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Abstract: Problem statement: The Trujillo algorithm is indirect method and has been used in this 
study. The approach is based upon the principle of conservation of energy. Approach: Cable 
structures are very light and flexible and they undergo appreciable deflections when subjected to 
external loading. Results: Since all the main load-carrying members in cable structures are usually in 
tension, there are no stability problems and the strength of high tensile steel used for cables can be 
rationally utilized. Conclusion/Recommendations: In order to define the position of equilibrium the 
method of analysis should, therefore, cater for the change in geometry caused by any form of applied 
load. Hence the classical linear theories of structural mechanisms cannot be used for the solution of 
cable assemblies. 
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INTRODUCTION 
 
 There are a number of methods for nonlinear static 
analysis of cable structures, such as Tottenham 
(Chahande and Arora, 1994). Those carry out 
theoretical analysis using the continuous membrane 
approach. Tension structure may also be analyzed as 
discrete system then we can pull a result, the number of 
equations obtained has an unknown’s finite number. 
 In the discrete systems, tension structures are 
regarded as assemblies of finite number members 
connected at joints or nodes. And also nonlinear 
equations are set up for the condition of joint 
equilibrium in term of the joint displacements from 
which the equilibrium displacements can be found 
using an iterative process. 
 Although a number of method have been 
developed for dynamic response analysis of structural 
system, but there are only a few methods which can be 
used for nonlinear dynamic response analysis. 
 Tension roof structures are first analyzed for 
static loads and then their dynamic response is 
checked to ensure that the design provides sufficient 
safety and structural serviceability. Although cable 
structures, under service loads, exhibit nonlinear 
behavior, recent developments on the computing 
methods have made it possible to carry out the 
analysis with great accuracy. 
 Basic methods to determine the equilibrium 
position of cables for static loads are now well known. 
Cable systems may be treated either as (a) continuous 
or (b) discrete idealizations. 

 They are described in (Buchholdt, 1985; Park, 
2007; Kang et al., 2006) and are the following: (a) the 
method of steepest descent, (b) the method of conjugate 
gradient (Fletcher and Reeves, 1964; Fletcher and 
Powell, 2003), (c) the method of Newton-Raphson 
(Clough and Wilson, 2003), (d) the method of Runge-
Kutta and (e) the method of Fletcher-Powell. Methods 
(a-c) are most commonly used. This study has shown 
that the Trujillo algorithm for minimization total energy 
in dynamic work is suitable for analyzing nonlinear 
structures with a large number of joints.  
 
Equation of motion for a system: The equation of 
motion for a multi degree (MDOF) system can be 
written as: 
 

M X C(t)X k(T)X P(T)
•• •

+ + =   (1) 
 
Where: 
M = Mass matrix 
C (t) = Damping matrix 
K (t) = Stiffness matrix 
X = Displacement vector 

X
•

 = Velocity vector 

X
••

 = Acceleration vector 
P (t) = Load vector 
 
 For a Single Degree Of Freedom (SDOF) system 
the equation of motion becomes: 
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m X c(t)X k(t)x P(t)
•• •

+ + =   (2) 
 
Where: 
m = Mass of the system 
c (t) = Time varying damping 
k (t) = Time varying stiffness  
x = Displacement 

X
•

 = Velocity  

X
••

 = Acceleration  
p (t) = time varying Load  
 
 The assumption of a constant mass in the case of 
both SDOF and MDOF system is arbitrary as it could 
be represented as a time varying quantity. 
 Since m is a non-zero constant value, both sides of 
Eq. 2 can be divided by m and for: 
 

C(t)P
m

=  

 
K(t)Q

m
=  

 
p(t)F
m

=  

 
 Equation 2 can be written as: 
 

X P X QX F
•• •

+ + =   (3) 
 
 This is a second order different equation. 
 The mathematical solution of Eq. 3 depends on the 
values of P, Q and F. Equation 3 is a linear differential 
equation if P and Q are independent of x and remains so 
even if P and Q are functions of t. 
 In such cases there are well known methods for 
solving Eq. 3. 
 The solution normally given in the form x = f (t) 
and gives exact values of x for any t. once f (t) is 
defined x and x can be derived by differentiation. 
 When P and Q are functions of x and f is either a 
function of t or given as a table of values Eq. 3 becomes 
non-linear. 
 For such equation the solution cannot be expressed 
in functional form and it is necessary to plot or tabulate 
to solution curve point by point, beginning at (t0, x0) 
and then at selected intervals of t, usually equally 
spaced, until the solution has been extended to cover 
the required range.  

Note: In this study it is assumed that F is independent 
of x. 
 Thus the solutions of non-linear equations require a 
step-by-step approach and are normally based on the 
use of interpolation or finite difference equations. 
 The independent variable t is divided into equal 
intervals Δt, over the range of the desired solution. 
Thus the variables after n and (n+1) intervals are given 
by tn = n. Δt and tn+1 = (n+1)Δt  respectively. 
 All the quantities so far defined, such as C(t), c(t), 
K(t), k(t), X, x, will be designed to a time tn by the 
subscript n, e.g., Cn, cn,Kn, kn , Xn, xn  and at times tn+1 by 
the subscript n+1. 
 At time tn it is assumed that the values of all the 
parameters are known as well as the values for same 
parameters at all previous intervals (n-1),(n-2),…..,2,1. 
 At time tn+1 it is assumed that the values of the 
variable parameters are not known and that the purpose 
of the analysis is to find the value of xn+1 (in the case of 
MDOF system, Xn+1) and its derivatives which satisfy: 
 
mXn+1+cn+1xn+1+kn+1xn+1 = pn+1  (4) 
 
 At time tn and time tn+1 = tn+∆t the condition of 
dynamic equilibrium requires respectively that: 
 

n n n n nm X CX k X p
••

+ + =   (5) 
 
and  
 

n 1 n 1n 1 n 1 n 1 n 1m X C X 1 kn X p
•• •

+ ++ + + ++ + =   (6) 
 
Since: 
 
Xn+1 = Xn+∆X  (7) 

n 1 nX X X
• • •

+ = + Δ   

n 1 nX X X
•• •• ••

+ = + Δ  
Cn+1 = Cn+∆C 
Kn+1 = Kn+∆K 
 
 Equation 6 may be written as: 
 

n n n n n 2 1 m X c X k X R R
•• •

Δ + Δ + Δ + =  (8)  
 
Basic assumption and step-by step integration of 
equation of motion: Evaluation these expression at the 
end of the time interval when t = ∆t. 
 Leads to the following expressions for the 
incremental velocity and displacement: 
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n
1X X t X t
2

• •• ••

Δ = Δ + Δ Δ  (9a) 

 
2 2

n n
1 1X X t X t X t
2 6

• •• ••

Δ = Δ Δ Δ + Δ Δ  (9b) 

 
 In general it has been found to be convenient to 
use the incremental displacement as the basic variable 
and hence the ∆x and ∆x in terms of ∆x. rearranging 
Eq. 9a and b yields: 
 

n n
6 6X X X 3X
t t

•• • •

Δ = Δ − Δ +
Δ Δ

 (10a) 

 

n n
3X X 3X X
t 2

• • ••Δ
Δ = Δ − −

Δ
 (10b) 

 
 Substitution of Eq. 10 into Eq. 8 and assuming k 
and c remain constant during the time interval leads to: 
 

n

n nn 1

6 3(m X X k ) X
t t
6 tm( X 3X) C (3X X) R
t 2

• • • ••

Δ + Δ + Δ
Δ Δ

Δ
= Δ + + + +

Δ

 (11) 

 
 This equation can be solved for ∆t· and then ∆t can 
be calculated using Eq. 10. 
 
The Newmark method-beta: The Newmark-beta 
method (Kang et al., 2006) is a method of numerical 
integration used to solve differential equations. It is 
used in finite element analysis to model dynamic 
systems. 
 Newmark (1998) has expressed the velocities and 
displacements at the end of a time increment in terms of 
the known parameters at the beginning and the 
unknown acceleration at the end of the time step as: 
 

( )n 1 n n n 1X X 1 X t X t
• • •• ••

+ += + − γ Δ + γ Δ  (12) 
 

2 2
n n n 1n 1 n

1X X X t X t X t
2

• •• ••

++
⎛ ⎞= + Δ + −β Δ +β Δ⎜ ⎟
⎝ ⎠

 (13) 

 
where, γ and β are parameters which can be varied at 
will. 

 The value of γ is taken to be equal to 1
2

 as other 

values will produce numerical damping. Eq. 13 can 
therefore be written as: 
 

n 1 n n n 1
1 1X X X n t X t
2 2

• • •• ••

+ += + Δ + Δ  (14) 

 In addition to the expressions for the displacement 
and velocities the condition of dynamic equilibrium at 
the end of the time interval: 
 

n 1 n 1n 1 n 1 n 1 n 1M X C X K X P
•• •

+ ++ + + ++ + =  (15) 

 
 Yield the following expression for the acceleration 
at the end of the time step: 
 

1
n 1 n 1 n 1 n 1 n 1 n 1X M P C X K X

•• •
−

+ + + + + +
⎡ ⎤= − −⎢ ⎥⎣ ⎦

 (16) 

 
 Equation 14-16 from the basis for the non-linear 
analysis of structural systems using the Newmark 
method. 
 

MATERIALS AND METHODS 
 
Trujillo’s method: Trujillo presented an explicit 
algorithm for the dynamic response analysis of 
structural system in 1977 (Trujillo, 1977) and has tested 
the method for linear problems. For linear undamped 
systems the method was shown to be unconditionally 
stable. 
 An algorithm based upon Trujillo’s method has 
been developed for non-linear systems by Surya Kumar 
and Knudson (1979) but does not take into account the 
effect of damping. 
 
The Trujillo algorithm: Trujillo splits the stiffness and 
damping matrices into upper and lower triangular 
forms, as indicated below, by the subscripts U and L 
respectively and presents, without giving the 
development of the equations, the following algorithm 
which is divided into a forward and a backward 
substitution.  
 Forward substitution: 
 

( ) [ ]

12

1 L Ln 2

2

L U n

2

nL U n 1 n

t tX M C K .
2 8

t tM C K X
2 8

t t tM C C X P P
4 2 16

−

+

•

+

⎡ ⎤Δ Δ
= + +⎢ ⎥
⎣ ⎦
⎛ ⎞⎡ ⎤Δ Δ

+ −⎜ ⎟⎢ ⎥
⎣ ⎦⎜ ⎟
⎜ ⎟
⎜ ⎟Δ Δ Δ⎡ ⎤+ + − + +⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (17) 
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1n n1 n2 n 2

4X X X X
t

• •

+ +
⎡ ⎤= − −⎢ ⎥⎣ ⎦ Δ

 (18) 

 
 Backward substitution: 
 

( ) [ ]

12

n 1 U U

2

U L 1n 2

2

1nU L n 1 n2

t tX M C K
2 8

t tM C K X
2 8

t t t. M C C X P P
4 2 16

−

+

+

•

+ +

⎡ ⎤Δ Δ
= + +⎢ ⎥
⎣ ⎦

⎛ ⎞⎡ ⎤Δ Δ
+ − +⎜ ⎟⎢ ⎥

⎣ ⎦⎜ ⎟
⎜ ⎟
⎜ ⎟Δ Δ Δ⎡ ⎤+ − + +⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (19) 

 

n 1 n 1 1 1n n2 2

4X X X X
t

• •

+ + + +
⎡ ⎤= − −⎢ ⎥⎣ ⎦ Δ

 (20) 

 
 An advantage of this algorithm is that, since it is 
restricted to the use of diagonal mass matrices only, the 
coefficient matrices of 1n 2

X
+

 and Xn+1 are obtained 

respectively in upper and lower triangular forms. Thus 
the solution of the equations at time 1n 2

t
+

 is reduced to 

forward and at time tn+1 to backward substitution only. 
 Trujillo suggests two ways of splitting the stiffness 
and damping matrices. 
 The first is a symmetric splitting which satisfies the 
conditions: 
 

T
L U L UK K K; K K+ = =  (21) 

 
And 
 

T
l u L UC C C; C C+ = =  (22) 

 
 The second way differs from the first only by the 
manner in which the diagonal elements are distributed. 
 Kumar, who extended Trujillo's work to apply to 
non-linear systems, but excludes damping and thus 
reduces the equilibrium equations at the nth step to: 
 

n n nM X R P
••

+ =  (23) 

 
where, Rn is the internal force vector and presents the 
following algorithm for the middle and the end of 
step: 

2

1 L n2

1n L2

n n
.

tM K X
t 8X M K .
8

t tR P
2 2

•

−
•

+

⎛ ⎞⎡ ⎤
Δ⎜ ⎟⎢ ⎥−⎜ ⎟⎢ ⎥⎡ ⎤Δ

= + ⎜ ⎟⎢ ⎥⎢ ⎥ ⎣ ⎦
⎜ ⎟⎣ ⎦ Δ Δ⎜ ⎟− +⎜ ⎟
⎝ ⎠

 (24) 

  

1 1n n nn2 2

tX X X X
4

• ••

+ +
Δ ⎡ ⎤= + −⎢ ⎥⎣ ⎦

 (25) 

 
12

1n U .2

2

1nU 1 12 n n2 2

tX M K .
4

t t tM K X R P
8 2 2

−
•

+

•

+ + +

⎡ ⎤Δ
= +⎢ ⎥
⎣ ⎦
⎛ ⎞⎡ ⎤

Δ Δ Δ⎜ ⎟⎢ ⎥− − +⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 (26) 

 

1n 1 n n 11 2n 2

tX X X X
4

• •

+ + ++

Δ ⎡ ⎤= + +⎢ ⎥⎣ ⎦
 (27) 

 
 Non-linearity is taken in to account by updating the 
stiffness matrix at the end and if necessary also at the 
middle of each time step. 
 For non-linear problems the algorithm loses its 
unconditional stability and becomes similar to the 
Newmark ( )1 4β =  method. The size of the time step 
is, however, mainly governed by the required 
accuracy. 
 

RESULTS AND DISCUSSION 
 
Numerical experimentation: The analytical method is 
used to experiment with mathematical models. The 
mathematical chosen was a 7*5 flat net with Endcaster 
of freedom (Fig. 1 and 2). 
 

 
 
Fig. 1: 7*5 flat net 
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Fig. 2: 7*5 flat net 
 

 
 
Fig. 3: Mesh: Hex of element shape 
 
 The 7*5 net was also built as an experimental 
model and tested in order to verify the static and 
dynamic nonlinear theories given in this study (Fig. 1 
and 2). 
 The analytical method is used to experiment with 
mathematical models in Fig. 1-3 and also Newton 
analytical, Effect of load, and computing time ratio is 
shown in Fig. 4-6. The 7*5 net was also built as an 
experimental model and tested in order to verify the 
static and dynamic nonlinear theories given in this 
study. 

 
 
Fig. 4: Effect of load on flat net 
 

 
 
Fig. 5: Variation of NR/TA computing time. Ratio 

with degrees of freedom for a 5 sec; Response 
calculation; (NR) Newton-Raphson; (TA) 
Trujillo Algorithm 

 

 
 
Fig. 6: 7*5 flat net, mode1 
 
 In this case, explicit is specified and also 3D stress 
on family of mesh is selected. Geometric linear and 
quadratic is recognized. 
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Fig. 7a: 7*5 flat net, mode 2 
 

 
 
Fig. 7b: 7*5 flat net, mode 3 
 

 
 
Fig. 8: 7*5 flat, mode 3 
 
 The percentage differences between the theoretical 
and numerical testing results did not in any case exceed 
10%, this is thought to be acceptable. 
 The damping matrix for the proposed theory is 
calculated separately and its calculation does not 
affect the formulation of the theory in present form. 

 It was possible to use an orthogonal damping 
matrix in which the damping ratio could be varied in 
the different mode (Fig. 7a, b and 8). 
 A mode shape describes the expected curvature (or 
displacement) of a surface vibrating at a particular 
mode. 
 Increases of degree of freedom in Trujillo 
algorithm are very slowly and then changes of degree 
of freedom are reasonable. 
 Build up of the amplitude of joint 6 from t = 0 to 
steady state vibration: 
 
• Newton-Raphson method (linear) 
• Newton-Raphson method (nonlinear) 
• Trujillo algorithm method (linear) 
• Trujillo algorithm method (nonlinear) 
 

CONCLUSION 
 
 The object of this study was principally to develop 
a linear dynamic analysis theory for the analysis of 
tension structure subjected to dynamic loading and 
verify the theory by Numerical experimentation 
 The propose method was found to be stable for 
time steps equal to less or less than half the smallest 
periodic time of the system. The numerical 
experimentation carry out by static and dynamic testing 
of flat net showed a good agreement between the 
numerical experimentation results and the theoretically 
predicted values. 
 The behavior of each method has been extensively 
investigated  and  compared  with each other. 
Buchholdt et al. (1974) in his initial work on cable 
structures used both the direct and relaxed steepest 
descent methods and found them to be inefficient in 
term of computational time. Ryu et al. (1985) and other 
have used the Newton-Raphson method with and 
without modifications, to solve the resulting set of 
nonlinear equations for cable beams and nets. 
 The Newton-Raphson method founds that method 
converged rapidly near the solution, but that a slow start 
made it rather costly to use because of the matrix 
inversion or complete solution of equations required 
separate iteration and the method when applied to 
function with a larger number of variables requires 
considerable computer storage to store the Hessian. 
 In this study has shown the stability of Trujillo 
algorithm method to reduce the number of iterations. 
The nonlinearity of the energy function makes the use 
of the Trujillo algorithm and Trujillo algorithm 
converge more rapidly to the neighborhood of the 
solution such as Fletcher algorithms. 
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