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Abstract: Problem statement: Mathematical models are a useful tool for understanding and 
describing the transmission of diseases such as dengue fever, one of the most prevalently emerging 
diseases common to tropical and subtropical areas throughout South East Asia. By taking into account 
human susceptibility to disease, the dynamics of a dengue disease model is proposed. Approach: 
Using standard methods for analyzing a system, the stability of the model is determined by using 
Routh-Hurwitz criteria. Results and Conclusion: We can show that the basic reproductive number 
(R0), the threshold parameter, when R0<1, the disease-free state is locally asymptotically stable. If R0 

>1, the endemic equilibrium state is locally asymptotically stable. Numerical results illustrate the 
dynamics of the disease within the context of varying parameter values. 
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INTRODUCTION 
 
 Dengue fever is an infectious disease caused by the 
dengue virus (genus flavivirus, family Flaviviridae) 
(WHO, 2009). There are four closely related serotypes 
of this virus known as DEN-1, DEN-2, DEN-3 and 
DEN-4, all of which are transmitted to humans by the 
bite of infected female Aedes mosquitoes with Aedes 
aegypti being the principle vector and Aedes albopictus 
being a less common vector. Dengue fever occurs in 
tropical and subtropical regions around the world, 
predominantly in urban and semi-urban areas where 
mosquitoes can breed in water. Dengue fever has become 
a major international public health concern since it has 
been reported in over 100 countries and is estimated to 
affect more than one hundred million people each year 
(WHO, 2009) with infants and, unlike many diseases, 
well-nourished children being most at risk (Ranjit and 
Kissoon, 2010). For a yet-to-be explained reason, 
females are more susceptible to the disease than males 
(Guzman et al., 2010). It is estimated that 2.5 billion 
people live in dengue epidemic areas.  
 The spectrum of illness of dengue ranges from 
mild infection Dengue Fever (DF), to severe deadly 
disease Dengue Haemorrhagic Fever (DHF) and 
Dengue Shock Syndrome (DSS) (WHO, 2009). All of 

the four dengue viruses co-circulate in many areas of 
Africa, the Americas and Asia, the dominant serotype 
has changed irregularly (Chikaki and Ishikawa, 2009). 
Infection with one serotype confers permanent 
immunity against that serotype but only temporary and 
partial protection against the other three serotypes and 
secondary or sequential infections are possible after a 
short time (Rodenhuis-Zybert et al., 2010). A person 
infected with one DEN virus produces lifelong 
immunity against with that serotype but no long-term 
cross - protection against the other three serotypes but 
they may be re-infected by the other three serotypes in 
about three months and will concurrently become more 
susceptible to develop the more virulent DHF form of 
the disease (Gubler and Kuno, 1997).  
 Among many countries affected by the disease, all 
three forms of Dengue fever are endemic to Thailand. 
From 1997-2008, a total of 220,885 cases of DF, 
650,810 cases of DHF and 17,268 cases of DSS were 
reported (Kongnuy et al., 2011). In many cases, the 
illness is asymptomatic and infection can only be 
determined through serologic tests. Sriprom et al. 
(2003) sought to classify the primary and the secondary 
infections of DHF in Thailand from 1998-2003. 
Serological tests established 1,082 confirmed cases 
divided into 214 due to primary infections, 291 due to 
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secondary infections and 577 undetermined. The 
predominant virus was DEN-1 (162), followed by 
DEN-2 (121), DEN-3 (70) and DEN-4 (17).  
 Multiple viruses were found in 3 patients. 
Halstead maintained that the mutation of the virus 
could have produced viruses with greater virulence 
and therefore greater epidemic potential.  
 Given the disease’s widespread prevalence in 
Thailand, the need to better understand the 
epidemiology of Dengue fever is, therefore, most 
urgently needed. Simulation approaches using 
mathematical models have already proven 
themselves as important tools for understanding the 
spread and control of diseases as in the study of 
Adetunde (2009) and Koriko and Yusuf (2008) 
proposed mathematical models of Tuberculosis 
disease, determine the disease free and endemic 
equilibrium point and analyzed the stability. 
Naowarat et al. (2011) proposed and analyzed the 
mathematical model to control the transmission of 
Chikungunya Fever. Dengue models proposed by 
Estava and Vagus (1998) and by Yaacob (2007) may 
have even greater efficacy than those mentioned 
above as they permit both more than one serotype 
and the potential for re-infection to be incorporated 
within their models’ parameters.  
 

MATERIALS AND METHODS 
 
Model formulation: In our model, we assume that 
human population and mosquito population are constant 
denoted by NH and NV, respectively. The dynamics of 
the disease is depicted in the compartment diagram, as 
shown in Fig. 1.  
 The human population is partitioned into two 
compartments, the susceptible human H(S ) and the 

infected human H( I )  compartment. 

 

 
 
Fig. 1: Flow chart for the transmission of dengue disease 

 Since there is not enough information known about 
the degree of immunity conferred after recovery beyond 
what was mentioned earlier (i.e., only one serotype 
confers permanent immunity to itself but only temporary 
immunity to the other three), we assume that when a 
susceptible human is infected with one type of DEN virus 
they can be infected by the other types. 
 Likewise, for the purposes of this study we have 
omitted the recovered or immune human compartment. 
The mosquito population, in turn, is partitioned into two 
compartments. 
 The susceptible mosquito V(S ) and the infected 

mosquito V( I ) compartment. The recovered mosquito 

does not, of course, exist, as once infected as a 
carrier it will remain infected over the course of its 
two weeks life span. 
 The transmission dynamics of Dengue fever are 
described in the following differential equations, premised 
on the assumptions and exclusions outlined below Eq. 1: 
 

 

H H
H H H V H H,

H

H H
H V H H H

H

V V
V V V V

H

V V
V V V V

H

dS b
N S I S

dt N m

dI b
S I ( r ) I ,

dt N m

dS b
A S I S ,

dt N m

dI b
S I I

dt N m

β= λ − − µ
+

β= − µ +
+

β= − − µ
+

β= − µ
+

  (1)  

 
 With two conditions: 
 

H H HN S I= +   

And: 

V V VN S I= +  

 
 The third equation can be canceled since the 
mosquito population is constant. i.e., V V VS N I= − . The 

number of dependent variables is limited to three, 
designated as SH, IH, IV . 
  To analyze the model we can normalize the Eq. 1 
and define new variables:  
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 Since the total human and mosquito populations 
are constant, the time rate of change of the human 
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population is equal to zero, i.e., H HdS dI
0

dt dt
+ = . This 

means that the birth rate and the death rate of the 
human population is equal; that is λH = µH. The total 

number of mosquito at equilibrium is equal to
v

A

µ
. 

 
Where:  
SH,(IH) = The number of susceptible (infected) 

human population  
Sv,(Iv) = The number of susceptible (infected) 

mosquito population 
λH,(µH) = The birth (death) rate of human population 
A = The recruitment rate of mosquito 

population 
m = The number of other animals that the 
  mosquitoes can feed on 
NH, (Nv) = The number of human(mosquito) 

population 
b (µv) = The biting (death) rate of mosquito 

population  
γv = The transmission rate of DEN virus from 
  infected mosquito to human population i.e.,  

  H
V

v H

Ab

(N m)

βγ =
µ +

 

rH = The recovery rate of human population 
γH = The transmission rate of DEN virus from 

infected human population to susceptible 

mosquito population, i.e., V H
H

H

b N

N m

µγ =
+

 

 
 The reduced models are depicted as following Eq. 2: 
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Analysis of the model: 
Equilibrium points: The model will be analyzed to 
investigate the equilibrium points and its stability. The 
system has two possible equilibrium points: the disease 
free equilibrium point and an endemic equilibrium 
point. Two equilibrium points are found by setting the 
right hand side of Eq. 2 to zero we obtained. 
 
Disease free equilibrium (E0): In the absence of 
disease, that is 1H=0, 1V=0. We obtained SH=1, then the 
disease free equilibrium is E0(1,0,0) 

Endemic equilibrium (E1): In the other case when the 
disease is presented, H VI 0, I 0,≠ ≠  we obtained Eq. 3: 
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Where: 
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And: 
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 Then the endemic equilibrium point is E1(S∗H,1∗H,1∗V). 
  
Local asymptotical stability: The local stability of an 
equilibrium point is determined from the Jacobian matrix 
of the system of ordinary differential Eq. 2 evaluated at 
each equilibrium point. The Jacobian matrix at E0 is 
shown as Eq. 4: 
 

H
H

v H

H
0 H H

v H

v H
v

H

Ab
0

(N m)

Ab
J 0 ( r )

(N m)

b N
0

N m

 − β−µ µ + 
 β
 = − µ +

µ + 
 β −µ
 + 

 (4) 

 
 The eigenvalues of the 0J are obtained by solving 

det 0(J I) 0.− λ =  We obtained the following 

characteristic Eq. 5, we get 1 Hλ = −µ  

And: 
 

2
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 Which the last two eigenvalues is negative if R0<1. 
 
Disease endemic equilibrium: To determine the 
stability of the endemic equilibrium point, E1, by finding 
the eigenvalues of Jacobian matrix at E1, as follow Eq. 6: 
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 The characteristic Eq. 7 is calculated by setting det 
(J1-λ1)=0. We obtain: 
  
λ3+Aλ3+Bλ+C=0 (7) 
 
Where: 
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And: 
 

2
v H 0C M(R 1)= µ µ −  

 
 By using Routh-Hurwitz criteria, the endemic 
equilibrium point is locally stable if the following 
conditions are satisfied: 
 
1. A>0 
2. C>0 
3. AB>C 
 
 It can be easily seen that A 0> , C 0>  with 0R 1.>  

 Consider: 
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 Thus E1 is locally asymptotically stable. 
 

RESULTS  
 
 The system of Eq. 2 was solved numerically using 
the values of the parameters are given in Table 1. 

Table 1: Parameter values leading to disease-free state 
Parameters Value 
A 400.0000 
b 0.5000 day−1 
µV 0.2500 day−1 
µH 1/(60×365) day−1 
m 0.0000 
rH 0.1428 day−1 
βH 0.7500 
βV 1.0000 
NH 10000.0000 
 
Stability of disease-free state: From the values of the 
parameters listed in Table 1, the calculated eigenvalues 
and basic reproductive number are: λ1 = -0.0000457, λ2 

= -0.377725, λ2 = -0.0151206 and R0 = 0.840067. Since 
these values leads to all of the eigenvalues to be 
negative and the basic reproductive number to be less 
than one, the equilibrium state will be the disease - free 
state, E0 as shown in Fig. 2. 
 
Stability of endemic state: Next we change the value 
of the recruitment rate of mosquito (A ) from 400 to be 
equal to 5000 and keep the other values of the 
parameters the same. With these values, we obtain: λ1-
0.0000619503. λ2 = -0.125327-0.484337i, λ3 = -
0.125327+0.484337i and R0 = 10.0008>1. This along 
the fact that the real parts of the eigenvalues are all 
negative leads to the eqilibrium state to be the endemic 
state, E1 and this state will be locally asymptotically 
stable. The fact that λ2 and λ3 are complex conjugates 
means that the tempolary behavior of the population 
will exhibit oscillatory behaviors. The time series 
solutions for susceptible human, infected human and 
infected mosquito as shown in Fig. 3. Furthermore, in 
Fig. 4a and b, the trajectories of the solutions in the 
(SH,1V) plane and (1H,1V) plane, respectively the 
trajactories spiraling into the equilibrium endemic 
state; Fig. 4c It shown that the infected human with 
restpect to R0, as *

HI 0= where R0<1, the disease free-

equilibrium is stable; If R0>1 the endemic equilibrium 
is stable the solution *HI 0> , which approach to the 

endemic state.  
 

DISCUSSION 
 
 We establish the threshold parameter for this model is: 
 

  
2

H v H v
0 2

H v H H

b N A / ( )
R

(N m) ( )
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+ µ γ + µ

 

 
 The quantity 0 0R R=ɶ  is the basic reproductive 

number of the disease. It represents the average number of 
secondary cases that one case can produce if introduced 
into a sesceptible population (Anderson and May,1992). 
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 (a) (b) (c) 
 

Fig. 2: Numerical solution of system (2), time series of (a) SH,
 
(b) IH and

 
(c) IV with A=400, b=0.5, µV=0.25, 

µH=1/(60×365), rH=0.1428, βH=0.75,βV=1.0, NH=10000, eigenvalues are λ1=-0.0000457, λ2=-0.377725, λ3=-
0.0151206 and R0-0.840067<1. The numerical solutions converge to the disease - free state E0 (1, 0, 0) 

 

   
 (a) (b)  (c)  
 
Fig. 3: Numerical solution of system (2), time series of (a) SH,

 
(b) IH and

 
(c) IVwith A=5000, b=0.5, µV=0.25, 

µH=1/(60×365), rH=0.1428, βH=0.75,βv=1.0,NH=10000, eigenvalues are λ1=-0.000619503, λ2=-0.125327-
0.484337i, λ3=-0.125327+0.484337i andR0=10.0008>1  

  

 
 (a) (b) (c) 
 

Fig. 4: Trajectories of human - mosquito population of system 
 
 The numerical solutions converge to the endemic 
state E1 (0.0952856, 0.000289441,0.000578548). 

 Our simulation results show that the basic 
reproductive number will be increase if the recruitment 
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rate of mosquito is increase. i.e., we find that R0= 
2.100168 for the recruitment rate of mosquito A=1000 
and R0=14.701177 for A=7000. The normalized 
individual populations are shown when the values of the 
basic reproductive number are different, as shown in the 
Fig. 2 and 3. Here we can see that the normalized 
individaul populations converge to the disease- free 
equilibrium point for R0<1. In cases of R0>1, the 
normalized individual populations oscillate to the 
endemic equilibrium point. The basic reproductive 
numbers are used for controlling the disease 
(Pongsumpun and Tang, 2008) and (Pongsumpun, 
2010) by decreasing the carry capacity of the 
environment for mosquitoes by frequent reduction of 
mosquito breeding sites, seems to be a more efficative 
way of controlling the disease:  
 
• (2), in the (a)(SH,IH) and (b) (IH, IV )

 
plane, the 

solution approach to the endemic state; (c) 
• Bifurcation diagram for equilibrium of system (2), 

demonstrate the infected human with restpect to 
R0, represents the stable solutions and represents 
the unstable solutions  for R0<1, E0 will be stable, 
R0>1, E1 will be stable, with the same set of 
parameters used in Fig. 3 

 
CONCLUSION 

 
 In this study, we have proposed and analyzed the 
dynamical transmission of Dengue fever by taking into 
account the role played without immunity in human 
population. We found that there are two equilibrium 
states, a disease-free state and endemic state. This 
will decrease the basic reproductive number to below 
one. Consequently, we can reduce the human 
sucecptibility to the disease and, in turn, this can 
reduce the outbreak of the disease. 
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