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Abstract: Problem statement: The aim of this study is to present an intelligent tuning technique for 
PID controller that are simple and still result in good closed loop behavior. The idea is to start with a 
tuned conventional PID controller, replace it with an equivalent intelligent controllers like Fuzzy, 
ANN, Genetic and PSO techniques implies fine tuned nonlinear PID controller which is most suitable 
for nonlinear process like Continuous stirred tank reactor. The performance of various optimization 
techniques and intelligent techniques are compared. Approach: In this study we present soft 
computing techniques to design and tune the PID controller. The objective wss tominimise the steady 
state error and to obtain the  optimum response. Results: The comparisons amoung the Conventional 
PID, Fuzzy Sliding PID, Simulated Anneling PID and PSO tuned PID controllers PSO PID implies 
better result for the nonlinear chemical process. Conclusion: With the nonlinear model of CSTR 
process the PSO tuned PID controller implies the optimum response for both setpoint and load 
variations. 
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INTRODUCTION 
 
 Chemical reactors are ones of the most important 
plants in chemical industry. Their operation, however, 
is corrupted with various uncertainties. Some of them 
arise from varying or not exactly known parameters, as 
e.g. reaction rate constants, heat transfer coefficients. In 
other cases, operating points of reactors vary or reactor 
dynamics is affected by various changes of parameters 
or even instability of closed loop control systems. 
Application of robust control approach can be one of 
ways overcoming all these problems. The main 
difficulty in tuning of control is due to the disturbances 
and parameter uncertainties. The fuzzy modeling or 
fuzzy identification, first explored systematically has 
found numerous practical applications in control, 
prediction and inference (Nahas et al., 1992; Devadhas 
and Kumar, 2010). The principle of sliding mode 
control is introduced into classical model free fuzzy 
logic control which provides proper guidance to design 
a fuzzy controller for system stability. The combination 
of the two control principles, called Fuzzy Sliding 

Mode Control, provides an alternative to design a 
robust controller (Morari and Zafiriou, 1989) for 
nonlinear systems with uncertainty (Devadhas and 
Pushpakumar, 2010; Stephanopoulos and Han, 1996). 
Hence in this study, both sufficient and necessary 
reaching conditions of fuzzy sliding mode PID 
controller is in CSTR process 
 Most of optimization problems such as Tabu 
search, simulated annealing and recently-introduced 
Particle Swarm Optimization (PSO) are considered as 
realistic and powerful solution to obtain optimization 
problems. Simulated annealing (Chen and Peng, 1999) 
is a generic met heuristic probabilistic for the global 
optimization problem. It is often used when the search 
space is discrete. For certain problems, simulated 
annealing may be more effective to find an acceptably 
good solution in a fixed amount of time. Each step of 
the SA algorithm replaces the current solution by a 
random nearby solution, chosen with a probability that 
depends on the difference between the corresponding 
function values and on a global parameter T (called the 
temperature), that is gradually decreased during the 
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process (Chen and Peng, 2006). Recently, Eberhart and 
Kennedy and Eberhart (1995) suggested a Particle 
Swarm Optimization (PSO) based on the analogy of 
swarm of bird and school of fish. The PSO mimics the 
behavior of individuals in a swarm to maximize the 
survival of the species. The algorithm, which is based 
on a metaphor of social interaction, searches a space by 
adjusting the trajectories of moving points in a 
multidimensional space. The individual particles are 
drawn stochastically towards the position of present 
velocity, their own previous best performance and the 
best previous performance of their neighbors (Clerc and 
Kennedy, 2002). The main advantages of the PSO 
algorithm are summarized as: simple concept, easy 
implementation, robustness to control parameters and 
computational efficiency when compared with 
mathematical algorithm and other heuristic 
optimization techniques.  
 The main contribution of this study is to find the 
nonlinear model of the chemical process and the soft 
computing techniques like PSO and SA methodologies 
has been employed to control the nonlinear process. 
Finaly a fuzzy sliding mode PI controller have been 
proposed to control the process 
 
Process description: Chemical reactions in a reactor 
(Stephanopoulos and Han, 1996) are either exothermic 
(release energy) or endothermic (require energy input) 
and  therefore   require  that  energy  either be 
removed or added to the reactor for a constant 
temperature to be maintained.  
 Figure 1 shows the schematic of the CSTR 
process. In the CSTR process model under discussion, 
an irreversible exothermic reaction takes place. The 
heat of the reaction is removed by a coolant medium 
that flows through a jacket around the reactor. A fluid 
stream A is fed to the reactor. A catalyst is placed 
inside the reactor.  
 

 
 
Fig1: CSTR process 

The fluid inside the reactor is perfectly mixed and sent 
out through the exit valve. The jacket surrounding the 
reactor also has feed and exit streams. The jacket is 
assumed to be perfectly mixed and at a lower 
temperature than the reactor.  
 
Parameters used: 
 
V = 5m3 
CA = 200.13kg m−3 

CAin = 800kg m−3 
F = 0.005m3 sec−1 
K = 18.75sec−1 
E = 30kJ mol−1 
T = 413K 
Tin = 353K 
P = 800kg m−3 

Cp = 1.0kJ kg−1k  
∆H = 5.3kJ kg−1 
Q = 224.1kJ sec−1 
R = 0.00831kJ mol−1 K 

 
Mathematical modeling: The component balance 
(Seborg, 1994) for the reactor can be given as: 

 
( )VdcA / dt F cAin cA Vke( E / RT)cA= − − −  (1) 

  
 The energy balance by: 
 
PVcpdT / dt FPcp(Tin T) Vke( E / RT)cA H Q= − + − ∆ + (2) 
Eq.1 and 2 can be rewritten as 
VdcA / dt FcAin FcA Vke( E / RT)cA

VdcA / dt f1(F,cAin) f 2(F,cA) f3(cA,T)

= − − −
= − −

 (3) 

 
 Now be used in the general model differential 
equation as: 
 
dx / dt f (x) f (x0) (df / dx) x= = + δ  (4) 
  
 Using Eq. 3 and 4 can be linear zed: 
 

Vd( cA) / dt ( f1 / F) F

( f1 / cAin) cAin ( f 2 / F) F

( f 2 / cA) cA ( f 3 / cA) cA ( f3 / T) T

δ = ∂ ∂ δ +
∂ ∂ δ − ∂ ∂ δ −
∂ ∂ δ − ∂ ∂ δ − ∂ ∂ δ

 

 
 This can be written as: 
 

( )

Vd( cA) / dt cAin F F0 cAin cA0 F F0 cA

Vke( E / RT) cA Vke( E / RT0)cA0(E / RTO2) T

Vke (E / RTo)CAo E / RTo ^ 2 T

δ = δ + δ − δ − δ −
− δ − − δ

= − δ
 (5) 
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 Rearranging terms in Eq.5 and introducing the 
Laplace operator results in: 

 
CA (K1 F / ( cs 1)) (K2 CAin

/( cs 1)) (K3 T / ( cs 1))

δ = δ τ + + δ
τ + − δ τ +

 (6) 

 
 With: 

 
c V / (Fo Vke (E / RTo))

K1 ((CAino CAo) / (Fo Vke (E / RTo)))

K2 Fo / (Fo Vke (E / RTo))

K3 (Vke (E / RTo)CAo(E / RTo ^ 2))

/(Fo Vke (E / RTo)))

τ = + −
= − + −
= + −
= −
+ −

 

 
 After substitution of the steady state values gains 
of Eq. 3 and 6 we   get   into   the   time constant and  
process: 

 
c 250s,K1 3*10 ^ 4,K2 0.25,K3 3.174τ = = = =  (7) 

  
 The second equation (energy balance) of the 
reactor model can be rewritten as: 
 

PVCpdT / dt FPCp(Tin T) Vke (E / RTCA H

Q)

FPCpTin FpCpT Vke (E / RTCA H Q)

f1(F,Tin) f 2(F,T) f 3(CA,T) f 4 * (Q)

= − − − ∆
+
= − − − ∆ +
= − − +

 

 
 Using Eq. 3 and 4 can be written as: 
 

( ) ( )
( ) ( )

( ) ( )

PVCpd( T) / dt f1 / F F f1 / Tin

Tin f 2 / F F f 2 / T F

f 3 / T CA f 3 / T T Q

δ = δ δ δ + δ δ

δ − δ δ δ − δ δ δ −

δ δ δ − δ δ δ + δ

  (8) 

 
 This (8) can be rewritten as: 
 

[ ]

VPCpd( T) / dt PCp(Tin T) F FPCp Tin

FPCp T Vke (E / RT) H CA VkE _(E / RT)

CA H E / RTo ^ 2 T Q

δ = − δ + δ
− δ + − ∆ δ +

∆ δ + δ
 (9) 

  
 Rearranging terms in Eq.9 and introducing the 
Laplace transform operator results in: 
  

T (K4 F / ( Ts 1)) (K5 Tin / ( Ts 1))

(K6 CA / ( Ts 1))

δ = δ τ + + δ τ + +
δ τ +

 (10) 

  
 With: 

T VPCp / (FoPCp Vke

(E / RTo)CAo H(E / RTo ^ 2))

K4 PCp(Tino To)

/(FoPCp (Vke (E / RTo)CAo H(E / RTo ^ 2))

K5 FoPCp (Vke (E / RTo)CAo H(E / RTo ^ 2))

K6 (Vke (E / RTo) H)

/(FoPCp Vke (E / RTo)CAo H(E / RTo ^ 2))

τ = −
− ∆

= −
− − ∆

= − − ∆
= − ∆

− − ∆

 (11) 

 
 Substitution of the steady state values in the time 
constant and process gains of Eq. 11. 
 Results in: 
 

T 1091.8s,K4 1.31*10 ^ 4,K5 1.09,K6 0.022τ = = − = =  (12) 
 
 The response of the change in reactor outlet 
concentration CA to a change in reactor throughput F 
can now be obtained by combining Eqs. 6 and 10 while 
setting changes in CAin and Tin to zero: 
 

[ ]
CA (K1 F / ( cs 1)) (K3 / ( cs 1))

(K4 / ( Ts 1)) (K6 CA / ( Ts 1))

δ = δ τ + − τ +
τ + + δ τ +

 (13) 

  
 This equation can be rearranged to: 
 

CA / F ((K1 K3K4) / (1 K3K6)) *

[(K1 T / (K1 K3K4))s 1]

/[( c T / (1 K3K6))s ^ 2

[( c T) / (1 K3K6))s 1]

δ δ = − +
τ − +

τ τ + +
τ + τ + +

 (14) 

 
 Then, the response of the change in reactor outlet 
temperature T to a change in reactor throughput F can 
now be obtained by combining Eq. 6 and 10 while 
setting changes in CAin and Tin to zero: 
 

T (K4 F / ( Ts 1)) (K6 / ( Ts 1))

[(K1 F / ( cs 1)) (K3 T / ( cs 1))]

δ = δ τ + + τ +
δ τ + − δ τ +

 (15) 

 
 This Eq. (15) can be rearranged to Eq. 16: 
 

T / F ((K4 K6K1) / (1 K6K3)) *

{(K4 c / (K4 k6K1))s 1}

/{( T c?(1 K3K6))s ^ 2

(( T c) / (1 K3K6))s 1}

δ δ = + +
τ + +

τ τ + +
τ + τ + +

 (16) 

  
 After substituting values for the time constants and 
gains in Eq. 7-13 and 14, can be written as: 
 

(120.02s 0.262)
CA / F

/(s ^ 2 0.0049s 3.921e 6)

( 20.86s 0.0456)
T / F

/(s ^ 2 0.0049s 3.921e 6)

+ 
δ δ =  + + − 

− − 
δ δ =  + + − 
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Fig. 2: Nonlinear model of CSTR 
 

 
 
Fig. 3: Block diagram of PID controller 
 

 
 
Fig. 4: Response of PID controller for CSTR 
 
 The above two Equations are the transfer function 
of concentration and temperature of the CSTR models 
Fig. 2 shows the nonlinear model of CSTR which is 
used in this study as a nonlinear MIMO model 
incorporates the energy and mass balance equation of 
the non isothermal chemical reactor. 
 
PID controller: The PID controller (Astrom and 
Hagglund, 2001; Shinskey, 1996) is also called as three 
mode controller. In industrial practice, it is commonly 
known as proportional-plus-reset-plus-rate controller. 
The combination of proportional, integral and derivative 

mode is one of the most powerful but complex controller 
operations. This system can be used for virtually any 
process condition. The equations of proportional mode, 
integral mode and derivative mode are combined to have 
analytic expression for PID mode: 
 
U(s)/E(s) = Kp(1 + 1/Tis + Tds) (17) 
 
 This mode eliminates the offset of the proportional 
mode and still provides fast response. The three 
adjustment parameter here is proportional gain, integral 
time and derivative time.The transfer function of PID 
controller is in Eq.17. PID controller is the most 
complex of the conventional control mode combination. 
The PID controller can result in better control than 
(Clerc and Kennedy, 2002) the one or two controller. In 
practice, control advantage can be difficult to achieve 
because of the difficulty of selecting the proper tuning 
parameters Fig. 3 shows the parallel form P+I+D 
controller. The parameters of PID controller Kp, Ti, Td 
are tuned by Z-N procedure from the linear model of 
CSTR is as:  
 

Kp = 0.5; Ti = 0.2; Td = 0.0 
  
 Figure 4 shows the closed loop response of CSTR 
for PID controller employed for the step change in 
coolant flow which causes the corresponding change in 
the temperature response. This response indicates the 
draw backs of PID in the transient portions shows poor 
response with overshoot and rise time 
 
SA-based tuning for PI controller in CSTR process: 
Simulated Annealing (SA) is motivated by an analogy 
to annealing in solids. Numerous researchers have 
demonstrated that SA is very effective in many 
optimization problems. However, the long execution 
time of SA has been the major drawback in practice. 
The algorithm Metropolis  et al. (1953) simulated the 
cooling of material in a heat bath. This process is known 
as annealing. Metropolis’s algorithm simulated the 
material as a system of particles. The algorithm simulates 
the cooling process by gradually lowering the 
temperature of the system until it converges to a steady 
frozen state.  Moita et al. (2006) the idea of the 
Metropolis algorithm is applied to optimisation 
problems. This idea is used in simulated annealing to 
search for feasible solutions and converge to an optimal 
solution. This study gives a strategy based on simulated 
annealing for the optimal tuning of a PI controller to deal 
with time-varying delay for a pH process. The main goal 
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is to minimize the delay time, peak time, settling time, 
rise time and peak overshoot. The proposed strategy is 
compared with other classic tuning algorithms. The 
simulation is carried out in MATLAB and the simulation 
results are explained. 
 
PSO tuning for PI controller in chemical process: 
Kennedy and Eberhart (1995) developed PSO algorithm 
based on the behavior of individuals (i.e., particles or 
agents) of a swarm. It has been noticed that members 
within a group seem to share information among them, 
a fact that leads to increased efficiency of the group 
(Ciuprina et al., 2002). The PSO algorithm searches in 
parallel using a group of individuals similar to other 
AI-based heuristic optimization techniques (Kennedy 
et al., 2001). An individual in a swarm approaches to 
the optimum or a quasi optimum through its present 
velocity, previous experience and the experience of its 
neighbors. 
 In a physical n-dimensional search space, the 
position and velocity of i-individual are represented as 
the vectors Xi = (xi1…….xin) and Vi = (vi1…….vin), 
respectively, in the PSO algorithm. Pbesti = 
(xi1

pbest…….xin
pbest) and Gbest = (xi1

Gbest…….xin
Gbest) 

respectively, be the best position of individual and its 
neighbors’ best position so far. Using the information, 
the updated velocity of individual is modified under 
the following equation in the PSO algorithm Eq. 18: 
 
V i 

k+1 = WVi
k + C1rand1 x (Pbesti

k - Xi
k)  

+ C2rand2x (Gbesti
k - Xi

k)  (18) 
 
Where: 
 
V i

k = Velocity of individual at iteration  
W = Weight parameter 
C1,C2 = Weight factors 
rand1, rand2 = Random numbers between 0 and 1 
X i

k = Position of individual at iteration  
Pbesti

k = Best position of individual until 
iteration  

Gbesti
k = Best position of the group until 

iteration  
 

 
 
Fig. 5: The search mechanism of the particle swarm 
optimization 

 Each individual moves from the current position to 
the next one by the modified velocity in (18) Eq. 19: 
X i

k+1 = Xi
k + Vi

k  (19) 
 The search mechanism of the PSO using the 
modified velocity and position of individual based on 
(18) and (19) is illustrated in Fig. 5. 
 The process of the PSO algorithm can be 
summarized as follows: 
 
• Step: Initialization of a group at random while 

satisfying constraints 
• Step: Velocity and Position updates while 

satisfying constraints 
• Step: Update of Pbest and Gbest 
• Step: Go to Step 2 until stopping criteria is satisfied  
 
 In the subsequent sections, the detailed 
implementation strategies of the PSO are described. 
 
Initialization: In the initialization process, a set of 
individuals is created at random. In this study, the 
structure of tuning PI controller for a pH process is 
composed of a set of elements (i.e., generation 
outputs). Therefore, individual i’s position at iteration 
0 can be represented as the vector (Xi

0
 = 

(Pi1
0…….Pin

0)) where n is the number of generators. 
The velocity of individual i (Vi

0 = (vi1
0…….vin

0)) 
corresponds to the generation update quantity 
covering all generators. The elements of position and 
velocity have the same dimension. The following 
strategy (20) is used in creating the initial velocity Eq. 
20: 
 
(Pjmin – Σ) – Pij

0
 < vij

0
 < (Pjmax + Σ) – Pij

0 (20) 
 
where, Σ is a small positive real number. The velocity 
of element j of individual i is generated at random 
within the boundary. The developed initialization 
scheme always guarantees to produce individuals 
satisfying the constraints while maintaining the concept 
of PSO algorithm. The initial Pbesti of individual i is set 
as the initial position of individual i and the initial 
Gbest is determined as the position of an individual 
with minimum payoff. 
 
Velocity update: To modify the position of each 
individual, it is necessary to calculate the velocity of 
each individual in the next stage, which is obtained 
from (18). In this velocity updating process (21) Eq. 21:  
  

max min
max

max

w w
w w xIter

Iter

−= −  (21) 

Where: 
 
Wmin,Wmax = Initial, final weights 
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Itermax = Maximum iteration number 
Iter = Current iteration number 
 
Position update: The position of each individual is 
modified by (18). The resulting position of an 
individual is not always guaranteed to satisfy the 
inequality constraints due to over/under velocity. If any 
element of an individual violates its inequality 
constraint due to over/under speed then the position of 
the individual is fixed to its maximum/minimum 
operating point. Therefore, this can be formulated (22) 
as follows Eq. 22: 
 

{ k k 1 k k 1
ijmax ij ij ijmin ij ij

k 1 k k 1
ij ijmin ij ij ijmax

k k 1
ijmax ij ij ijmax

P P v if P P V

P P if P V P

P if P V P

+ +

+ +

+

+ ≤ + ≤

= + ≤

+ ≥

 (22)  

 
Update of Pbest and Gbest: The Pbest of each 
individual at iteration is updated in (23)  as follows Eq. 
23: 
 

k 1 k 1 k 1 k
i i i i

k 1 k k 1 k
i i i i

Pbest X if TC TC

Pbest Pbest if TC TC

+ + +

+ +

= <

= <
 (23) 

 
where, TCi the object function evaluated at the position 
of individual i. Additionally, Gbest at iteration k+1 is 
set as the best evaluated position among Pbesti

k+1. 
 
Stopping criteria: The PSO is terminated if the iteration 
approaches to the predefined maximum iteration. 
 Thus the tuning of PSO algorithm for obtaining the 
optimal design of a CSTR process has been carried out 
using the above mentioned five steps. The key 
advantage of PSO is its computational efficiency and 
less parameter required to be adjusted in order to get the 
optimum result compared to related techniques. The 
proposed approach utilizes the global exploration 
capabilities of PSO to search for the optimal solution. 
The simulation results obtained by this method are 
described . 
 
Sliding mode control: Sliding Mode Control (SMC) is 
a type of robust control design that plays an important 
role in the class of Variable Structure Control Systems 
(VSCS).A control strategy can stabilize by driving their 
states into a predefined sliding manifold. Once the 
sliding surface has been reached, the system response is 
insensitive to parameter uncertainties and disturbances. 
There are multiple incentives to improve this method, 
which suffers from a few shortcomings. One is the state 
dependency and another is the discontinuous nature of 
the control a win the sliding mode, which is known as 

chattering. Unlike mechanical systems, whose states are 
usually ubiquitous, recognizing all states of a chemical 
process is sometimes impossible and measuring the 
known ones is often too expensive. It seems that 
integrating this control algorithm and any intelligent 
control method (as a special case for a model- 
independent control method) can result in a method that 
does not suffer from the afore mentioned disadvantages. 
One of the approaches to achieve this goal combines 
SMC with Fuzzy Logic Control (FLC) to develop an 
alternative named Fuzzy Sliding Mode Control 
(FSMC), (Chen and Chang, 1998)which is more 
efficient because of the following advantages.  
 It is independent of the mathematical model of the 
system, due to the qualitative reasoning provided by 
fuzzy logic. Utilizing the sliding mode concepts, one 
can easily create the fuzzy rule-base, which guarantees 
the stability and robustness of the closed-loop system. 
 The standard nonlinear benchmarks used by the 
process control research community have been used to 
study the performance of the proposed method for both 
Single Input Single Output (SISO) and MIMO 
nonlinear processes. The SISO benchmark consists of 
concentration control in the isothermal Continuous 
Stirred Tank Reactor (CSTR) in which a van de Vusse 
reaction with non-minimum phase behavior takes place. 
This problem has been used by various researchers 
including (Mudi et al., 2008; Chang, et al, 2002; Hahn 
and Edgar, 2001; Edward and Spurgeon, 1998) to 
evaluate the performance of nonlinear control methods. 
The benchmark used to address MIMO systems is the 
concentration and temperature control of a non-
isothermal van de Vusse reactor which has also been 
used to assess performance of nonlinear control 
methods (Guay et al., 2005).  
 The main disadvantage of the SMC method is its 
dependence on system model. On the other hand, even 
if the system model is known, in order to implement 
SMC and have all the states be stabilized and 
controlled (Li and Shieh, 2000). However, these 
conditions are not met for most chemical processes. In 
order to overcome this problem,  one  can  use  the  
concept of SMC and FLC. This approach has been 
used in various engineering applications. 
 

MATERIALS AND METHODS 
 
To tune the PID controller for a CSTR process we have 
adopted different soft computing techniques like 
Fuzzy,SA,PSO and sliding mode adaptive 
techniques.MATLAB SIMULINK is used for 
simulation and FUZZY GUI is also utlised. The 
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linearisation is carried out using Taylor’s Series in the 
relevant areas.ISE and SSE are the performance indices 
used for optimisation. 
 

RESULTS AND DISCUSSION 
 
Fuzzy sliding mode control simulation: The tuning of 
a CSTR process is carried out by FSMC. The block 
diagram of Fuzzy sliding mode controller is shown in 
Fig.6.Here sliding mode control for obtaining the 
optimal tuning of the CSTR process is simulated. It is 
found that the development of sliding mode fuzzy logic 
makes the tuning of controller for CSTR process is 
efficient. The fuzzy sliding mode control is used to 
eliminate the chattering problem (Fink and Singh, 
1998)and more suitable for the tuning of this non-linear 
process.  
 

 
 
Fig. 6: Fuzzy tuned sliding PI controller 
 

 
 
Fig. 7: Input membership function 
 

 
 
Fig. 8: Output membership function 

 Seven triangular membership functions are chosen 
to obtain proper tuning. The input functions for error 
and change in error for proportional gain (Kp) are 
shown in Fig. 7. Their corresponding output 
membership function is shown in Fig. 8 .The 
performance of the algorithm has been analyzed 
through computer simulation. 
 The development of FSMC makes the process 
more efficient by completely eliminating the overshoot. 
For the disturbance and setpoint changes shown in Fig. 
9. The output response using sliding mode fuzzy logic 
PI control is shown in Fig. 10. The simulation results 
are given in Table 1. It is seen from the table that that 
FSMC tuned PI controller gives the better performance 
than conventional PI controller. The peak overshoot and 
chattering are completely eliminated by this method. 
 

 
 
Fig. 9: Input to CSTR 
 

 
 
Fig.10: Response of CSTR process using fuzzy sliding 

mode PID control 
 

 
 
Fig. 11: Block diagram of Simulated Annealing tuning 

of PI controller 
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 Here SA-based PI parameter tuning for obtaining 
the optimal design of the CSTR process is simulated. 
The block diagram of SA tuning of PI controller is 
shown in Fig. 11. The performance of the algorithm has 
been analyzed in CSTR process through computer 
simulation. Optimal PI settings are computed by means 
of optimization based on the algorithm. Response of 
Simulated Annealing tuned PI Control for the process 
in shown in Fig. 12. It is seen that SA tuned PI 
controller is better than FLC tuned controller in various 
aspects like delay time, peak time, settling time, rise 
time and peak overshoot. The results are obtained with 
the following control parameters: 
 
Number of iterations = 1000 
Best fitness value = 751.15 
 

 
 
Fig. 12: Response of simulated annealing tuned PI 

control for pH process 
 

 
 
Fig. 13: Block diagram of PSO tuning of PI controller 
 

 
 
Fig. 14: Response of PSO tuned PI Control for CSTR  

process 

 Using SA tuning the controller parameters obtained 
after simulation are Kp= 1.1542 and Ki= 2.4627. 
  
PSO tuning: The block diagram of PSO tuning PI 
controller is shown in Fig.13. Here PSO-based PI 
parameter tuning for obtaining the optimal design of the 
CSTR process is simulated. The performance of the 
algorithm has been analyzed in CSTR process through 
computer simulation. The results are obtained with the 
following control parameters: 
 
Number of populations = 50 
Number of variables = 2 
Number of iterations = 10 
Initial weight Wmin = 0.5 
Final weight Wmax = 1.0 
Weight factors C1, C2 = 1.0 
 
 Using PSO tuning the controller parameters 
obtained after simulation are Kp= 1.1430 and Ki= 
1.1465. Response of PSO tuned PI Control for CSTR 
process in shown in Fig. 14. 
 

CONCLUSION 
 
 We have described the tuning of controller using 
soft computing techniques FSMC, PSO and SA. We 
have developed the FSMC based PI controller. The 
chattering phenomena is eliminated by the induced 
intelligence. Results show that the performance 
obtained by this method is better and hence the 
overshoot is completely eliminated. Again this study 
presents another two methods tuning methods like SA 
and PSO, which has been tested through extensive 
simulation. Computer simulation was done in 
MATLAB. Results show that the performance factor 
peak overshoot is completely eliminated in FSMC and 
settling time is more than other methods. Further the 
PSO method gives better improvement in settling time 
with small percentage of overshoot. The SA method is 
inferior to PSO method. The obtained results are 
compared and tabulated in Table 1.  
 The investigation in this study reveals that PSO-
based tuning method is better in steady state portion 
and however the fuzzy tuned sliding mode PI controller 
implies better transient response and it,s robust nature 
than other methods compared here is identified as 
suitable controller for CSTR  
 
Table 1: Comparison of various tuning methods 
Tuning Delay time Rise time Peak time Settling time Peak  
methods (sec) (sec) (sec) (sec) overshoot (%) 
PID 5.00 10.00 20.0 15.0 10.00 
FSMC 0.50 1.00 1.1 2.2 0.00 
SA 0.90 1.75 2.5 2.1 7.90 
PSO 0.75 1.50 2.0 2.2 4.29 
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