ 
s03 = output tag 
output_bit = 16-bit output 
 
 At the start of the clock, the probability of ‘0’ is 
0.43750 and the probability of ‘1’ is 0.56250. From 
observation, the number of occurrences of ‘0’ in the 16-
bit input stream is 7 and the number of occurrences of 
‘1’ is 9. The total number of bits is 16. Thus: 
 

P(‘0’) = 7/16 = 0.43750 
P(‘1’) = 9/16 = 0.56250 

 

 
 
Fig. 7: Simulation results for16-bit PPM module 
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Fig. 8: Simulation results for 32-bit PPM module 
 
Table 1: The usage of resources 
Logic resources 
(EPF10K30BC356-3) Logic resources:  
 1164 LCs of 1728 (67.36%) 
 Number of Nets: 386 
 Number of Inputs: 1066 
 I/O cells: 57 
 Cells in logic mode: 312 
 Cells in cascade mode: 45 

 
 Since both simulated and computed results are 
similar, it can be concluded that the Markov predictor 
portion of the PPM module is functioning correctly. 
 At time 200 ns, the tag value is 0.77111 as shown 
in Figure 7. The subsequent values that appear at s03 
are due to the fact that the operation of the arithmetic 
encoding runs based on the clock event. Therefore, 
since the clock continues to run there will still be values 
at signal s03. The only way to prevent values from 
appearing at s03 after the first value of the tag has been 
outputted is to find a way to stop the clock from 
running after that. At time 400ns, the 16-bit output 
“D6D8” is available at the port output_bit. By 
comparing, the initial 16-bit input with the current 16-
bit output, it can be observed that both of them are 
similar. Therefore, it can be concluded that the 
arithmetic encoding portion of the PPM module is 
functioning correctly. 
  
32-bit input: The PPM module is expanded to accept 
32-bit inputs. The first 32-bit input to the PPM module 
to test its functionality is 
“10111010101010111101011011011000” in binary or 
“BAABD6D8” in hexadecimal. The simulation result is 
shown in Fig. 8. 
 At the start of the clock, the probability of ‘0’ is 
0.40625 (13/32) and the probability of ‘1’ is 0.59375 
(19/32). The values are correct since ‘0’ has a count of 
13 and ‘1’ has a count of 19. At 200ns, the tag is 
outputted as 0.60798. 
 Finally, at time 800ns, the 32-bit output appearing 
on the output ports is “BAABD6D8. Comparing that 

with the 32-bit input shows that they are similar. 
Therefore, the PPM module functions properly with a 
32-bit input. 
 
Synthesis results: A comparatively low critical path 
frequency was achieved which was 25.1 MHz. The 
design took a minimum resource i.e., 1164 logic cells, 
which is 67.36% of the EPF10K30BC356-3 device. A 
maximum frequency of 95.3MHz was achieved. Table 
1 shows a detailed report of the usage of resources.  
 

CONCLUSION 
 
 In this study project, the FPGA prototyping of data 
compression using partial matching algorithm that 
allows for efficient hardware implementation had been 
implemented. It was successfully simulated and 
generated acceptable results for a 16-bit input as well as 
for a 32-bit input. The modules were successfully 
compiled and simulated. The hardware implementation 
demonstrated complete, correct functionality and met 
all the initial system requirements. The performance of 
the hardware prototype is encouraging. The results 
reveal that the proposed approach is computationally 
simple, accurate and exhibits a good balance of 
flexibility, speed, size and design cycle time. 
Comparison and results presented validate the 
successful compression of data using partial matching.  
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