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Abstract: Problem statement: The thermal mismatch induced interfacial stresses are one of the major 
reliability issues in electronic packaging and composite materials. Consequently an understanding of 
the nature of the interfacial stresses under different temperature conditions is essential in order to 
eliminate or reduce the risk of structural and functional failure. Approach: In this analysis, a model 
was proposed for the shearing and peeling stresses occurring at the interface of two bonded dissimilar 
materials with the effect of different uniform temperatures in the layers. The model was then upgraded 
by accounting thickness wise linear temperature gradients in the layers using two temperature drop 
ratios. The upgraded models were then compared with the existing uniform temperature model. The 
proposed model can be seen as a more generalized form to predict interfacial stresses at different 
temperature conditions that may occur in the layers. Results: The results were presented for an 
electronic bi-material package consisting of die and die-attach. Conclusion: The numerical simulation 
is in a good matching agreement with analytical results.  
 
Key words: Shearing stress, peeling stress, different uniform temperature, thickness wise linear 

temperature gradient 
 

INTRODUCTION 
 
 Thermo-mechanical stresses are the major 
contributor to the structural failure between two bonded 
layered structure (for instance, between a device and a 
substrate). These stresses can lead to mechanical 
(structural) as well as functional (electrical or optical) 
failure to the field of microelectronics and photonic 
components and devices (Suhir, 2009). Consequently 
an understanding of the nature of the interfacial stresses 
under different temperature conditions is necessary in 
order to minimize or eliminate the risk of structural 
failure.  
 A thermally mismatched stressed model is widely 
analyzed using a bi-material thermostat. Timoshenko 
(1925) initiated a fundamental solution to thermal 
stresses of bi-metal thermostats using the beam theory 
in 1925. Suhir (1986; 1989) proposed relatively simple 
and easy-to-use interfacial thermal stress model 
compared to the early model proposed by Timoshenko 
(1925). Many more researchers have modified, 
upgraded and/or corrected bi-material model to the 
present simplified form in the last few decades 
(Timoshenko, 1925; Suhir, 1986; 1989; Matthys and 

Mey, 1996; Mirman, 1991; Moore and Jarvis, 2003; 
2004; Ru, 2002). However, most research works on this 
direction focused on thermal mismatch stresses 
subjected to uniform temperature changes in the layers. 
But in reality, temperature levels in the two bonded 
layers should be different during manufacturing, curing, 
or even operating due to the dissimilarity of the 
materials. Moreover, with the existence of heat flow in 
the materials (for instance, die), there may also exist 
temperature gradient in the layers. Thus the effect of the 
existence of different uniform temperatures with 
temperature gradients in the layers may influence the 
shearing and peeling stresses along the interface. 
Hardly, any analytical study has been carried out earlier 
in this direction. 
 In the present analysis the authors have extended 
Suhir (1986) uniform temperature shearing stress 
model by introducing a temperature ratio parameters 
m(= ∆T2/∆T1) to account for different uniform 
temperatures in the layers, where i = 1, 2 and Ti 
represents the temperature of the i-th layer. 
Subsequently a model is proposed for peeling stress at 
the interfaces using the proposed different uniform 
temperature shearing stress model. The different 
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uniform temperature shearing and peeling stress models 
are then further upgraded with the consideration of 
linear temperature gradients in the layers by 
incorporating two temperature drop ratios 

{{ }1 1 1 1( T T ) / T′ ′β = ∆ − ∆ ∆ and {{ }2 2 2 2( T T ) / T′ ′β = ∆ − ∆ ∆ in 

the layers, iT′ represents the temperature at the top 

surface of i-th layer. As a result a more generalized 
model is developed which is able to take care of 
different temperature conditions in the layers. 
 
Analytical formulation: The uniform temperature 
shearing stress model is presented here by solving a 
simple second order differential equation instead of a 
relatively complicated integro-differential equation of 
Suhir’s one (Suhir, 1986). The model is then upgraded 
with different uniform temperatures in the two layers 
and subsequently thickness wise linear temperature 
gradients are incorporated in the layers to complete the 
generalized form. 
 Figure1 represents the full length of the 2-D 
uniform temperature model where AA showing the line 
of symmetry. The 2-D model is considered to be of unit 
width in a direction perpendicular to the paper and all 
forces and moments are defined with respect to the unit 
width. E, α, ν and h represent elastic modulus, thermal 
expansion coefficient, Poisson’s ratio and thickness of 
the i-th layer and ∆T uniform temperature change in the 
layers. 
 The compatibility condition at the interface can be 
expressed as: 

 

x(1) x(2)U U 0− =  (1) 

 
where, Ui, i = 1, 2 are the axial displacements for the 
layers. 
 In the present approach, the above condition is 
expressed in its following simpler form: 

 

x(1) x(2)∈ =∈  (2) 

 
where, x(i) , i  1,2=∈  are the axial strains given by: 

 

i
x (i)

U
x

∂∈ =
∂

 

 
 The conditions (1) and (2) are mathematically 
equivalent. Suhir (1986) used Eq. 1 as the compatibility 
condition which required solving a complicated integro-
differential equation. 

 Considering moment equilibrium about positive Z-
axis at x and y = 0, the expression for radius of 
curvature is expressed as:  
 

1 2

1 2

(h h ) hF

2(D D ) 2D

1 F
R

+
+

= =   (3) 

 

where, Di, i = 1, 2 are Flexural rigidity, 
3

i i
2i
i

D
E h

12(1 )
=

− ν
.

 
 
Different uniform temperature shearing stress 
model: With the introduction of differential uniform 
temperatures ∆T1 and ∆T2

 
in layer 1 and layer 2 

respectively in Fig. 1, the axial strains at the interface 
take the form as: 
 

1
x(1) 1 1 1 1 1

2
x(2) 2 2 2 2 2

hT F K
2R x

hT F K
2R x









∂τ∈ =α ∆ +λ + − ∂
∂τ∈ =α ∆ −λ − + ∂

  (4) 

 

where, i i
Tα ∆ , 

i i
Fλ , ih

2R
 and iK

x
∂τ
∂

, are the strain 

components due to temperature changes, thermal 
mismatch axial forces Fi, bending and shearing forces 
respectively. 
 

 
 
Fig. 1: Geometrical and material parameters with free 

body diagram of the uniform temperature 
model 
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 In Eq. 4, Ki, i = 1, 2 are interfacial shear 

compliances given by i
i

i

h
K =

3G
, Gi, i = 1, 2 are shear 

modulus  of  rigidities  given  by  i
i

i

E
G

2(1 )
=

+ ν
  and λi, 

i = 1, 2 are axial compliances given by
2
i

i
i i

(1 )

E h

− νλ = .  

 The compatibility of axial strains at the interface in 
Eq. 2 demands the following condition(s): 
 

1 2 21
( T T ) F K 0

x
∂τα ∆ − α ∆ + λ − =
∂

 (5) 

 
Where: 

λ = 
2

1 2

h
4D

λ + λ +  

K = K1 + K2, F1 = -F2 = F 
 
 Differentiating Eq. 5, one gets a second order 
differential equation in τ as follows: 
 

2
2

2
0

x

∂ τ − κ τ =
∂

 (6) 

 

where, 2

K
=

λκ . 

 The solution of this equation is assumed to be the 
form (Brown, 1999): 
 

1 2C sinh x C cosh xτ = κ + κ   (7) 

 
 Using Eq. 7 and 6 has a solution for shearing stress 
τ(x) as follows: 
 

1 1 2 2( T T )
sinh x

K cosh L
α ∆ − α ∆τ = κ

κ κ
 (8) 

 

 Introducing two parameters 2

1

Tm
T

∆=
∆

 and 2

1

n
α

=
α

, 

Eq. 8 can be expressed as: 
 

1 1 (1 mn)T sinh( x)
K cosh( L)

−α ∆τ = κ
κ κ

  (9) 

 
Formation of different uniform temperature Peeling 
stress model: The peeling stress P(x) (normal stress at 
the interface) is obtained from the consideration of 
moment equilibrium and τ(x) given by Eq. 9. 

 
 
Fig. 2: Force distribution in an infinitesimal element of 

layer 1 
 
 Consider an infinitesimal element of layer 1 as 
shown in Fig. 2, for equilibrium condition of forces in 

the vertical direction,
 

yF 0=∑ .
 

 From where: 
 

1dV
P

dx
= −  (10) 

 
Taking moment about A: 
 

1 1
1

dF h dM
V dx dx dx 0

dx 2 dx
+ − =  (11) 

 

 Now using the value of 1
R

 from Eq. 3 and 11 

becomes: 
 

1

dFV a
dx

=   (12) 

 

where, 1 2 2 1D h D ha
2D
−= . 

 Differentiating Eq. 12 and replacing in Eq. 9 
produces: 
 

1dV d
P a

dx dx
τ= − = −  (13) 

 
Finally using Eq. 9 and 13 becomes: 
 

( )1 2 2 1 1 1 (1 mn)h D h D TP cosh x
2D Kcosh L

−− α ∆= κ
κ

  (14) 

 
 Thus, the shearing stress τ(x) and the peeling stress 
P(x) at the interface can be determined analytically 
using Eq. 9 and 14, respectively, for a given 
temperature ratio, m. It can be observed that when the 
temperatures are same in both materials, the Eq. 9 and 
14 corresponds to Suhir’s uniform temperature shearing 
and peeling stress models as follows: 
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1 2T( ) sinh( x)
K cosh( L)
∆ α − ατ = κ

κ κ
 

 
( )1 2 2 1 1 2
h D h D T( )P cosh( x)

2D cosh( L)

− ∆ α − α= κ
κ κ

 

 
Upgrading different uniform temperature model 
with thickness wise linear temperature gradients: 
Figure 3 represents thickness wise linear temperature 
distribution, where ∆T1 to ∆T1' and ∆T2 to ∆T2' 
represent linear temperature gradients in the i-th layer. 
The temperature distribution in layer 1 of Fig. 3 can be 
viewed as shown in Fig. 4. 
 Let the total change of curvature of the assembly 

due to change of temperature be
(T)

1
R

; where (T) 

denotes temperature change. Referring to Fig. 4, the 
changes of curvature due to linear variation of 
temperature for layer 1 and layer 2 can be represented 
as follows: 
 

'1
1 1

1(T) 1

1 ( T T )
R h

α= ∆ − ∆  

 
and 
 

'2
2 2

2(T) 2

1
( T T )

R h
α= ∆ − ∆  

 

 
 
Fig. 3: Thickness wise linear temperature gradients in 

the layers 
 

 
 
Fig. 4: Temperature distribution in layer 1 reflecting 

linear temperature gradient in the layer 

 It can be noted that R1(T) and R2(T) are the radii of 
curvature of the two layers induced by gradients in 
changes of temperature only, if allowed to expand 
freely. But they are bonded and hence assume the same 
radius of curvature, R. 
 So: 
 

1 2

1(T) 1 2(T) 2

1 1 M 1 M
R R D R D

= + = +   (15) 

 

 Using i
i

D
M

R
=  and Eq. 3 and 15 reduces to: 

 

1 2

1(T) 2(T)

1 1 D 1 D hF
R R D R D 2D

   
   
   

= + +   (16) 

 

 Now  considering  this modified value of 1
R

 in 

Eq. 16, 9 and 14 can be reconstructed as follows: 
 

1 1 1 1 2 2
mnT (1 mn )

sinh( x)
K cosh( L)

γ − β γα ∆ − + β
τ = κ

κ κ
  (17) 

 

( )
1 1

1 1
1 2 2 1 2 2

mn
cos

1 mn
T

h D h D
P h( x)

2D Kcosh( L)

γ 
  − β γ 

− + β
α ∆

−
= κ

κ
 (18) 

 
Where: 

'
1 1

1
1

T T
T

∆ − ∆β =
∆

 

'
2 2

2
2

T T
T

∆ − ∆β =
∆

 

1
1

1

hD
2h D

γ =  

2
2

2

hD
2h D

γ =  

 
 It can be observed that when linear temperature 
gradient in materials are zero (∆T1 = ∆T1' and ∆T2 = 
∆T2'), Eq. 17 and 18 reduces to Eq. 9 and 14, the 
different uniform temperature models. 
 

MATERIALS AND METHODS 
 
 The analytical and FEM results are presented in 
graphical form for various combinations of available 
results based on Suhir’s and present models. An actual 
electronic packaging case was considered where Silicon 
and Diamond representing die (Layer 1) and die attach 
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(Layer 2) respectively. The following input data are 
used: E1 = 1.88 ×105 MPa, ν1 = 0.3, α1 = 3×10−6 1/°C, 
h1 = 0.00035 m, E2 = 4.966×104 MPa, ν2 = 0.29, α2 = 
25×10−6 1/°C, h2 = 0.00015 m, L = 0.0025 m. For FEM 
analysis both 2D and 3D models are considered to 
verify the analytical results. Since the system is 
symmetric, for 2D half and for 3D one quarter of the 
model is analyzed. For convenience, the reference is 
made to Uniform Temperature Model as Mu (∆T1 = 
∆T2 = 60°C), Different Uniform Temperature as Md 
(m = 0.5 or ∆T1 = 60°C and ∆T2 = 30°C) and Linear 
Temperature  Gradient  Model  as Mg {(β1 = 0.33 or 
∆T1 = 60°C and ∆T3 = 40°C) and (β2 = 0 or ∆T2 = 30°C 
and ∆T4 = 30°C)}.  
 

RESULTS AND DISCUSSION 
 
 Figure 5 indicates that the analytical solution for 
shearing stress has better agreement with 3D FEA 
compared to 2D FEA almost entire length except near 
the free end indicating edge effect as expected.  
 Figure 6 represents shearing stress comparison 
between uniform temperature model, Mu and different 
uniform temperature model, Md. Analytical comparison 
indicates that at location x/L = 0.8, for Md stress value 
differences (reduces) by 0.65 MPa compared to Mu, at 
x/L = 0.9 the difference increases to 4.66 MPa and at 
x/L = 0.96, the difference further increases to 11 MPa 
or 57%. FEM comparison between Mu and Md in Fig. 6 
shows reasonably good agreement with analytical 
observation at all the locations with the exception near 
the free end due to edge effect.  
 Figure 7 represents peeling stress comparison 
between Mu and Md. Analytical comparison shows that 
at locations x/L = 0.8, 0.86 and 0.92, for Md peeling 
stress reduce by 0.9, 2.74 and 5.34 MPa respectively 
compared to Mu. Similar trend of variation can also be 
observed from FEA comparison between the two 
models in Fig. 7.  
 

 
 
Fig. 5: Shearing stress along the interface for different 

uniform temperature model, Md 

 Figure 8 represents shearing stress for temperature 
drop ratio, β1 in layer 1 as a parameter with β2 = 0. The 
results are presented in the vicinity of the free end only, 
x/L = 0.94 to 1 to visualize the effect of the thickness 
wise linear temperature gradient in the die. It shows that 
at location x/L=0.92, shearing stress for Mg (for β1 = 
0.33 or ∆T1 = 60°C, ∆T3 = 40°C and β2 = 0 or ∆T2 = 
30°C) is almost 0.5 MPa lower compared to Md (i.e., 
∆T1 = 60°C and ∆T2 = 30°C). The difference gradually 
increases to 1.4 MPa or 7.4% at the free end.  
 

 
 
Fig. 6: Comparison of shearing stress between uniform 

temperature model, Mu and different uniform 
temperature model, Md along the interface 

 

 
 
Fig. 7: Comparison of peeling stress between uniform 

temperature model, Mu and different uniform 
temperature model, Md along the interface 

 

 
 
Fig. 8: Shearing stress along the interface with 

temperature drop ratio (β1) as a parameter 
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Fig. 9: Peeling stress along the interface with 

temperature drop ratio (β1) as a parameter 
 
 Figure 9 represents peeling stress with temperature 
drop ratio, β1 as a parameter. Similar nature of variation 
can be observed for peeling stress as was seen earlier in 
shearing stress example in Fig. 8. 
 

CONCLUSION 
 
 Present research upgraded the existing uniform 
temperature bi-material model to account for different 
uniform temperature as well as thickness-wise linear 
temperature gradient in the layers. A simpler method of 
solution is used to develop this model which does not 
involve solving integro-differential equations as in the 
Suhir’s method. The following conclusions are 
summarized: 
 
• 3-D simulation showed better agreement with 

analytical results compared to 2D model (Fig. 5) 
especially near the vicinity of the free end for 
interfacial shearing stress comparison along the 
interface 

• Comparison of analytical results with FEM using 
the die-die attach bi-material package indicated 
that the effect of different uniform temperature in 
the layers reduced both the shearing and peeling 
stress substantially (for instance 57% in the case of 
shearing stress) compared to the uniform 
temperature model (Fig. 6-7). Thus, it indicates 
that the different uniform temperature in the layers 
may influence the interfacial shearing and peeling 
stresses quite significantly 

• Consideration of thickness-wise linear temperature 
gradient in layer 1 reduced both the shearing and 
peeling stress values up to 7.4% (Fig. 8-9) 
compared to the different uniform temperature 
model. Therefore, it is concluded that the effect of 
linear temperature gradient (even in one layer) may 
influence both the shearing and peeling stresses 
considerably and should be accounted for carefully 

while calculating shearing and peeling stresses at 
the interfaces.  
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