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Abstract: Problem statement: The aim of this study is to present an intelligemting technique for
PID controller that are simple and still resultgnod closed loop behavior. The idea is to starh it
tuned conventional PID controller, replace it wiah equivalent intelligent controllers like Fuzzy,
ANN, Genetic and PSO techniques implies fine tunedlinear PID controller which is most suitable
for nonlinear process like Continuous stirred taelctor. The performance of various optimization
techniques and intelligent techniques are compafgmbroach: In this study we present soft
computing technigues to design and tune the PlDraler. The objective wss tominimise the steady
state error and to obtain the optimum respoRssults: The comparisons amoung the Conventional
PID, Fuzzy Sliding PID, Simulated Anneling PID aR&O0O tuned PID controllers PSO PID implies
better result for the nonlinear chemical proceSsnclusion: With the nonlinear model of CSTR
process the PSO tuned PID controller implies th&mapn response for both setpoint and load
variations.

Key words: Sliding mode control, Continuous Stirred Tank Reac{CSTR), Particle Swarm
Optimization (PSO), chemical reactors, Single Irpingle Output (SISO), PID controller

INTRODUCTION Mode Control, provides an alternative to design a
robust controller (Morari and Zafiriou, 1989) for
Chemical reactors are ones of the most importantonlinear systems with uncertainty (Devadhas and
plants in chemical industry. Their operation, hogev Pushpakumar, 2010; Stephanopoulos and Han, 1996).
is corrupted with various uncertainties. Some @nth Hence in this study, both sufficient and necessary
arise from varying or not exactly known parametass, reaching conditions of fuzzy sliding mode PID
e.g. reaction rate constants, heat transfer ceafti€. In  controller is in CSTR process
other cases, operating points of reactors vareactor Most of optimization problems such as Tabu
dynamics is affected by various changes of parasietesearch, simulated annealing and recently-introduced
or even instability of closed loop control systems.Particle Swarm Optimization (PSO) are considered as
Application of robust control approach can be ofie orealistic and powerful solution to obtain optimipat
ways overcoming all these problems. The mainproblems. Simulated annealing (Chen and Peng, 1999)
difficulty in tuning of control is due to the dishances is a generic met heuristic probabilistic for thelml
and parameter uncertainties. The fuzzy modeling ooptimization problem. It is often used when therska
fuzzy identification, first explored systematicalhlas space is discrete. For certain problems, simulated
found numerous practical applications in control,annealing may be more effective to find an accdptab
prediction and inference (Nahasal., 1992; Devadhas good solution in a fixed amount of time. Each stép
and Kumar, 2010). The principle of sliding modethe SA algorithm replaces the current solution by a
control is introduced into classical model freezZyz random nearby solution, chosen with a probabitiiyt t
logic control which provides proper guidance toiges depends on the difference between the corresponding
a fuzzy controller for system stability. The condtion  function values and on a global parameter T (calhed
of the two control principles, called Fuzzy Sliding temperature), that is gradually decreased durirgy th
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process (Chen and Peng, 2006). Recently, Eberhdrt aThe fluid inside the reactor is perfectly mixed asaht
Kennedy and Eberhart (1995) suggested a Particleut through the exit valve. The jacket surroundineg
Swarm Optimization (PSO) based on the analogy ofeactor also has feed and exit streams. The jasket
swarm of bird and school of fish. The PSO mimics th assumed to be perfectly mixed and at a lower
behavior of individuals in a swarm to maximize thetemperature than the reactor.

survival of the species. The algorithm, which isdzh
on a metaphor of social interaction, searches eespg
adjusting the trajectories of moving points in a

Parameter s used:

multidimensional space. The individual particleg ar V = 5nr
drawn stochastically towards the position of présenCa = 200.13kg it
velocity, their own previous best performance anel t Can = 800kg m’
best previous performance of their neighbors (Ciex¢ F = 0.005msec”
Kennedy, 2002). The main advantages of the PSd = 18.75see’
algorithm are summarized as: simple concept, easp = 30kJ mal*
implementation, robustness to control parameters anl = 413K
computational efficiency when compared with Tin = 333K s
mathematical  algorithm and  other  heuristicP = 800kg m
optimization techniques. Cp = 1.0kJ kgk
The main contribution of this study is to find the AH = 5.3kJ kg'
nonlinear model of the chemical process and the soR = 224.1kJ set

0.00831kJ mot K

computing techniques like PSO and SA methodologie&
has been employed to control the nonlinear process.

Finaly a fuzzy sliding mode PI controller have beenMathematical modeling: The component balance
proposed to control the process (Seborg, 1994) for the reactor can be given as:

Process description: Chemical reactions in a reactor ysqca /gt = F( cAin - cA) - Vke(- E / RT)cA
(Stephanopoulos and Han, 1996) are either exotleermi
(release energy) or endothermic (require energyt)np
and therefore require that energy either be
removed or added to the reactor for a constant
temperature to be maintained. . PVcpdT /dt= FPcp(Tinr Ty Vkef E/RT)cA H (2)
Figure 1 shows the schematic of the_ CST_REq_l and 2 can be rewritten as

process. In the CSTR process model under dlscussmr\l/dCA/dt: FCAin— FcA- Vke( E / RT)cA
an irreversible exothermic reaction takes placee Th ]

heat of the reaction is removed by a coolant mediumVdcA/ dt="f1(F,cAin)=f2(F,cA)- f3(cA,T)
that flows through a jacket around the reactorluidf
stream A is fed to the reactor. A catalyst is pthce

@)

The energy balance by:

®3)

Now be used in the general model differential

inside the reactor. equation as:
dx /dt=f(x)=f(x0)+ (df / dx)dx (4)
1"”&‘1"\“; C ~N Using Eg. 3 and 4 can be linear zed:
Cookent o Vd(3cA) / dt = (9f1/dF)OF+
—p
(917 dcAin)3cAin — (9f 2 / OF)SF -
(9f 2/ AcA)BCA — (0 3/ ACA)SCA — (9F 3/ AT)ST
Gooloas out This can be written as:
b Vd(3cA) / dt = cAindF+ FG cAin— cAG F F@ cA-
uct out
Vke(-E / RTBCA- Vket E/RTO)cAO(E / RTOD =~ (5)

=Vke- (E/RT0)CAq E/RTo"25 T
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Rearranging terms in Eg.5 and introducing thetT =VPCp/(FoPCp- Vke

Laplace operator results in: —(E/RT0)CAQAH(E/RTo " 2))
K4 =PCp(Tino- To)
OCA = (K18F / (tcs+ D)+ (KD CAin /(FOPCp- (Vke- (E/RT0)CAA H(E/RT072)) (11)
/(tcs+ 1)- (KB T/ cs 1) (6) K5 =FoPCp- (Vke- (E/RT0)CAA H(E/RTo"?2
K6 = (Vke - (E/ RTOA H)
With: /(FOPCp- Vke- (E/RT0)CAA H(E/RT0"2))

Substitution of the steady state values in theetim

1c=V/(Fo+ Vke= (E/RTo)) constant and process gains of Eq. 11.

K1=((CAino—- CAo)/ (Fo+ Vke- (E/RTo)), Results in:
K2 =Fo/(Fo+ Vke- (E/RTo0))
K3 = (Vke - (E/ RTo)CAo(E / RTo " 2)) TT =1091.8s,K4 - 1.31*10"4,K5 1.09,K6 0.0: (12)

[(Fo+ Vke= (E/RTo))) The response of the change in reactor outlet

concentration ¢ to a change in reactor throughput F
After substitution of the steady state values gain can now be obtained by combining Egs. 6 and 10ewhil
of Eq. 3and 6 we get into the time constmd  setting changes ings and T, to zero:

process:
3CA = (K15F / (tcs+ 1)) (K3/ ¢ cs+ 1)

(13)
Tc=250s,Kl= 3*1074,K2Z 0.25K8 3.17 (7)  L(K&/(Ts+1)+ (KESCA/ aTs+ 1]
The second equation (energy balance) of the This equation can be rearranged to:
reactor model can be rewritten as: SCA 8F = ((K1- K3K4) / (1+ K3K6))*
PVCpdT /dt= FPCp(Tin- T} Vke (E/RTCA I [(KITT /(K1 ~K3KA)s +1] (14)
+Q) /[(tctT / (1+ K3K6))s * 2+
= FPCpTin- FpCpF- Vke (E/RTCA H Q) [(re+TT)/ 1+ K3KE)s+ 1)
=f1(F, Tin) - f2(F, T)- f3(CA, T)+ f4*(Q) Then, the response of the change in reactor outlet
temperature T to a change in reactor throughpuarf c
Using Eq. 3 and 4 can be written as: now be obtained by combining Eq. 6 and 10 while
setting changes in; and T, to zero:
PVCpd@T)/dt=(3f1/3 §d F+ (3 f16 Tin ‘
5Tin - (5 2/ 5F) 5F - (52 /5T) 5F— ®8) OT = (KA0F/(rTs+ )+ (K&/ { Tor 1) (15)

(513/8T)8CA - (3f3/ 3T)3T +8Q K18/ (res+ D)= (KD T/ est )

This Eq. (15) can be rearranged to Eq. 16:
This (8) can be rewritten as:
8T/ 8F = (K4 + K6K1) / (1+ K6K3))*

VPCpd@ T)/dt= PCp(Tin- T3 A FPGp Tin {(K4T/ (K4 +k6K1))s+ 1}
~-FPC® T+ Vke- (E/RTA B CA+ VKE_(E/RT (9) K(TTe2(1+ K3K6))s ~ 2+
CAAH[E/RT0"33T+58Q ((TT +1C) / (1+ K3K6))s+ 1}

(16)

Rearranging terms in Eq.9 and introducing the After substituting values for the time constantd a
Laplace transform operator results in: gains in Eq. 7-13 and 14, can be written as:

5T = (K43F / (1Ts+ 1))+ (KB Tin/ ( Ts+ 1) (10) 5CA | 5F = {(122-0% 0.262) l
(K6SCA / (TTs+ 1)) /(s~2+ 0.0049s 3.921e
- 6F{(—zi).ses— 0.0456) l
With: /(s~2+0.0049s 3.92t¢ )
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mode is one of the most powerful but complex cdietro

Wontinesr e operations. This system can be used for virtuatly a
Step F - o process condition. The equations of proportionateno
T integral mode and derivative mode are combinedate h
Commponmtblance) ol analytic expression for PID mode:
Scope
: N T ]] U(S)/E(s) = K(1 + 1/Tis + Tgs) a7

Energy balance

This mode eliminates the offset of the proportlona
mode and still provides fast response. The three
adjustment parameter here is proportional gaiegirat

E— time and derivative time.The transfer function dDP
chmm_fE] _ controller is in EQ.17. PID controller is the most
Add Transfer Fen complex of the conventional control mode combimatio

The PID controller can result in better control rtha
(Clerc and Kennedy, 2002) the one or two controller
practice, control advantage can be difficult toiach

Fig. 2: Nonlinear model of CSTR

P because of the difficulty of selecting the propaming
) . parameters Fig. 3 shows the parallel form P+I+D
Vet I Amp || 310‘?‘“ You controller. The parameters of PID controller Kp, Til
- are tuned by Z-N procedure from the linear model of
Vsensor D CSTRis as:
Sensor

Kp=0.5;Ti=0.2; Td=0.0
Fig. 3: Block diagram of PID controller Figure 4 shows the closed loop response of CSTR
332 for PID controller employed for the step change in
354 coolant flow which causes the corresponding change
the temperature response. This response indichtes t
draw backs of PID in the transient portions showasrp

349 . response with overshoot and rise time

SA-based tuning for Pl controller in CSTR process:

3 ' Simulated Annealing (SA) is motivated by an analogy
U6 to annealing in solids. Numerous researchers have
o demonstrated that SA is very effective in many
"o 50 100 150 200 350 optimization problems. However, the long execution
time of SA has been the major drawback in practice.
Fig. 4. Response of PID controller for CSTR The algorithm Metropoliset al. (1953) simulated the

cooling of material in a heat bath. This procedgmwn

The abov_e two Equations are the transfer funCt'or};ls annealing. Metropolis’s algorithm simulated the
OT concentration and temperature of the CSTR r_nOd_elﬁwateriaI as a system of particles. The algorithmuates
Fig. 2 shows the nonlinear model of CSTR which iSihe cooling process by gradually lowering the

gsed in this study as a nonlinear MIMO mo_deltemperature of the system until it converges tteady
incorporates the energy and mass balance equation Rozen state. Moitaet al (2006) the idea of the

the non isothermal chemical reactor. Metropolis algorithm is applied to optimisation

PID controller: The PID controller (Astrom and Problems. This idea is used in simulated annedting

Hagglund, 2001; Shinskey, 1996) is also callechaset ~Search for feasible solutions and converge to dimap

mode controller. In industrial practice, it is commy  solution. This study gives a strategy based on Isited

known as proportional-plus-reset-plus-rate corgroll annealing for the optimal tuning of a PI controliedeal

The combination of proportional, integral and dative  with time-varying delay for a pH process. The mgoal
1143
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is to minimize the delay time, peak time, settliime,
rise time and peak overshoot. The proposed strategy

compared with other classic tuning algorithms. TheXi'= X+ V¥

simulation is carried out in MATLAB and the simudat
results are explained.

PSO tuning for Pl controller in chemical process:

Each individual moves from the current position to
the next one by the modified velocity in (18) EQ: 1
(19)

The search mechanism of the PSO using the
modified velocity and position of individual based
(18) and (19) is illustrated in Fig. 5.

The process of the PSO algorithm can be

Kennedy and Eberhart (1995) developed PSO algorithraummarized as follows:

based on the behavior of individuals (i.e., pagscbr
agents) of a swarm. It has been noticed that mesnbe

within a group seem to share information among them

a fact that leads to increased efficiency of theugr
(Ciuprinaet al., 2002). The PSO algorithm searches in
parallel using a group of individuals similar tohet

Al-based heuristic optimization techniques (Kennedy®

et al., 2001). An individual in a swarm approaches to

the optimum or a quasi optimum through its present

velocity, previous experience and the experiencigsof
neighbors.

In a physical n-dimensional search space,
position and velocity of i-individual are represeditas
the vectors X= (% Xin) and M = (vip
respectively, in the PSO algorithm. Pbhest
(X ™*% LX) and Gbest = (P! ... .x;n ")
respectively, be the best position of individuati ats
neighbors’ best position so far. Using the inforimat
the updated velocity of individual is modified umde
the following equation in the PSO algorithm Eq. 18:

V= Wv + Crrand x (Pbest - X

+ Cyrandx (Gbesf - X) (18)

Where:

Vi = Velocity of individual at iteration

W = Weight parameter

C.G = Weight factors

rand,rand = Random numbers between 0 and 1

X< = Position of individual at iteration

Pbest = Best position of individual until
iteration

Gbest = Best position of the group until
iteration

Fig. 5: The search mechanism of the particle swarm,,

optimization

Step: Initialization of a group at random while
satisfying constraints

Step: Velocity and Position
satisfying constraints

Step: Update of Pbest and Gbest
Step: Go to Step 2 until stopping criteria is $aetth

r

updates while

In the subsequent sections, the detailed
implementation strategies of the PSO are described.

thénitialization: In the initialization process, a set of

individuals is created at random. In this studye th
structure of tuning PI controller for a pH procéss
composed of a set of elements (i.e., generation
outputs). Therefore, individual i's position atration

0 can be represented as the vector;? (%
(P;° P.))) where n is the number of generators.
The velocity of individual i (Y = (v’ Vi)
corresponds to the generation update quantity
covering all generators. The elements of positiod a
velocity have the same dimension. The following
strategy (20) is used in creating the initial vétp&q.

20:

(ijin —Z) - Hjos Vijoﬁ(ijax + Z) - Rjo (20)
where,X is a small positive real number. The velocity
of element j of individual i is generated at random
within the boundary. The developed initialization
scheme always guarantees to produce individuals
satisfying the constraints while maintaining theoept

of PSO algorithm. The initial Pbesf individual i is set

as the initial position of individual i and the tial
Gbest is determined as the position of an individua
with minimum payoff.

Velocity update: To modify the position of each
individual, it is necessary to calculate the velpaof
each individual in the next stage, which is obtdine
from (18). In this velocity updating process (24. P1:

w

-w
w=w_, ——

Iter, .

min  [ter (21)

Where:

min'Wmax = Initial, final weights
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Itermax = Maximum iteration number chattering. Unlike mechanical systems, whose s&tes
Iter = Current iteration number usually ubiquitous, recognizing all states of arolval
process is sometimes impossible and measuring the
Position update: The position of each individual is known ones is often too expensive. It seems that
modified by (18). The resulting position of an integrating this control algorithm and any intedig
individual is not always guaranteed to satisfy thecontrol method (as a special case for a model-
inequality constraints due to over/under velodityany  independent control method) can result in a methat
element of an individual violates its inequality does not suffer from the afore mentioned disad\gesa
constraint due to over/under speed then the pasitfo One of the approaches to achieve this goal combines
the individual is fixed to its maximum/minimum SMC with Fuzzy Logic Control (FLC) to develop an
operating point. Therefore, this can be formulg22) alternative named Fuzzy Sliding Mode Control

as follows Eq. 22: (FSMC), (Chen and Chang, 1998)which is more
efficient because of the following advantages.

pijmax{ Py ifp,, < P+ Yis It is independent of the mathematical model of the

PUrzp i B Y P 22) system, due to the qualitative reasoning providgd b

fuzzy logic. Utilizing the sliding mode conceptsieo
Pimec If Pf + V(™ 2 B, can easily create the fuzzy rule-base, which gueesn
the stability and robustness of the closed-loopesys

The standard nonlinear benchmarks used by the
process control research community have been wsed t

Update of Pbest and Gbest: The Pbest of each
individual at iteration is updated in (23) as dols Eq.

23:
study the performance of the proposed method ftir bo
Pbest™ = X if T¢"'< T¢ Single Input Single Output (SISO) and MIMO
' ' . (23) i i
Pbest™ = Pbet if TE'< TE nonlinear processes. The SISO benchmark consists of

concentration control in the isothermal Continuous

where, TGthe object function evaluated at the positionStirred Tank Reactor (CSTR) in which a van de Vusse
of individual i. Additionally, Gbest at iteration+it is  reaction with non-minimum phase behavior takeseplac
set as the best evaluated position among Hest This problem has been used by various researchers
including (Mudiet al., 2008; Changgt al, 2002; Hahn
Stopping criteria: The PS_O is term_inateo! if th_e iteration gpq Edgar, 2001; Edward and Spurgeon, 1998) to
approaches to th? predefined maximum |terat|o!1.. evaluate the performance of nonlinear control mggho
Thus the tuning of PSO algorithm for obtaining theThe benchmark used to address MIMO systems is the

op_t|mal design ofaCSTR process has been cartied Oconcentration and temperature control of a non-
using the above mentioned five steps. The key

L . - Isothermal van de Vusse reactor which has also been
advantage of PSO is its computational efficiencyg an .

. . . used to assess performance of nonlinear control
less parameter required to be adjusted in ordgetithe

optimum result compared to related techniques. Thgqethohds (Gga;;t_al.LjZOOS). f the SMC hod is |
proposed approach utilizes the global exploration The main disadvantage of the SMC method Is its

capabilities of PSO to search for the optimal sohut d€Pendence on system model. On the other hand, even

The simulation results obtained by this method ardf the system model is known, in order to implement

described . SMC and have all the states be stabilized and
controlled (Li and Shieh, 2000). However, these

Sliding mode contral: Sliding Mode Control (SMC) is conditions are not meF for most chemical procedses.

a type of robust control design that plays an irtgyur order to overcome this problem, one can use the
role in the class of Variable Structure Control tByss  concept of SMC and FLC. This approach has been
(VSCS).A control strategy can stabilize by driviligir ~ used in various engineering applications.

states into a predefined sliding manifold. Once the

sliding surface has been reached, the system respsn MATERIALSAND METHODS

insensitive to parameter uncertainties and dish@®8. 14 yne the PID controller for a CSTR process weeha
There are multiple incentives to improve this metho adopted different soft computing techniques like
which suffers from a few shortcomings. One is tliées  Fuzzy,SAPSO and sliding mode  adaptive

dependency and another is the discontinuous nafure techniques.MATLAB  SIMULINK is used for
the control a win the sliding mode, which is knoasm simulation and FUZZY GUI is also utlised. The
1145
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linearisation is carried out using Taylor's Serieghe Seven triangular membership functions are chosen
relevant areas.ISE and SSE are the performanceemdi to obtain proper tuning. The input functions foroer
used for optimisation. and change in error for proportional gain (Kp) are
shown in Fig. 7. Their corresponding output
membership function is shown in Fig. 8 .The
performance of the algorithm has been analyzed
o . _ . through computer simulation.

Fuzzy diding mode control simulation: The tuning of The development of FSMC makes the process
a CSTR process is carried out by FSMC. The blocknore efficient by completely eliminating the ovessh
diagram of Fuzzy sliding mode controller is shown i For the disturbance and setpoint changes showigin F
Fig.6.Here sliding mode control for obtaining the 9. The output response using sliding mode fuzzyclog
optimal tuning of the CSTR process is simulateds It Pl control is shown in Fig. 10. The simulation résu
found that the development of sliding mode fuzayido are given in Table 1. It is seen from the table that
makes the tuning of controller for CSTR process is=SMC tuned PI controller gives the better perforagan
efficient. The fuzzy sliding mode control is used t than conventional Pl controller. The peak overslaoat

eliminate the chattering problem (Fink and Singh,chattering are completely eliminated by this method

RESULTSAND DISCUSSION

1998)and more suitable for the tuning of this nioedr
process.

Fuzzy K,. K;tuning

Y

PI
controller

CSTR
process

Fig. 6: Fuzzy tuned sliding PI controller

. . Plot points:
Membership function plots 18l
. INB NM NS ZE PS PM PB!
™ PR VAN N N N 4|
fF N/ \ /N rAR W A _,r'r{
{ X NN £ A
{ \ }/ )‘ \,/ >/
! FiY \ \ .f'\ \
i \ FX k 4 FoN
/N i.,/ ./ \/ LT i
o E >~\ > 2 k|
-1 -0.8 06 04 -02 0 02 04 06 08 1

Input variable (error)

Fig. 7: Input membership function

Plot points

Membership function plots

[ 1s1]

1 e \\{ /”—\I ,-"/ \{ /’\\ A
;\i\*&/&& _L/_\J 5
-1 -0.8 0.6 -04 -02 0 02 04 06 08 1

Output variable (control signal)

Fig. 8: Output membership function

Plants input

D1

0 20 40 60 80 100
Time (sec)

Fig. 9: Input to CSTR

Plant cutput: MO1

(=T L. ]

v} 20 40 60 80 100
Time (sec)

Fig.10: Response of CSTR process using fuzzy gidin
mode PID control

Simulation
annealing
u(k) You t(k)
PID cgntroller Controlled object —»

Rink (k) Error (k)

Fig. 11: Block diagram of Simulated Annealing tupin
of PI controller
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Here SA-based Pl parameter tuning for obtaining  Using SA tuning the controller parameters obtained
the optimal design of the CSTR process is simulatedafter simulation are j& 1.1542 and K 2.4627.
The block diagram of SA tuning of Pl controller is . ) )
shown in Fig. 11. The performance of the algoritrs ~ PSO tuning: The block diagram of PSO tuning PI
been analyzed in CSTR process through computegontroller is shown in Fig.13. Here PSO-based PI
simulation. Optimal PI settings are computed by msea Parameter tuning for obtaining the optimal desigthe
of optimization based on the algorithm. Response o£STR process is simulated. The performance of the
Simulated Annealing tuned Pl Control for the praces @lgorithm has been analyzed in CSTR process through
in shown in Fig. 12. It is seen that SA tuned PIcomputer simulation. The results are obtained With
controller is better than FLC tuned controller avious  following control parameters:
aspects like delay time, peak time, settling timse

time and peak overshoot. The results are obtairittd w Number of populations N 50
the following control parameters: Number of yarlaples =2
Number of iterations = 10
Number of iterations = 1000 Initial weight Win = 05
Best fitness value = 751.15 Final weight Wax = 1.0
Weight factors ¢ C, = 1.0

Simulated annealing PI

o Simulated annealing PI control Using PSO tuning the controller parameters
obtained after simulation are K 1.1430 and &
1.1465. Response of PSO tuned PI Control for CSTR
process in shown in Fig. 14.

rogess outpul (CSTR)

4
3 CONCLUSION
1

We have described the tuning of controller using

soft computing techniques FSMC, PSO and SA. We

0 5 10 15 20 25 30 35 40 45 50 have developed the FSMC based Pl controller. The

Time (sec) chattering phenomena is eliminated by the induced

. ) . . intelligence. Results show that the performance

Fig. 12: Response of simulated annealing tuned P btained by this method is better and hence the
control for pH process overshoot is completely eliminated. Again this stud

presents another two methods tuning methods like SA

¥ PSO method gives better improvement in settlingetim

with small percentage of overshoot. The SA mettsod i
Fig. 13: Block diagram of PSO tuning of PI conteoll inferior to PSO method. The obtained results are
compared and tabulated in Table 1.
The investigation in this study reveals that PSO-
‘ based tuning method is better in steady state guorti
‘ and however the fuzzy tuned sliding mode PI colgrol
implies better transient response and it,s robasira
| than other methods compared here is identified as
|
|

PSO. 1 and PSO, which has been tested through extensive

7 simulation. Computer simulation was done in

blsey B ) o MATLAB. Results show that the performance factor
/ — on e peak overshoot is completely eliminated in FSMC and

wie settling time is more than other methods. Furtimer t

suitable controller for CSTR

Table 1: Comparison of various tuning methods
Tuning Delay time Rise time Peak time Settling tPeak

345 methods (sec) (sec) (sec) (sec) overshoot (%)
0 50 100 1540 200 250 PID 5.00 10.00 20.0 15.0 10.00
FSMC 0.50 1.00 1.1 2.2 0.00
Fig. 14: Response of PSO tuned PI Control for CSTRsA 0.90 1.75 25 21 7.90
process PSO 0.75 1.50 2.0 2.2 4.29
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