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Abstract: Problem statement: The thermal mismatch induced interfacial stressesne of the major
reliability issues in electronic packaging and cosife materials. Consequently an understanding of
the nature of the interfacial stresses under diffetemperature conditions is essential in order to
eliminate or reduce the risk of structural and fiowal failure. Approach: In this analysis, a model
was proposed for the shearing and peeling stregsesring at the interface of two bonded dissimilar
materials with the effect of different uniform teaemptures in the layers. The model was then upgraded
by accounting thickness wise linear temperatureligras in the layers using two temperature drop
ratios. The upgraded models were then compared thithexisting uniform temperature model. The
proposed model can be seen as a more generalimedtéopredict interfacial stresses at different
temperature conditions that may occur in the layBesults: The results were presented for an
electronic bi-material package consisting of did die-attachConclusion: The numerical simulation

is in a good matching agreement with analyticallitss

Key words: Shearing stress, peeling stress, different unifeemperature, thickness wise linear
temperature gradient

INTRODUCTION Mey, 1996; Mirman, 1991; Moore and Jarvis, 2003;
2004; Ru, 2002). However, most research works @n th
Thermo-mechanical stresses are the majodirection focused on thermal mismatch stresses
contributor to the structural failure between twamtbled  subjected to uniform temperature changes in thergay
layered structure (for instance, between a dewitkaa But in reality, temperature levels in the two botde
substrate). These stresses can lead to mechanidalyers should be different during manufacturingjray
(structural) as well as functional (electrical gtioal) or even operating due to the dissimilarity of the
failure to the field of microelectronics and phdton materials. Moreover, with the existence of heaivfia
components and devices (Suhir, 2009). Consequentlhe materials (for instance, die), there may alsiste
an understanding of the nature of the interfadiaisses temperature gradient in the layers. Thus the etiette
under different temperature conditions is necesgary existence of different uniform temperatures with
order to minimize or eliminate the risk of struetur temperature gradients in the layers may influeree t
failure. shearing and peeling stresses along the interface.
A thermally mismatched stressed model is widelyHardly, any analytical study has been carried audiar
analyzed using a bi-material thermostat. Timoshenkan this direction.
(1925) initiated a fundamental solution to thermal In the present analysis the authors have extended
stresses of bi-metal thermostats using the beaorythe Suhir (1986) uniform temperature shearing stress
in 1925. Suhir (1986; 1989) proposed relativelyan model by introducing a temperature ratio parameters
and easy-to-use interfacial thermal stress modem(= AT,/AT,) to account for different uniform
compared to the early model proposed by Timoshenkeemperatures in the layers, where i = 1, 2 and T
(1925). Many more researchers have modifiedrepresents the temperature of the i-th layer.
upgraded and/or corrected bi-material model to theSubsequently a model is proposed for peeling staiess
present simplified form in the last few decadesthe interfaces using the proposed different uniform
(Timoshenko, 1925; Suhir, 1986; 1989; Matthys andemperature shearing stress model. The different

Corresponding Author: D. Sujan, School of Engineering and Science, @uutiiversity of Technology, Sarawak, Malaysia
829




Am. J. Applied Sci., 7 (6): 829-834, 2010

uniform temperature shearing and peeling stressetlnod Considering moment equilibrium about positive Z-
are then further upgraded with the consideration ofxis at x and y = 0, the expression for radius of
linear temperature gradients in the layers bycurvature is expressed as:

incorporating two  temperature  drop  ratios

Bl{{:(ATl—ATl')/AT;}and BZ{{:(ATZ—ATZ')/ATZ'}in 1_ (h +h) £ NF

R 2(D,+D,) 2D ®)

the layers, T represents the temperature at the top
surface of i-th layer. As a result a more geneealiz

model is developed which is able to take care ofyhere D, i =1, 2 are Flexural rigidityD = ENR .
different temperature conditions in the layers. T ' T12(1-v?)

Analytical formulation: The uniform temperature Different uniform temperature shearing stress
shearing stress model is presented here by SOBING yoqe: With the introduction of differential uniform

simple second order differential equation insteéd o temperaturesAT, and AT, in layer 1 and layer 2

relatively complicated integro-differential equatiof . P . . ’
Suhir's one (Suhir, 1986). The model is then upgdad {Zigiﬁg\gmgjg' 1, the axial strains at thteiface

with different uniform temperatures in the two lege
and subsequently thickness wise linear temperature
gradients are incorporated in the layers to coreple¢ [, =, AT,+A F +i-|<ﬂ

1
generalized form. 2R 70X 4
Figurel represents the full length of the 2-D Dx(z,zazATz—)\ze—%+ %
uniform temperature model where AA showing the line X
of symmetry. The 2-D model is considered to berof u
width in a direction perpendicular to the paper aiid h, ot .
forces and moments are defined with respect tatlite where, OAT, )\iFi " 2R and K, ox’ are the strain

width. E,a, v and h represent elastic modulus, thermalcomponents due to temperature changes, thermal
expansion coefficient, Poisson’s ratio and thicknes  mismatch axial forces;Fbending and shearing forces
the i-th layer andT uniform temperature change in the respectively.
layers.

The compatibility condition at the interface caam b v
expressed as:

Ux(l) - Ux(z) =0 (1)

1:AT|E;, o, v

where, U, i = 1, 2 are the axial displacements for the
layers. hy 1 AT Ep, 0. vy

In the present approach, the above condition is
expressed in its following simpler form: |

D= 2 i ! M,

</

| M;

L : L
Dx(i) = % |
0x Aj El

The conditions (1) and (2) are mathematically
equivalent. Suhir (1986) used Eqg. 1 as the comipgtib  Fig. 1. Geometrical and material parameters wige fr
condition which required solving a complicated grte body diagram of the uniform temperature
differential equation. model

;
— = = =

Y
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In Eq. 4, K i = 1, 2 are interfacial shear 5 M1+&dx
. s dx
compliances given by, :l, G,i=1, 2 are shear M " oF,
3Gi y B+ —ldx
E . 1 dx
modulus of rigidities given byG, = i and;, F '
2(1+v;) T eA oy
2 P(x) V) +—dz
o . . . @-v9) dx
i =1, 2 are axial compliances givenQhy-———"=.

Ei hi
The compatibility of axial strains at the interdaio

Eq. 2 demands the following condition(s): Fig. 2: Force distribution in an infinitesimal elent of

layer 1
(a,AT —GAT2)+)\F—Kﬁ:0 (5) Consider an infinitesimal element of layer 1 as
! ox shown in Fig. 2, for equilibrium condition of forzén
the vertical directiony’F, = 0.
Where:
h? From where:
A=A HA
4D
K=Ki+Kp Fi=-K=F Pz—dv1 (10)
dx
Differentiating Eq. 5, one gets a second order
differential equation it as follows: Taking moment about A:
dF, h dM
9%t Vdx+-—dx-2-—"tdx=0 11
Fra 6) T2 T ax & (11)
A Now using the value oLl from Eq. 3 and 11
where, k* == . R
K . L becomes:
The solution of this equation is assumed to be the
form (Brown, 1999): dF
V, =a— 12
1=C,sinhkx+ C cosk > @)
— D1h2 - D2h1
Using Eq. 7 and 6 has a solution for shearingstre where, a 2D '
1(x) as follows: Differentiating Eq. 12 and replacing in Eq. 9
produces:
—(qlATl _quTz) inhk
= —2) 8
! KkcosheL X ® p=-d% -0t (13)
dx dx
Introducing two parameterm = 212 andn :&’ Finally using Eq. 9 and 13 becomes:
1 a
h,D,-h D)OI AT, (1- mn)
: P=( SR R i 174 14
Eg. 8 can be expressed as: ) Kcosic [ CoStx ¥ (14)
- AT, (- mn)sin h(k x) 9) Thus, the shearing stregx) and the peeling stress
Kkcosh L) P(x) at the interface can be determined analyticall

using Eq. 9 and 14, respectively, for a given
Formation of different uniform temperature Peeling  temperature ratio, m. It can be observed that when
stress model: The peeling stress P(x) (normal stress atemperatures are same in both materials, the Bad9
the interface) is obtained from the consideratidn o 14 corresponds to Suhir's uniform temperature shgar
moment equilibrium and(x) given by Eq. 9. and peeling stress models as follows:
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_AT(a, -a,) sinh(x) It can be noted that;R) an_d R(T) are the radii of _
Kkcosh L) curvature of the two layers md_uced by gradients in
changes of temperature only, if allowed to expand
h.D.-h.D _ freely. But they are bonded and hence assume the sa
P=( 1D, ~hD) AT(a, - at,) coshk x; radius of curvature, R.

2D K coshg L)

Upgrading different uniform temperature model
with thickness wise linear temperature gradients: 1 e} +_-2 (15)
Figure 3 represents thickness wise linear temperatu R Ry D Ry D,
distribution, whereAT; to AT, and AT, to AT,
represent linear temperature gradients in thelayer. . D, ]
The temperature distribution in layer 1 of Fig.8hde UsingM, == and Eq. 3 and 15 reduces to:
viewed as shown in Fig. 4.

Let the total change of curvature of the assembly 11 (Q}_ 1 [DZJ hE

R D) 2D

due to change of temperature ﬁle; where (T) R Ry
(M

denotes temperature change. Referring to Fig. &, th

changes of curvature due to linear variation of  Now considering this modified value Qﬁé in

temperature for layer 1 and layer 2 can be repteden

(16)

as follows: Eq. 16, 9 and 14 can be reconstructed as follows:
1 a, , _0L,AT, (- mn+ Blyl—mnﬁzyz) .
=21(AT - AT T= sinh(k x 17
Ry hl( 1 AT Kkcosh L) ) (27)
1-mn+
and (h o h D)GIATl[_mnB Blyl]
1 g | p= P2~ by Y2 cosh(kx) (18)
=2 (AT, -AT,) 2D Kcoshk L)
Rz(T) hz
Where:
ATY M; B = AT, —AT,
F, ' ATl
ATy g, = AT. AT,
.&T_‘. ) 2 ATZ
hD
Fs Y. = 1
ATA M, ' 2hh1D
_ hD,
Fig. 3: Thickness wise linear temperature gradiémts * 2h,D
the layers
It can be observed that when linear temperature
ATy +AT] ATy 4Ty gradient in materials are zeraT; = AT;' and AT, =
2 2 AT,), Eq. 17 and 18 reduces to Eg. 9 and 14, the
AT . different uniform temperature models.
1 _| AT +ag N
AT, 2 MATERIALSAND METHODS
AT\ ATy ATy AT, The analytical and FEM results are presented in

) graphical form for various combinations of avaitabl
results based on Suhir's and present models. Amhct
Fig. 4. Temperature distribution in layer 1 reflagt electronic packaging case was considered whereo8ili
linear temperature gradient in the layer and Diamond representing die (Layer 1) and diechtta
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(Layer 2) respectively. The following input dataear Figure 8 represents shearing stress for temperatur
used: § = 1.88 x18 MPa,v; = 0.3,a; = 3x10° 1/°C,  drop ratio,3; in layer 1 as a parameter wigh= 0. The
h, = 0.00035 m, E= 4.966x10 MPa,v, = 0.29,q, =  results are presented in the vicinity of the frad enly,

25x10° 1/°C, h, = 0.00015 m, L = 0.0025 m. For FEM x/L = 0.94 to 1 to visualize the effect of the #ness

analysis both 2D and 3D models are considered t&vise linear temperature gradient in the die. Ivehthat

verify the analytical results. Since the system is"’u location x/L=0.92, shearing stress fog for B, =

- 0.33 orAT; = 60°C,AT3 = 40°C andB, = 0 orAT, =
symmetric, for 2D half and for 3D one quarter oé th 30°C) is almost 0.5 MPa lower compared tq (.,

model is analyzed. For convenience, the refereace i :

i ’ 7~ AT1 = 60°C andAT, = 30°C). The difference gradually
made 1o Umfor_m Tempergture Model as, KAT, = increases to 1.4 MPa or 7.4% at the free end.
AT, = 60°C), Different Uniform Temperature asyM

(m = 0.5 orAT; = 60°C andAT, = 30°C) and Linear
Temperature Gradient Model as; M{.= 0.33 or
AT, = 60°C andAT;= 40°C) and8,= 0 orAT,= 30°C
andAT,= 30°C)}.

RESULTSAND DISCUSSION B o2 ——Mglanalyia)
e ——M,(3D. FEM)
Figure 5 indicates that the analytical solution fo % . e
shearing stress has better agreement with 3D FEA o
compared to 2D FEA almost entire length except near -5
the free end indicating edge effect as expected. o 0.8 o 0.8 o o $

Distance (x/L)

Figure 6 represents shearing stress comparison

between uniform temperature model, khd different  Fig. 6: Comparison of shearing stress between tmifo
uniform temperature model, MAnalytical comparison temperature model, Mand different uniform
|n_d|cates that at location x/L = 0.8, foryMtress value temperature model, Malong the interface
differences (reduces) by 0.65 MPa compared tp d#l
x/L = 0.9 the difference increases to 4.66 MPa and 1
x/L = 0.96, the difference further increases toMPa s —— M, (analytical)
or 57%. FEM comparison between, ind M; in Fig. 6 e~ (30, FEN)
shows reasonably good agreement with analytical iy s
. . . . —— M; (3D, FEM)
observation at all the locations with the excepti@ar
the free end due to edge effect.
Figure 7 represents peeling stress comparison =
between N and M. Analytical comparison shows that
at locations x/L = 0.8, 0.86 and 0.92, fory deeling 1
stress reduce by 0.9, 2.74 and 5.34 MPa respectivel
compared to M Similar trend of variation can also be

obsderlve_d from FEA comparison between the tWOgjg 7. Comparison of peeling stress between umifor
models in Fig. 7. temperature model, Mand different uniform
temperature model, Malong the interface
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Fig. 5: Shearing stress along the interface fdieckht  Fig. 8: Shearing stress along the interface with
uniform temperature model, M temperature drop rati@{) as a parameter
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while calculating shearing and peeling stresses at

—— (B: =0 or My) the interfaces.

—— (= 0.166)
—— (B =0.33 or M,)
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that the effect of different uniform temperature in
the layers reduced both the shearing and peeling
stress substantially (for instance 57% in the odise
shearing stress) compared to the uniform
temperature model (Fig. 6-7). Thus, it indicates
that the different uniform temperature in the layer
may influence the interfacial shearing and peeling
stresses quite significantly

» Consideration of thickness-wise linear temperature
gradient in layer 1 reduced both the shearing and
peeling stress values up to 7.4% (Fig. 8-9)
compared to the different uniform temperature
model. Therefore, it is concluded that the effdct o
linear temperature gradient (even in one layer) may
influence both the shearing and peeling stresses
considerably and should be accounted for carefully
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