
American Journal of Applied Sciences 8 (11): 1169-1175, 2011
ISSN 1546-9239
© 2011 Science Publications

Corresponding Author: Jubayer Jalil, Department of Electrical, Electronic and Systems Engineering,
 Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia

1169

A Single Core Hardware Module of a Data Compression
 Scheme Using Prediction by Partial Matching Technique

1Jubayer Jalil, 2Md. Mamun, 1Mohd. Marufuzzaman and 1Hafizah Husain

1Department of Electrical, Electronic and Systems Engineering,
2Systems Design Lab,

Universiti Kebangsaan Malaysia, 43600, UKM, Bang, Selangor, Malaysia

Abstract: Problem statement: Compression is useful because it helps reduce the consumption of
expensive resources, such as hard disk space or transmission bandwidth. For effective data
compression, the compression algorithm must be able to predict future data accurately in order to build
a good probabilistic model for compression. Lossless compression is essential in cases where it is
important that the original and the decompressed data be identical, or where deviations from the
original data could be deleterious. Approach: Prediction by Partial Matching (PPM) data compression
technique had utmost performance standard and capable of very good compression on a variety of
data. In this research, we had introduced PPM technique to compress the data and implemented the
algorithm on Altera FLEX10K FPGA device that allows for efficient hardware implementation. The
PPM algorithm was modeled using the hardware description language VHDL. Results: Functional
simulations were commenced to verify the functionality of the system with both 16-bit input and 32-bit
input. The FPGA utilized 1164 logic cells with a maximum system frequency of 95.3MHz on Altera
FLEX10K. Conclusion: The proposed approach is computationally simple, accurate and exhibits a
good balance of flexibility, speed, size and design cycle time.

Key words: Prediction by Partial Matching (PPM), expensive resources, statistical modeling

technique, original algorithm, lossless compression especially, Field-Programmable Gate
Arrays (FPGA)

INTRODUCTION

 Data compression is an essential process due to the
need to reduce the average time required to send
messages and reduce the data size for storage purposes.
The ultimate goal of data compression is to represent an
information source, e.g., a text file, binary information,
an image or a video signal, as accurately as possible
using the fewest possible number of bits (Cleary and
Witten, 1984). There is a vital need for lossless
compression especially for text and binary compression
as it is important to ensure that the restructured text is
identical to the original text, because a very small
difference or variation in statement can lead to total
different meaning. PPM is a “finite context” statistical
modeling technique that can be viewed as blending
several “fixed-order context” models to predict the next
character in the input sequence. The “Prediction by
Partial Matching” data compression scheme is capable
of very good compression on a wide variety of source
data. The adaptive nature of the scheme and the
flexibility afforded by arithmetic coding, mean that
an effective compression model will be built for any

input file that is reasonably homogeneous (Moffat,
1990). The original algorithm was first published in 1984
by Cleary and Witten (1984) and a series of
improvements was described by Moffat (1990)
culminating in a careful implementation, called PPMC,
which has become the benchmark version. This still
achieves results superior to virtually all other
compression methods, despite many attempts to better it.
 Developed PPMZ which uses an adaptive second
level model to estimate the optimum value as a function
of the order, the total character count, number of unique
characters and the last one or two bytes of context.
Shkarin (2002) developed PPMII which is similar to
PPMZ as it also uses a secondary escape model. PPMII
does not use statistics from the longest matching
context. Instead, PPMII inherits the statistics of shorter
contexts to set the initial estimate when a longer context
is encountered for the first time. PPMONSTR and
PPMD are based on PPMII. PPMONSTR is a variation
of PPMD that trades compression rate for execution
speed. This project will concentrate on the original

Am. J. Applied Sci., 8 (11): 1169-1175, 2011

1170

version of PPM. Other methods such as those based on
Ziv and Lempel (1977; 1978) are more commonly used
in practice, but their attractiveness lies in their relative
speed rather than any superiority in compression. Indeed,
their compression performance generally falls distinctly
below that of PPM in practical benchmark tests (Bell et
al., 1990).
 The Field-Programmable Gate Arrays (FPGA)
offers a potential alternative to speed up the hardware
realization (Coussy et al., 2009; Marufuzzaman et al.,
2010; Reaz et al., 2007a). From the perspective of
computer-aided design, FPGA comes with the merits of
lower cost, higher density and shorter design cycle
(Choong et al., 2005; Akter et al., 2008). It comprises a
wide variety of building blocks. Each block consists of
programmable look-up table and storage registers,
where interconnections among these blocks are
programmed through the hardware description language
(Reaz et al., 2003; 2004; 2005). This programmability
and simplicity of FPGA made it favorable for
prototyping digital system. FPGA allows the users easily
and inexpensively realize their own logic networks in
hardware. FPGA also allows modifying the algorithm
easily and the design time for the hardware becomes
shorter by using FPGA (Ibrahimy et al., 2006).
 In this study, a unified framework for FPGA
realization of PPM is designed by means of using a
standard hardware description language VHDL for two
different input sizes 16-bit and 32-bit. The use of
VHDL for modeling is especially appealing since it
provides a formal description of the system and allows
the use of specific description styles to cover the
different abstraction levels (architectural, register
transfer and logic level) employed in the design (Reaz
et al., 2006; 2007b). In the computation of method, the
problem is first divided into small pieces; each can be
seen as a submodule in VHDL. Following the software
verification of each submodule, the synthesis is then
activated. It performs the translations of HDL code into an
equivalent netlist of digital cells. The synthesis helps
integrate the design work and provides a higher feasibility
to explore a far wider range of architectural alternative
(Mohd-Yasin et al., 2004). The method provides a
systematic approach for hardware realization, facilitating
the rapid prototyping of the data compression system.

METERIALS AND METHODS

 For effective data compression, the compression
algorithm must be able to predict future data accurately
in order to build a good probabilistic model for
compression (Bell et al., 1990). The PPM compression

scheme would operate on binary data as computer-
based data is represented and transmitted using binary
digits. The PPM involves two steps, the generation of
the adaptive model and the compression/decompression
using arithmetic coding (Cleary and Witten, 1984). The
generation of the adaptive model uses Markov
modeling to build a probabilistic distribution of binary
digits. The Markov predictor of an order j predicts the
next bit based on the j preceding bits. Adaptive
coding allows the model to be constructed
dynamically by both encoder and decoder during the
course of the transmission and has been shown to
incur a smaller coding overhead than explicit
transmission of the model’s statistics (Cleary and
Witten, 1984). A block diagram of a complete data
compression system is shown in Fig 1.
 Data that has been compressed need to be
decompressed to return it to its original form.
Therefore, a decompressor comes hand-in-hand with a
compressor. Compression is dependent upon the fact
that data is redundant and that its generation was based
on a fixed set of rules. If those rules are known, we can
accurately predict the data. The data compression can
be viewed as a branch of information theory whose
primary objective is to minimize the sum of data to be
transmitted.

PPM Implementation: As mentioned earlier, PPM
involves two steps, the generation of an adaptive model
(predictor stage) and the compression or coding stage
(Cleary and Witten, 1984).
 Both the encoder and decoder of a PPM system,
adapts the model of coding dynamically to the message
statistics as the transmission proceeds (Langdon and
Rissanen, 1981). Adaptive coding is effective
because what is happening is counted and used as the
basis of subsequent coding so that the counts only
needs to be incremented in the event that a character
is correctly predicted (Moffat, 1990). It should also
be noted that text statistics in reality are not
homogeneous and so well behaved, thus requiring a
need for the adaptive coding method (Cleary and
Witten, 1984). In PPM, the adaptive model is
generated using a Markov predictor.

Fig. 1: A basic compression system

Am. J. Applied Sci., 8 (11): 1169-1175, 2011

1171

 The bases of the PPM algorithm of order m are set
of (m + 1) Markov predictors. A Markov predictor of
order j predicts the next bit based upon the j
immediately preceding bits. It is just a very simple
Markov chain. There will be 2j possible patterns if there
is j number of bits. The transition frequency is built by
the predictor in proportion to the observed frequencies
of a ‘1’ or a ‘0’ that occur, given that the predictor has
seen the bit pattern associated with that state. The
predictor builds the transition frequency just by
recording the number of times a ‘1’ or a ‘0’ occurs in
the (j+1) th bit following the preceding j bits. A Markov
chain is built at the same time that it is used for
prediction and often the chain is incomplete. Figure 2
shows an example of the 4-state Markov chain. Let
there be an input sequence of ‘010101101’ bits and the
order of the Markov predictor are to be 2. The next bit
is to be predicted based on the two immediately
preceding bits of ‘01’. From observation, it can be
noted that the pattern ‘01’ occurs three times
throughout the current input sequence. The frequency
counts of the bit following ‘01’ are as such: ‘0’ follows
‘01’ twice and ‘1’ follows ‘01’ once. Therefore, the
predictor should predict the next bit to be ‘0’ with a
probability of 2/3 (Mudge et al., 1996).
 A 0th order Markov predictor simply predicts the
next bit based on the relative frequency in the input
sequence. For simplicity, the 0th order Markov
predictor is adopted for this project and it assumed that
each bit encountered by the Markov predictor is novel.
Figure 3 shows the flowchart for a Markov predictor.

Arithmetic encoder and decoder: Arithmetic coding
is one approach to generate variable length codes and is
one of the best algorithms that can be used in lossless
data compression. For the case of PPM, where the
modeling and coding stages of the lossless data
compression have to be kept separate, arithmetic coding
is a particularly well suited method to adopt.
 Arithmetic coding replaces a sequence of symbols
with a coding range of real numbers between 0 and 1.
The range accorded to a symbol will depend on the
probability of that particular symbol, the higher the
probability, the higher the range, which assigns to it.
The gist of arithmetic coding is the generation of a tag
from that range for a sequence encoded. The tag is a
floating-point value that corresponds to a binary
fraction. Eventually this binary fraction will become the
binary code for the sequence. In practice, the generation of

the tag and the binary code are one in the same process.
The arithmetic coding is divided into two phases. The first
phase generates a unique identifier or tag for a given
sequence of symbols and the second phase gives a unique
binary code to the tag (Sayood, 1996).
 The arithmetic encoder is used to generate a tag.
The tag generated by the arithmetic encoder has to fall
within the probability line of 0-1. The symbols are
given a range based on their probability. The higher the
probability, the higher is the range that is given to it.
Once the ranges and the probability line are defined, the
symbols are then encoded where each symbol defines
where the output floating point number lands. The
algorithm for arithmetic encoding is:

Low = 0
High = 1

Loop for all symbols:

Range = High – Low
High = Low + Range * Q(x)
Low = Low + Range * Q(x-1)

Where:

 Q(x) = High range of symbol being encoded
 Q(x- 1) = Low range of symbol being encoded

 The tag can actually be any real number between
0.47265625 and 0.578125. For the purpose of this
project, the tag is taken as the value of the low range,
0.47265625. The tag is useless if it cannot be
deciphered. The decoder is used to recover t he
original data.

Fig. 2: The (incomplete) 4-state markov chain

Am. J. Applied Sci., 8 (11): 1169-1175, 2011

1172

Fig. 3: Flowchart of the markov predictor

The algorithm for decoding is:

Loop for all symbols:

Range = Q(x) – Q(x – 1)
Tag = Tag-Q(x – 1)
Tag = Tag / Range

Where:
Q(x) = High range of symbol being decoded
Q(x- 1) = Low range of symbol being decoded

Software implementation: The whole design is
described using IEEE-compliant VHDL language.
Optimization to the VHDL code was performed to
reach an even higher speed. As described earlier, the
PPM module carries out probability distribution using
Markov predictor followed by arithmetic encoding and
decoding. A bottom-up approach is adopted here,
whereby the PPM module is split into sub-modules with
each sub-module being coded, verified and validated
separately before being combined to produce the final
design. The three sub-modules are the Markov
predictor, arithmetic encoder and arithmetic decoder.
However, for the design of this project, the Markov

predictor would be combined with the arithmetic
encoder and referred to as the Markov model. Thus, the
total number of sub-modules is two. Each distinct
module performs a specific function as stated in the
next sub-sections.

Markov model: The Markov predictor builds the
probability distribution from the input symbols seen
and the arithmetic encoder generates a unique identifier
or tag based on the probability distribution of symbols.
Figure 4 shows the block diagram of a Markov model.
 The input to the Markov model sub-module is
bit_stream1_1, where a string of binary bits would be
read in accordance with the clock cycle, clock1. The
control signal enable1 is used to select between the
Markov model sub-module and the arithmetic
decoder sub-module. The probability of ‘1’ and ‘0’
occurring will then be calculated and the probability
of both will be outputted separately in real values
(floating-point values) through two output ports,
prob0_0 and prob1_0. The values of these
probabilities are universal to all sub-modules. The
Markov predictor needs to calculate all probabilities
before the arithmetic encoder can start encoding.
 After the probabilities have completely been
calculated and the values have been outputted, the
arithmetic encoding would be carried out to produce the
tag in real value. The string of bits is then encoded
based on the probability according to the clock cycle,
clock1. The outcome is a series of ranges in real values
signifying the high and low range of each bit occurring
at the input. For these ranges of highs and lows, the tag
is generated and outputted at output_tag1. After the tag
has successfully been generated, the sub-module would
output a high bit to port trigger_decoder for the decoder
to start decoding.

Arithmetic decoder: The arithmetic decoder takes the
tag generated by the encoder, decodes it and output the
results as a string of bits. The output string of bits for
the decoder should be similar to the input string of bits
for the Markov model. This sub-module consists of four
input ports, one clock signal, one control signal and one
output port. Figure 5 shows a block diagram of an
arithmetic decoder.
 The input to the arithmetic decoder is the tag in
real value together with the probability of ‘1’ and ‘0’
(prob0_1 and prob1_1) also in real values and the
trigger signal, decode. The tag is then decoded with
reference to clock2. Once again, the control signal

Am. J. Applied Sci., 8 (11): 1169-1175, 2011

1173

enable2 is used to select between the two sub-modules.
The output is a string of bits, output_bits similar to that
of the input string of bits of the Markov model.

PPM model: The PPM main module consists of the
two sub-modules; Markov model and arithmetic
decoder. It does not have any input ports corresponding
to clock signals or control signals but has one output
port. The output is a value that needs to be checked to
ensure correct operation of the module. The output is a
string of bits, output_bit. Figure 6 below shows the
complete top-level view of a PPM module.

Fig. 4: Block diagram of Markov model

Fig. 5: Block diagram of arithmetic decoder

Fig. 6: Top-level view of PPM model

Hardware implementation: Hardware implementation
is the unique abstract of this study, it is not sufficient by
only performing software simulations. The physical
hardware layout is generated using the synthesis tool
Quartus II version 5.0. The compilation process is
repeated with different synthesis options in order to
tradeoff between area and speed properly. The project
was successfully configured and downloaded to the
FLEX10K EPF10K30BC356-3 FPGA, tested and
validated. The FLEX10K family provides the density,
speed and features to integrate entire systems, including
multiple 32-bit buses into a single chip.

RESULTS AND DISCUSSION

 An extensive experimental investigation was
conducted in order to demonstrate the efficiency and
feasibility of the proposed method. Functional
simulation is performed to test the logic function of the
hardware design and it is presented to verify the
correctness of all the modules involved. The results of
classification used different 16-bit inputs and later
expanded to using a few different 32-bit inputs.

16-bit input: The test vectors have been predetermined
before the simulation was carried out. Therefore the
first 16-bit input to the PPM module to test its
functionality is “1101011011011000” in binary or
“D6D8” in hexadecimal. The simulation results are
shown in Fig. 7, using the following input/output:

bit_stream1 = 16-bit input
s01 = probability of ‘0’
s02 = probability of ‘1’
s03 = output tag
output_bit = 16-bit output

 At the start of the clock, the probability of ‘0’ is
0.43750 and the probability of ‘1’ is 0.56250. From
observation, the number of occurrences of ‘0’ in the 16-
bit input stream is 7 and the number of occurrences of
‘1’ is 9. The total number of bits is 16. Thus:

P(‘0’) = 7/16 = 0.43750
P(‘1’) = 9/16 = 0.56250

Fig. 7: Simulation results for16-bit PPM module

Am. J. Applied Sci., 8 (11): 1169-1175, 2011

1174

Fig. 8: Simulation results for 32-bit PPM module

Table 1: The usage of resources
Logic resources
(EPF10K30BC356-3) Logic resources:
 1164 LCs of 1728 (67.36%)
 Number of Nets: 386
 Number of Inputs: 1066
 I/O cells: 57
 Cells in logic mode: 312
 Cells in cascade mode: 45

 Since both simulated and computed results are
similar, it can be concluded that the Markov predictor
portion of the PPM module is functioning correctly.
 At time 200 ns, the tag value is 0.77111 as shown
in Figure 7. The subsequent values that appear at s03
are due to the fact that the operation of the arithmetic
encoding runs based on the clock event. Therefore,
since the clock continues to run there will still be values
at signal s03. The only way to prevent values from
appearing at s03 after the first value of the tag has been
outputted is to find a way to stop the clock from
running after that. At time 400ns, the 16-bit output
“D6D8” is available at the port output_bit. By
comparing, the initial 16-bit input with the current 16-
bit output, it can be observed that both of them are
similar. Therefore, it can be concluded that the
arithmetic encoding portion of the PPM module is
functioning correctly.

32-bit input: The PPM module is expanded to accept
32-bit inputs. The first 32-bit input to the PPM module
to test its functionality is
“10111010101010111101011011011000” in binary or
“BAABD6D8” in hexadecimal. The simulation result is
shown in Fig. 8.
 At the start of the clock, the probability of ‘0’ is
0.40625 (13/32) and the probability of ‘1’ is 0.59375
(19/32). The values are correct since ‘0’ has a count of
13 and ‘1’ has a count of 19. At 200ns, the tag is
outputted as 0.60798.
 Finally, at time 800ns, the 32-bit output appearing
on the output ports is “BAABD6D8. Comparing that

with the 32-bit input shows that they are similar.
Therefore, the PPM module functions properly with a
32-bit input.

Synthesis results: A comparatively low critical path
frequency was achieved which was 25.1 MHz. The
design took a minimum resource i.e., 1164 logic cells,
which is 67.36% of the EPF10K30BC356-3 device. A
maximum frequency of 95.3MHz was achieved. Table
1 shows a detailed report of the usage of resources.

CONCLUSION

 In this study project, the FPGA prototyping of data
compression using partial matching algorithm that
allows for efficient hardware implementation had been
implemented. It was successfully simulated and
generated acceptable results for a 16-bit input as well as
for a 32-bit input. The modules were successfully
compiled and simulated. The hardware implementation
demonstrated complete, correct functionality and met
all the initial system requirements. The performance of
the hardware prototype is encouraging. The results
reveal that the proposed approach is computationally
simple, accurate and exhibits a good balance of
flexibility, speed, size and design cycle time.
Comparison and results presented validate the
successful compression of data using partial matching.

REFERENCES

Akter, M., M.B.I. Reaz, F. Mohd-Yasin and F. Choong,

2008. Hardware implementations of an image
compressor for mobile communications. J.
Commun. Technol. Electr., 53: 899-910. DOI:
10.1134/S106422690808007X

Bell, T.C., J.G. Cleary and I.H. Witten, 1990. Text
Compression. 1st Edn., Prentice Hall, Englewood
Cliffs, N.J., ISBN: 0139119914, pp: 318.

Choong, F., M.B.I. Reaz and F. Mohd-Yasin, 2005.
Power quality disturbance detection using artificial
intelligence: A hardware approach. Proceedings of
the 19th IEEE International Parallel and
Distributed Processing Symposium, Apr. 4-8, IEEE
Xplore Press, Denver, USA., pp: 146a-146a. DOI:
10.1109/IPDPS.2005.348

Cleary, J. and I. Witten, 1984. Data compression using
adaptive coding and partial string matching. IEEE
Trans. Commun., 32: 396-402, DOI:
10.1109/TCOM.1984.1096090

Coussy, P., D.D. Gajski, M. Meredith and A. Takach,
2009. An introduction to high-level synthesis.
IEEE Design Test Comput., 26: 8-17. DOI:
10.1109/MDT.2009.69

Am. J. Applied Sci., 8 (11): 1169-1175, 2011

1175

Ibrahimy, M., M.B.I. Reaz, M.A.M. Ali, T.H. Khoon
and A.F. Ismail, 2006. Hardware realization of an
efficient fetal QRS complex detection algorithm.
WSEAS Trans. Circuits Syst., 5: 575-581.

Langdon, G. and J. Rissanen, 1981. Compression of
black-white images with arithmetic coding. IEEE
Trans. Commun., 29: 858-867 DOI:
10.1109/TCOM.1981.1095052

Marufuzzaman, M., M.B.I. Reaz, M.S. Rahman and
M.A.M. Ali, 2010. Hardware prototyping of an
intelligent current dq PI controller for FOC PMSM
Drive. Proceedings of the International Conference
on Electrical and Computer Engineering, Dec. 18-
20, IEEE Xplore Press, Dhaka, pp: 86-88. DOI:
10.1109/ICELCE.2010.5700559

Moffat, A., 1990. Implementing the PPM data
compression scheme. IEEE Trans. Commun., 38:
1917-1921. DOI: 10.1109/26.61469

Mohd-Yasin, F., A.L. Tan and M.I. Reaz, 2004. The
FPGA prototyping of iris recognition for biometric
identification employing neural network.
Proceedings of the 16th International Conference
on Microelectronics, Dec. 6-8, IEEE Xplore Press,
Malaysia, pp: 458-461. DOI:
10.1109/ICM.2004.1434697

Mudge, T.N., I.C.K. Cheng and J.T. Coffey, 1996.
Limits to branch prediction. The University of
Michigan.

Reaz, M.B.I., M.T. Islam, M.S. Sulaiman, M.A.M. Ali
and H. Sarwar et al., 2003. FPGA realization of
multipurpose FIR filter. Proceedings of the 4th
International Conferecne on Parallel and
Distributed Computing, Applications and
Technologies, Aug. 27-29, IEEE Xplore Press,
Malaysia, pp: 912-915. DOI:
10.1109/PDCAT.2003.1236448

Reaz, M.B.I., F. Mohd-Yasin, M.S. Sulaiman, K.T. Tho
and K.H. Yeow, 2004. Hardware prototyping of
boolean function classification schemes for lossless
data compression. Proceedings of the 2nd IEEE
International Conference on Computational
Cybernetics, Aug. 30-Sep.1, IEEE Xplore Press,
Vienna, pp 47-51. DOI:
10.1109/ICCCYB.2004.1437664

Reaz, M.B.I., F. Mohd-Yasin, S.L. Tan, H.Y. Tan and
M.I. Ibrahimy, 2005. Partial encryption of
compressed images employing FPGA. Proceedings
of the IEEE International Symposium on Circuits
and Systems, May 23-26, IEEE Xplore Press,
Malaysia, pp: 2385-2388. DOI:
10.1109/ISCAS.2005.1465105

Reaz, M.B.I., F. Choong and F. Mohd-Yasin, 2006.
VHDL modeling for classification of power quality
disturbance employing wavelet transform, artificial
neural network and fuzzy logic. Simulation, 82:
867-881. DOI: 10.1177/0037549707077782

Reaz, M.B.I., F. Choong, M.S. Sulaiman and F. Mohd-
Yasin, 2007. Prototyping of wavelet transform,
artificial neural network and fuzzy logic for power
quality disturbance classifier. J. Electric Power
Components Syst., 35: 1-17. DOI:
10.1080/15325000600815431

Reaz, M.B.I., M.I. Ibrahimy, F. Mohd-Yasin, C.S. Wei
and M. Kamada, 2007. Single core hardware
module to implement encryption in TECB mode.
Inform. Midem -Ljubljana, 37: 165-171.

Sayood, K., 1996. Introduction to Data Compression.
1st Edn, Morgan Kaufmann Publishers, San
Francisco, ISBN-10: 1558603468, pp: 475.

Shkarin, D., 2002. PPM: One step to practicality.
Proceedings Data Compression Conference, Apr.
4-4, IEEE Xplore Press, Moscow, pp: 202-211.
DOI: 10.1109/DCC.2002.999958

Ziv, J. and A. Lempel, 1977. A universal algorithm for
sequential data compression. IEEE Trans. Inform.
Theory, 23: 337.343, DOI:
10.1109/TIT.1977.1055714

Ziv, J. and A. Lempel, 1978. Compression of individual
sequences via variable-rate coding. IEEE Trans.
Inform. Theory, 24: 530-536. DOI:
10.1109/TIT.1978.1055934

