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Abstract: Problem statement: In this study, we considered the application of a genetic algorithm to 
vehicle routing problem with time windows where a set of vehicles with limits on capacity and travel 
time are available to service a set of customers with demands and earliest and latest time for serving. 
The objective is to find routes for the vehicles to service all the customers at a minimal cost without 
violating the capacity and travel time constraints of the vehicles and the time window constraints set by 
the customers. Approach: We proposed a genetic algorithm using an optimized crossover operator 
designed by a complete undirected bipartite graph that finds an optimal set of delivery routes satisfying 
the requirements and giving minimal total cost. Various techniques have also been introduced into the 
proposed algorithm to further enhance the solutions quality. Results: We tested our algorithm with 
benchmark instances and compared it with some other heuristics in the literature. The results showed 
that the proposed algorithm is competitive in terms of the quality of the solutions found. 
Conclusion/Recommendations: This study presented a genetic algorithm for solving vehicle routing 
problem with time windows using an optimized crossover operator. From the results, it can be 
concluded that the proposed algorithm is competitive when compared with other heuristics in the 
literature. 
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INTRODUCTION 

 
 The Vehicle Routing Problem with Time Windows 
(VRPTW) which is an extension of Vehicle Routing 
Problems (VRPs) arises in a wide array of practical 
decision making problems. Instances of the VRPTW 
occur in rail distribution, school bus routing, mail and 
newspaper delivery, airline and railway fleet routing 
and etc. In general the VRPTW is defined as follows: 
given a set of identical vehicles V {1,2, ,K}= … , a 
central depot node, a set of customer nodes 
C {0,1,2, , N}= …  and a directed network connecting the 
depot and customers. Each arc in the network 
represents a connection between two nodes and also 
indicates the direction it travels. The depot is denoted as 
customer 0, which uses K independent delivery 
vehicles, with delivery capacity qk, k = 1,2,…,K, to 
service demands mi from n customers, i = 1,2,…,N. The 
time window constraint is denoted by a predefined time 
interval i i[a ,b ] , ai and bi describe earliest arrival time 
and latest arrival time for customer i, respectively. The 
vehicles must arrive at the customers not later than the 
latest arrival time, if vehicles arrive earlier than the 

earliest arrival time, waiting occurs. Each customer also 
imposes a service time si, taking consideration of the 
loading/unloading time of goods. A non-negative cost 
(distance or travel time) matrix C = (cij) between 
customers i and j is defined on the network. A solution 
for the VRPTW would be a partition 1 2 KR ,R , ,R… , 
representing the routes of the vehicles, each route Rk is 
a permutation of the customers in C specifying the 
order of visiting them, starting and ending at the depot. 
The cost of the problem solution is the sum of the costs 
of its routes Rk, defined as follows:  
 

K

k
k 1

Cost Cost(R )
=

= ∑  (1) 

 
 The VRPTW consists in determining a set of a 
maximum of K routes (i) of minimum total cost (Eq. 1); 
(ii) starting and ending at the depot denoted with 
customer 0 and such that (iii) each customer is visited 
exactly once by exactly one vehicle; subject to the 
restrictions (iv) the total demand of any route Rk does 
not exceed qk; (v) each route Rk must be completed 
within a total route time, which is essentially the time 
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window of the depot; (vi) the vehicles must visit the 
customers within predefined time windows. 
 A survey  of  the  VRPTW  is  given by 
Desrosiers et al. (1995); Cordeau et al. (2002) and 
Bräysy and Gendreau (2005). Significant improvements 
in Solomon's benchmark problem instances were 
established by Rochat and Taillard (1995) using a tabu 
search metaheuristic method. Some studies on tabu 
searches for VRPTW can be found in Taillard et al. 
(1997); Chiang and Russell (1997) and Cordeau et al. 
(2001). Gambardella et al. (1999) proposed an ant 
colony optimisation while, Liu and Shen (1999) applied 
a route-neighborhood-based metaheuristic to solve 
VRPTW. Rousseau et al. (1999) used constraint-based 
operators with variable neighborhood search to solve 
the problem. 
 Blanton and Wainwright (1993) were the first to 
apply a Genetic Algorithm (GA) to VRPTW. They 
hybridized a GA with a greedy heuristic. GAs have 
been proposed for the problem by Thangiah (1995); 
Potvin and Bengio (1996); Berger et al. (1998; 1999); 
Berger and Barkaoui (2000; 2004); Bräysy et al. (2000) 
and Tan et al. (2001a). Gehring and Homberger (2002) 
proposed a parallelization of a two-phase metaheuristic 
for solving VRPTW. 
 In this study, we consider the vehicle routing 
problem with time windows and propose an Optimized 
Crossover Genetic Algorithm (OCGA) for this 
problem.  
 

MATERIALS AND METHODS 
 
Optimized Crossover Genetic Algorithm (OCGA): 
GA, originally developed by Holland and Holland 
(1975) is an adaptive heuristic search method that 
mimics evolution through natural selection. It works by 
combining selection, crossover and mutation 
operations. The selection pressure drives the population 
toward better solutions while crossover uses genes of 
selected parents to produce offspring that will form the 
next generation. Mutation is used to escape from local 
minima. 
 Optimized  crossover  was  proposed  by 
Aggarwal et al. (1997) for the independent set problem. 
They applied optimized crossover within genetic 
algorithm and produced two new children: The 
Optimum child (O-child) and Exploratory child (E-
child). The O-child is constructed in such a way that 
has the best objective function value from a feasible set 
of children, while the E-child is constructed so as to 
maintain the diversity of the search space. 
 In the remainder, we describe the proposed 
optimized crossover and discuss how various steps of 

the GA are implemented for the proposed algorithm. 
The general framework of OCGA can be shown as 
follows: 
 
Algorithm OCGA: 
 
begin  
 
 Initialize population (randomly generated);  
 Fitness evaluation;  
 repeat  
  Selection (probabilistic binary tournament 

selection);  
  Optimized crossover;  
   Swap node (if the optimized crossover is not 

applied);  
  Mutation (inversion and swap sequence);  
  Fitness evaluation;  
  Elitism replacement with filtration;  
 until the end condition is satisfied;  
 return the fittest solution found;  
 
end  
 
Individual representation and selection mechanism: 
The representation of a solution we use here is an 
integer string of length N, where N is the number of 
customers, applied by Tan et al. (2001b). Each gene in 
the string is the integer node number assigned to that 
customer originally. The sequence of the genes in the 
string is the order of visiting these customers. For 
example, if we have the following solution represented 
in Fig. 1. 
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Fig. 1: A solution to a vehicle routing problem 
 This representation is unique and one string can 
only be decoded to one solution. It is a 1-to-1 relation. 
The last customer visited in route i is linked with the 
first customer visited in route i+1 to form a string of all 
the routes involved. Note that we do not put any bit in 
the string to indicate the end of a route now, because 
such delimiters in a string greatly restrain the validity of 
children produced by optimized crossover operator later. 
To decode the string into route configurations, the gene 
values  are  inserted  into  the  new  routes  sequentially. 
 There is a chance that we may not get back the 
original routes after decoding, but it is generally assumed 
that minimizing the number of routes helps in 
minimizing the total travel cost, therefore, packing a 
route to its maximum capability implies a potential good 
solution as a result (Tan et al., 2001b). 
 After choosing the representation, we uniformly 
randomly generate an initial population using a random 
number generator. Moreover we use a probabilistic 
binary tournament selection scheme to select individuals 
from the population to be the parents for the OCGA with 
a given selection probability ps = 0.75. In other words, 
we give a 75% chance for the fitter individual to be 
selected as the parent compared to the less fit individual 
which only has a 25% chance to be selected. 
 
Optimized crossover: We propose an optimized 
crossover operator within a GA for the VRPTW. The 
proposed optimized crossover using a complete 
undirected bipartite graph finds the two new children 
which are called O-child and E-child. We will now 
explain the optimized crossover strategy on determining 
the O-child and E-child for the VRPTW. 
 
Step 1: Given two parents P1 and P2. Construct a 

complete undirected bipartite graph 
1 2G (U V,E E )= ∪ ∪  where  U = {u1, u2,…, un} 

representing customers, V = {v1, v2,…, vn} 
representing nodes, E1 and E2 representing the 
arc sets in the graph in which, j i 1{u ,v } E∈  if 
and only if, customers j of parent P1 is located 
at node i and j i 2{u ,v } E∈  if and only if, 
customers j of parent P2 is located at node i. 

Step 2: Determine all perfect matchings in graph G. 
Suppose that there are k cycles corresponding 
to different locations of customers in the two 
parents. There will be exactly 2k perfect 
matchings in graph G. Note that each perfect 
matching representing a temporary offspring.  

Step 3: Select a temporary offspring with the least 
objective function value as O-child. 

Step 4: Generate E-child using 
1 2 1 2( (P P ) \ O child ) (P P )∪ − ∪ ∩ .  

 We restricted the temporary offspring in graph G in 
every case to 25 even if the cycles are more than 5. In 
addition, the proposed optimized crossover is applied 
based on a crossover probability, cp 0.75= . 
 
Swap node: In this study, we use a swap node operator 
instead of reproduction to produce two new offspring 
when the optimized crossover is not applied to the 
parents. This operator could be regarded as a giant 
mutation where the elements in the parent are randomly 
reassigned. The process of swap node operator is as 
follows: two nodes from a parent are randomly selected 
and swapped. It is repeated for the second parent to 
create a second offspring. An example of swap node 
operator is given in Fig. 2. 
 
Mutation: The mutation operator used in the proposed 
algorithm consists of applying with equal probability 
two different mutation operators called inversion and 
swap sequence operators. The inversion operator 
reverses the visiting order of the customers between 
two randomly selected points, while the swap sequence 
operator consists of randomly selecting two sub-strings 
of customers and exchanging them. The examples of 
the two mutation operators are given in Fig. 3. 
 
Elitism replacement with filtration: Elitism 
replacement scheme is applied in this study as follows: 
Both parent and offspring population are combined into 
a single population and sorted in a non-increasing order 
of their associated fitness value. Then, the first half of 
the combined population is selected as the individuals 
of the new population for the next generation. In order 
to avoid premature convergence and to add diversity to 
the new population, we propose the filtration strategy in 
which, identical individuals are identified from the new 
population and, they are removed and replaced by 
uniformly randomly generated new individuals. As the 
filtration strategy requires a certain amount of 
computational time, the procedure will only be invoked 
after every 50 generations. 
 

  
Fig. 2: An example of swap node 
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Fig. 3: Examples of the two mutation operators 

RESULTS 
 
 We present the results of the computational 
experiments of our proposed algorithm on VRPTW. 
The proposed algorithm is coded in C language and 
implemented on a Pentium 4, 2.0 GHz computer with 
2.0 GB RAM. 
 The OCGA has been tested on all six classes of the 
benchmark of Solomon (1987) which are 100-customer 
problem sets. The classes R1 and R2 have customers 
randomly disposed, while the classes C1 and C2 have 
customers clustered. The classes RC1 and RC2 contain 
a subset of customers randomly disposed and the other 
part clustered. The distance between two customers is 
the simple Euclidean distance. One unit of time is 
necessary to run one unit of distance by one vehicle. 
Each customer i has a time window [ai, bi], which 
represents the time interval to arrive in that customer. 
Different capacity constraints are considered for the 
vehicle in each class of instance, as well as the demands 
from the customers. 
 We compare our proposed algorithm against the 
best known solutions reported in the literature, although 

few works have considered Solomon's benchmark 
problems minimizing Travel Distance (TD).  
 

DISCUSSION 
 

 The results are presented in Table 1 together with 
the best known solution in the literature. The numerical 
results are computed after making 50 independent runs 
for statistical significance. The objective function 
applied is only the total TD. Results in Table 1 
represent the best known solution is found or improved 
(better TD) by OCGA in 32 problems. It is clear to see 
that the proposed algorithm continues to be competitive 
in terms of total TD. 
 Following, Table 2 shows the results by problem 
class, including results from other relevant works in the 
literature. We have selected the heuristic methods 
proposed by Taillard et al. (1997); Rousseau et al. 
(1999); Gehring and Homberger (2002); Tan et al. 
(2001b) and Berger and Barkaoui (2004). We compute 
the percentage Deviation (D) in terms of travel distance 
between our best solution (sol) and the published best 
(best) for each problem class with the following 
equation:  
 

 best sol
D 100%

best
⎡ ⎤−

= ×⎢ ⎥
⎣ ⎦

 (2) 

Table 1: Computational results for the benchmark of Solomon (1987) 
 Best-known solution   OCGA  Best-known solution   OCGA  
 ------------------------------------------------------------ ------------------  --------------------------------------------------------------- ------------------- 
Problems Ref. NV TD NV TD Problems Ref. NV  TD NV TD 
R101 Czarnas et al. (2004) 19 1650.80 20 1667.40 R201 Gehring and Homberger (2002) 4 1252.37 8 1248.87 
R102 Rochat and Taillard (1995) 17 1486.12 18 1480.73 R202 Rochat and Taillard (1995) 4 1088.07 6 1079.36 
R103 Rochat and Taillard (1995) 14 1213.62 14 1254.62 R203 Mester (2002) 3 939.54 5 965.79 
R104 Rochat and Taillard (1995) 10 982.01 11 1005.34 R204 Bent and Van Hentenryck (2004) 2 825.52 4 813.90 
R105 Rochat and Taillard (1995) 14 1377.11 16 1372.66 R205 Rousseau et al. (1999) 3 994.42 6 994.88 
R106 Mester (2002) 12 1251.98 13 1263.54 R206 Schrimpf et al. (2000) 3 906.14 5 928.96 
R107 Shaw (1997) 10 1104.66 11 1095.11 R207 Rochat and Taillard (1995) 3 814.78 4 847.54 
R108 Berger and Barkaoui (2004) 9 960.88 10 972.13 R208 Mester (2002) 2 726.75 4 725.42 
R109 Gehring and Homberger (2002) 11 1194.73 13 1201.51 R209 Czarnas et al. (2004) 3 909.16 6 890.27 
R110 Rochat and Taillard (1995) 11 1080.36 12 1119.05 R210 Mester (2002) 3 939.34 6 946.55 
R111 Rousseau et al. (1999) 10 1096.72 12 1088.48 R211 Bent and Van Hentenryck (2004) 2 892.71 5 888.73 
R112 Rochat and Taillard (1995) 10 953.63 11 994.22 
C101 Rochat and Taillard (1995) 10 828.94 10 828.94 C201 Rochat and Taillard (1995) 3 591.56 3 591.56 
C102 Rochat and Taillard (1995) 10 828.94 10 828.94 C202 Rochat and Taillard (1995) 3 591.56 3 591.56 
C103 Rochat and Taillard (1995) 10 828.06 10 828.15 C203 Rochat and Taillard (1995) 3 591.17 3 591.17 
C104 Rochat and Taillard (1995) 10 824.78 10 825.19 C204 Rochat and Taillard (1995) 3 590.60 3 590.60 
C105 Rochat and Taillard (1995) 10 828.94 10 828.94 C205 Rochat and Taillard (1995) 3 588.88 3 588.88 
C106 Rochat and Taillard (1995) 10 828.94 10 828.94 C206 Rochat and Taillard (1995) 3 588.49 3 588.49 
C107 Rochat and Taillard (1995) 10 828.94 10 828.94 C207 Rochat and Taillard (1995) 3 588.29 3 588.29 
C108 Rochat and Taillard (1995) 10 828.94 10 828.94 C208 Rochat and Taillard (1995) 3 588.32 3 588.32 
C109 Rochat and Taillard (1995) 10 828.94 10 828.94 
RC101 Rochat and Taillard (1995) 15 1623.58 17 1652.09 RC201 Mester (2002) 4 1406.91 8 1387.55 
RC102 Rochat and Taillard (1995) 13 1477.54 14 1496.23 RC202 Rochat and Taillard (1995) 4 1165.57 7 1176.98 
RC103 Shaw (1998) 11 1261.67 11 1306.12 RC203 Czech and Czarnas (2002) 3 1049.62 5 1082.94 
RC104 Cordeau et al. (2001) 10 1135.48 10 1177.63 RC204 Mester (2002) 3 798.41 4 836.13 
RC105 Berger and Barkaoui (2004) 13 1629.44 16 1618.55 RC205 Mester (2002) 4 1297.19 7 1270.69 
RC106 Rochat and Taillard (1995) 12 1384.92 13 1382.27 RC206 Czarnas et al. (2004) 3 1146.32 6 1149.73 
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RC107 Shaw (1997) 11 1230.48 13 1243.20 RC207 Bent and Van Hentenryck (2004) 3 1061.14 6 1053.58 
RC108 Taillard et al. (1997) 10 1139.82 11 1128.46 RC208 Ibaraki et al. (2001) 3 828.14 5 816.10 
NV: Number of Vehicles; TD: Travel Distance 
Table 2: Computational results between VRPTW algorithms 
  R1 C1 RC1 R2 C2 RC2 
Published best NV 12.250 10.000 11.870   2.910 3.000 3.370 
 TD 1196.050 828.380 1360.370 935.350 589.860 1094.160 
Taillard et al. (1997) NV 12.170 10.000 11.500 2.820 3.000 3.380 
 TD 1209.350 828.380 1389.220 980.270 589.860 1117.440 
Rousseau et al. (1999) NV 12.830 10.000 12.500 3.180 3.000 3.750 
 TD 1201.100 828.380 1370.260 966.940 594.010 1113.290 
Tan et al. (2001b) NV 13.830 10.110 13.630 5.640 3.250 7.000 
 TD 1260.710 859.81 0 1447.060 1058.520 617.100 1169.410 
Gehring and Homberger (2002) NV 12.000 10.000  11.630 2.730 3.000 3.250 
 TD 1226.380 828.380 1392.570 969.950 589.860 1144.430 
Berger and Barkaoui (2004) NV 11.920 10.000 11.500 2.730 3.000 3.250 
 TD 1221.100 828.480 1389.890 975.430 589.930 1159.370 
OCGA NV 13.420 10.000 13.120 5.360 3.000 6.000 
 TD 1209.560 828.430 1375.57 0 939.110 589.860 1096.710 
 D% 1.165 0.006    1.117 0.402 0.000 0.233 
 

CONCLUSION 
 
 This study presents a genetic algorithm that uses an 
optimized crossover operator to solve the vehicle 
routing problem with time windows. The proposed 
algorithm has been tested against the best known 
solutions reported in the literature, using 56 Solomon's 
problems with 100 customers. The computational 
results showed that the proposed algorithm is 
competitive in terms of the quality of the solutions 
found (in terms of total travel distance). As for future 
work, it may be interesting to test OCGA with 
additional benchmarks of VRPTW. 
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