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Abstract: Problem statement: Development of mathematical models based on setbeérved data
plays a crucial role to describe and predict angngimena in science, engineering and economics.
Therefore, the main purpose of this study was tmpmare the efficiency of Arithmetic Mean (AM),
Geometric Mean (GM) and Explicit Group (EG) itevatimethods to solve system of linear equations
via estimation of unknown parameters in linear ni&d&pproach: The system of linear equations for
linear models generated by using least square mhdiased on (m+1) set of observed data for number
of Gauss-Seidel iteration from various grid sizéstually there were two types of linear models
considered such as piece-wise linear polynomial prate-wise Redlich-Kister polynomial. All
unknown parameters of these models estimated alwllated by using three proposed iterative
methods.Results: Thorough several implementations of numerical expents, the accuracy for
formulations of two proposed models had shown ttat use of the third-order Redlich-Kister
polynomial has high accuracy compared to lineaypmhial caseConclusion: The efficiency of AM

and GM iterative methods based on the Redlich-Kiptynomial is superior as compared to EG
iterative method.
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INTRODUCTION This method implements the quarter-sweep concept to
the EG method.

Group Explicit iterative method has been Arithmetic Mean (AM) and Geometric Mean (GM)
formulated and proposed by Evans (1985). Furtheschemes are methods that are categorized in tyo-ste
investigation and implementation of this method areterative type. From its literature, Ruggiero and
done by Evans and Yousif (1986; 1990); Yousif andGalligani (1990) is the first to propose the AM hned.
Evans (1986; 1998) and Jumat and Abdullah (2001)This method has the same computational molecule to
The method is then modified by Abdullah (1991) gsin lterative Alternating Decomposition Explicit (IADE)
half-sweep concept and produced Explicit Decouplegroposed by Sahimi and Khatim (2001) but differient
Group (EDG) method. The EDG methods have beettheir  parameter  coefficient. However, the
further implemented by Ibrahim and Abdullah (1995);implementation of the first step formulation andaed
Yousif and Evans (1995), Jumat and Abdullah (1999%tep formulation is absolutely different.
and Sulaimaret al. (2007). Beside that, Othman and Sulaimanet al. (2004) combined the AM method
Abdullah (2000a; 2000b) proposed a new variant®f E with the half-sweep concept to develop the Half-8we
method called the Modified Explicit Group (MEG). Arithmetic Mean (HSAM). Further investigation tagh
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method can be found in Sulaimeinal. (2005a; 2005b). Table 1:Relation between matrix size and numbeiteshtions for
In fact, Geometric Mean (GM) method is another Gauss-Seidel to solve one dimensional Poisson gmobl

alternative to AM method. Sulaimahal. (2006a) also £ Matrix size No. of Iterations
proposed the Half-Sweep Geometric Mean (HSGM) to, 2 E

solve two point boundary value problems. The methog Xa Y,

is further investigated by Sulaimaet al. (2006b) to : :

solve water quality model and Muthuvalu and Sulaima m X Ym

(2008) for solving linear Fredholm Equations. m+1 Xn+1 Yme1

In this study, we will implement the EG, AM and
GM methods to estimate the unknown parameters vidnd
solving system of linear equations. The systeninefar . )
equations is generated using the least square theino NI (X) =X =X7, X O[X 0 X o] )
(m+1) set of observed data. Here, only two types ofN5(X)=3X?*-X -2X? [’ A
linear models will be considered, which are thecpie
wise linear polynomial (Linear) and piece-wise Assuming that values between data interval are

Redlich-Kister polynomial (RK). equal, thus:
MATERIALSAND METHODS Ya(X ) NS XS et + NE(X )S 50 ©
Generating system of linear equations: To generate X, O[X,_,X,]
the system of linear equations, consider (m+1) data
produced via simulation given in Table 1. Y (X)) =NS(X )8, +NE(X LS,
As mentioned before, in this study we only _° . XS X IS (7)

consider the piece-wise linear polynomial and Rddli XO[X0X o]

Kister polynomial. The piece-wise linear polynomial
and the third-order piece-wise Redlich-Kister ~ The random error,g k=1,2,3:-- ,m, mt . can be

polynomial are given respectively as follows: defined as follows:
X) =S, +S, X+e., XO[X., X, 1
Y (X) =S, + Sy K [ K Nk (1) Yl_NLSl_ le’lsz, k=1
and: Ym+1_NTn}+152n‘t— 1 Nn;,m 1S 2m k=m+1
€ = k-1 k-1 (8)
Y _Nl,k Spes™ NZ,KSZk— 2= k# 1,m+ 1
X)=X{L-X)S, ., +S, (2X-1))+ e,
y3k( ) ( )( e 2k( ])) . (2) N:IlijZk—l_ Nkz.kSZkl
XO[X, X o]
Where: where, N(X,),t,p=1,2is denoted asN!,. Next, we
_ oo . . L
X = K" matrix size _ _ o estimate the S =1,2,3;-- ( n= 2n) which minimized:
Y, = GS number of iterations fol"knatrix size
e, = K"random error .
for k = 1,2,3,....mym+1 and; $= 1,,2,3,...,(n = 2m), k=1

are the unknown parameters which will be estimated.
To generate the system of linear equation from  Thus, Eg. 9 has to satisfy Eq. 10:
observed data, (XYy), i=1,,2,3,...,m,m+1, both Eq. 1

and 2 can be rewritten as: a—H,i =123, 2m (10)
k k as
Y (X) =N; (X )Szk—1+ N z(x)szk+ € ©)
XO[X o X ] Eqg. 10 will be used to generate system of linear

) . ) equation in the form of matrix. The general form of
Meanwhile, the functionNy(x),t=1,2 for both  generated matrix for the case of m = 10 is given by
Model 1 and 2 are given as follows:
RS=F (11)
N (X) =1,
. XO[X W, X,, 4
N;(X)=X, [ k kl] ( )
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I Rl,l Rl,Z R1,3 R1,4 ]
R21 R2,2 R2,3 R2,4
R3,1 R3,2 R3,3 R3.4 R3.5 R 3,6
R4,1 R4,2 R4,3 R4,4 R4.5 R 4,6
R — R5,3 R5,4 RS,S RSG R5.7 RS.S
R6,3 R6,4 RG,S RG.B R6,7 R 6,8
R7 5 R7,6 R7,7 R7,8 R7,9 R7,10
R8,5 RB,G R8,7 RB,B RS,Q R 8,10
R9,7 RQ,B R9,9 R9,10
L R10,7 RlO,B R10,9 R 1010(10x19)
Where:

S=[§ S §$ $ S s 5 8 54

D+rL)SY = (1- 1) D- S+ rf
Fslk E F E EEE EE B (BT = (1) b=+ 1 (14)

(D+rT)S? = (1- 1) D- r)SY+ rf
where, Fi=1,2,3,--,n can be defined as:

The r, k and | represent acceleration parameter,
2N;, Y, +NLLY, k=1 number of iterations and identity matrix, respegitjv
Implementations of both methods are in Algorithm 1.

F2k—1: NT,mYm+2NT,n+1Ym1 k:m
NE Y NS LY selainnya
Algorithm 1: AM and GM schemes:
2N;, Y, +N3L,Y k=1 .
Lo 222 1) Firststep
P S NG Yo+ 2NG 0 Y s k=m a. Assign
k k i
Now Yt Nopes Vi Selainnya s« (D+ L)} (2- 1) D- M) S+ r(D+ rLy* f

2) Second step
b. Assign

S? « (D+1T)*(1- 1) D- r)SY+ r(D+ 1T)* f

for k=1,2,3,-- ,m.

Arithmetic mean, geometric mean and group

explicit formulations: To formulate the AM and GM c. AM Scheme
schemes, let consider the system of linear equaiion I
Eq. 11. § - S($+ ¢)

Decomposing R into: or GM scheme:
R=L+D+T

, . NESESE if($°8%)> o
where, L, D and T are lower triangular matrix, diagl
and upper triangular matrix, respectively. TherefdxM o -/sPs?, if($1) $2)) >0&%< 0
and GM schemes can be written as (Sulairdaal., < Sl’+JW, if($1) SZ))< 088> &

2005a; 2005b):
S FE . ()< 0a<

k) 1My, &2
§=2(e &) (12)
The optimum r value is determined from the lowest
and: number of iterations.
To formulate the EG scheme, the system of linear
) _ [d) &2 Eq. 11 has to be decomposed into sub-matrix of \2x2
§( ~é ~é (13) as follows:
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Rll R1,21 Rl,3 R141 1 1
Ros RopiRog Ryl 0 v
R, R3,zi Ris Rs.Ai Rss R363 i
Ris Ripi Ris Ragi Ras Rag S
R= i R53 R5,4i RS,S RSGi R57 RS.Si
,,,,,,,, 1Rea Reai Res Resl Rer Resl
} }R75 R7,6} R77 R7,8} R79 R7,10
,,,,,,,, g iRes Resl Rer Regt Ros R
i i i Ry, Rg,ai R9,9 R9,10
L ; ; ; R10,7 RlO,B; R10,9 RlO,lg(loxlq
s=s[s S!S SIS S 5 & S $ (Rii)(R)=(Ri1)R, )= 0 (17)
Therefore, we rewrite the system of linear Eq. 15
F=[f RIR RiE RIF B & & as | Y a
Referring to the system of linear Eq. 11, the two
point EG scheme can be rewritten as (Evans an«ﬁa 1}{3-1}:{&} (18)
Yousif, 1986; Jumat and Abdullah, 2001): B iLsS ] [P,
|:Ri—l,i—1 Ri—l,i:||:3—1:| :|: FI:| (15) Whe;e »
Riia Rii S B o =— 2159
Ri—1,i
Where: B = Ria <1
Ri,i
R
. P, =
F-R:S-R,S, =1 R
P = Ri~ RiinsSism Raa 2Sh 2 Fl 0, :i
F.-R_. .S.-R, .S, - R .
i-1 |1,|3S3 Rl,|2$2 i=3,5,7,~-~,n—3 ii
Ri—l.i+1$+1_ R—l,i+2 P42 1
Using the Gauss elimination technique to Eq. 18, i
can be shown that the coefficient matrix can be re-
F-R,.S-R,,S e 2 written in the form of triangular matrix as:
2 2,3 2,44
B, = Fn_Rn,n—3S\—3_ Rn,nzsn 21 F e 2m _
_ _ _ 1 0 1 0
F-Ris%:~Ri2> % 2468, n 2 8 |:C1 1:||:S_1:|: 8 {pl}
Ri,i+1 S+1_ R,i+2 $+2 ' -= 1B 1 S -= 1|Lp,
_ _ e ! (19)
Using the matrix approach, Eq. 15 can be rewrittena 1 S Py
-1
as: =
0 1-P {S} pz-Epl
L a a
By
S (16) Manipulating both Eq. 19, it can be shown that the
1 Ri -Rui||R two point EG scheme with parameter w (denoted as 2
(R )R- (R1)R1 )Rz RusllP point-EG (SORY)) at (k+1jiteration as:

However, the two point EG scheme in Eq. 16 still (k+1) () _
cannot be implemented using computer program sinc%s-l} =(1- W)F‘l} + W {pl P2 } a>1 (20)
the determinant value is to small relatively, i.e.: S S a-lap,-p
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with 1sw<2. The implementation of 2 point- EG 100000 —elvisip 820K (58K tinear
. . . . 90000 — — GS-RK —e— AM-RK
(SOR) IS dlsplayed In Algorlthm 2. 80000 —"— GM-RK —1— 2GE (SOR)-RK

70000
60000
50000
40000
30000
20000
10000

Number of iteration

Algorithm 2: 2 point-EG (SOR) scheme:

a. Initialize parameter 04 - - - »
64 128 256 512
R; F, $0) y W, EPSG— 50E Matrix size
b. Fork=1,23,.-,m, calculate Fig. 1: Comparison of iteration number for all naih
i' ASSIQ” pl’ p2 . ———GS-linear —m— AM-linear
Kk+1) K 2 —&— GM-linear — s« 2GE (SOR)-linear
k—l) - (1_ W) 12—1+ 10 ;:gISMRRI}( —e— AM-RK

—— 2GE (SOR)-RK

A
- (- wg e

.

c. Testconvergence forir=1, 2,---, n, calculate

ii. Calculate

Computation time (sec)

Matrix size

‘§k+l)_$k)‘< Ep< Fig. 2: Comparison of computational time for all
) method
d. Repeat b if convergence test is not satisfied
——GS-linear —=— AM-linear
69 —&— GM-linear —¢—2GE(SOR)-linear
. . . . —*—GSRK —e— AM-RK
In this research, Gauss-Seidel (GS) iterative 5 T OMARK —— 2GE(SOR)-RK

scheme will be used as the control of comparison.

RESULTSAND DISCUSSION

Numerical experiment: In this research, we analyze ] \

the accuracy of the approximation via both pieceewi | = ===xg-____
polynomial models of Eg. 1 and 2 and compare with 64 128 256 s12

the observed data. Furthermore, some numerical Matrix size

experiments have been done to show thq:ig 3: Percentage of relative average error coispar
performance of AM, GM and EG methods to calculate " .between methods

the S fori =1, 2, 3, ...,(n = 2m). Results of the

numerical experiments for number of iterations, CONCLUSION
computation time and percentage of average erer ar
given in Fig. 1-3. In this research, formulation of polynomial model

Generally, in this research, we use the tolerancegyy Eqg. 1 and 2 can be represented as Eq. 3. Using
error, &€ = 5x10°°. In the result, we use GS-Linear, polynomial in Eq. 3, the system of linear equations
AM-Linear, GM-Linear, 2EG(SOR)-Linear, GS-RK, generated for both polynomial models can be shown.
AM-RK, GM-RK and 2EG(SOR)-RK notation to However, the condition of the coefficient matriaf
represent the Gauss-Seidel using piece-wise linegq. 11 is ill (Chiam and Majid, 1990). Thereforhet
polynomial, Arithmetic mean using piece-wise linear convergence criteria may not be satisfied. Furtioeem
polynomial, Geometric mean using piece-wise lineaithe coefficient matrix is not categorized as pusiti
polynomial, 2 point EG(SOR) using piece-wise lineardefinite matrix. Thus, a modification has been s
polynomial, Gauss-Seidel using Piece-wise Redlichvia Gauss elimination approach.

Kister polynomial, Arithmetic mean using Piece-wise From the numerical experiment results, Fig. 1
Redlich-Kister polynomial, Geometric mean usingclearly shows that number of iterations for 2 point
Piece-wise Redlich-Kister polynomial and 2 pointEG(SOR)-Linear and 2 point EG(SOR)-RK reduce
EG(SOR) using  Piece-wise  Redlich-Kister around 98.12-98.39% and 98.22-99.07%, respectively,
polynomial, respectively. when compared to GS-Linear. While computational
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time in Fig. 2 for both 2 point EG (SOR) schemesJumat, B.S. and A.R.B. Abdullah, 1999. Some explici
reduce around 88.23-99.28% and 94.87-100%. decoupled group iterative method with half-sweep
Accuracy results in Fig. 3 show the use of piecsewi multigrain for Poisson’s equation. Sains Malaysia,
third order Redlich-Kister polynomial has high 28: 161-172.
accuracy compared to only using linear polynomial.  jymat, S. and A.R. Abdullah, 2001. Finite element
Both AM and GM schemes also show tremendous  method using group explicit iterative method for
results compared to GS schemes. Figure 1 shows that 5,6 dimensional  diffusion problem.  J.
99.88-99.97% reduction in number of iterations for Kejuruteraan, 13: 41-49.
AM-Linear and GM-Linear compared to GS-Linear, \y s ,yau, M.S. and J. Sulaiman, 2008. Half-Sweep
77.15-92.57% reduction in number of iterations for Geométric Mean method for'solution of linear
AM-RK and 89.31-92.83% reduction for GM-RK. Fredholm equations. Matematika, 24: 75-84

Both AM and GM schemes computational time are -
: Othman, M. and A.R. Abdullah, 1999. An Efficient
0 ) L)
almost 100% faster than both GS schemes (Fig. 2): Multigrid Poisson Solver. Int. J. Computer Math.,

Accuracy results for AM and GM Redlich-Kister i )
scheme are far better than linear polynomial sclseme 71: 541-553DOI: 10.1080/00207169908804828

as shown in Fig. 3. Othman, M. and A.R. Abdullah, 2000a. An efficient

Our next research will be implementing half- four points modified explicit group Poison solver.
sweep (Abdullah, 1991; Ibrahim and Abdullah, 1995),  Int. J. Comput. Math., 76: 203-217. DOL
quarter-sweep (Othman and Abdullah, 2000a; 2000b)  10.1080/00207160008805020
concept and multigrid (Hackbusch, 1983; Othman andthman, M. and A.R. Abdullah, 2000b. An efficient

Abdullah, 1999) to solve the same problem. parallel quarter-sweep point iterative algorithm fo
solving poison equation on SMP parallel computer.
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