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Abstract: Problem statement: Seizure and Flat EEG which are modeled as two distinct dynamical 
systems share the same dynamics in the topological viewpoint. Approach: Motions of seizure and 
Flat EEG of the dynamical systems were written as set points. A function that maps between these 
two sets is then built. By using topological conjugacy, they are shown to share the same dynamics. 
Results: Seizure and Flat EEG were shown to share the same dynamics along with other properties 
such as order isomorphic, homeomorphic and the unique representation of any event during seizure as an 
open set. Conclusion: This study shows that the dynamics of seizure can be transported to Flat EEG. 
 
Key words: Dynamical system, EEG, Fuzzy C-Means (FCM), order isomorphism, topological 

conjugacy, dynamic functions, temporal ordering, order isomorphic, dynamic trajectory, 
dimensional space, FTTM 

 
INTRODUCTION 

 
 Epilepsy is a general term used for a group of 
disorders that cause disturbances in electrical signal of 
the brain. In epilepsy there is a miniature brainstorm of 
certain groups of brain cells and this is often associated 
with a sudden and involuntary contraction of a group of 
muscles and loss of consciousness. It can happen in a 
small area of the brain or the whole brain. Depending 
on the part of the brain that is affected, it causes 
involuntary changes in body movement or function, 
sensation, awareness, or behavior where these changes 
are known as epileptic seizure. 
 Electroencephalography (EEG) is the recording of 
electrical activity originating from the brain. It plays an 
important diagnostic role in epilepsy and provides 
supporting evidence of a seizure disorder as well as 
assisting with classification of seizures. EEG has been 
used extensively to record the abnormal brain activity 
associated with epileptic seizures. It is recorded on the 
surface of the scalp using electrodes, thus the signal is 
retrievable non-invasively. The type of activity and the 
area of the brain that is recorded from EEG will assist 
the physician in prescribing the correct medication for 
certain type of epilepsy. Patients with epilepsy that 
cannot be controlled by medication will often have 
surgery in order to remove the damaged tissue. Thus the 
EEG plays an important role in localizing this tissue.  

 
 
Fig 1: EEG projection 
 
Literature review: Fuzzy Topographic Topological 
Mapping (FTTM) is a novel model for solving 
neuromagnetic inverse problem (Ahmad et al., 2008). 
The model is consists of four elements, Magnetic 
Contour Plane (MC), Base Magnetic Place (BM), 
Fuzzy Magnetic Field (TM) and Topographic Magnetic 
Field (TM) each homeomorphic to each other (Ahmad 
et al., 2005). The novel model was generalized in 
(Ahmad et al., 2010). Similar concept of topological 
mapping was also used in (Nordin and Ali, 2009) to 
provide navigation and localization for visually 
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impaired people. In (Ahmad et al., 2006), a new 
method for mapping high dimensional signal, namely 
EEG into a low dimensional space (MC) has been 
developed. The whole process of this novel model 
consists of three main parts. The first part is 
flattening the EEG where the transformation of three 
dimensional space into two dimensional space that 
involved location of sensor in patients head with 
EEG signal (Fig. 1). This flattening process can 
preserves magnitude and orientation of the surface 
(Ahmad et al., 2006). Secondly, the EEG is processed 
using   Fuzzy   C-Means (FCM). 
 Finally, the optimal number of clusters is 
determined using cluster validity analysis. This new 
model enables tracking of brainstorm during seizure 
(Ahmad et al., 2006). Figure 2 are examples of Flat 
EEG. Red dots represent the electrodes while green dots  
 

 
 
Fig. 2: Samples of Flat EEG 

 

 
 
Fig 3: State space trajectory of seizure 

represent the cluster centers after the transformation 
from the scalp of the patients. 
 On the other hand, seizure was modeled as a 
continuous dynamical system in (Ahmad et al., 2005) 
by assuming that it is governed by a set of n scalar 
differential equation with a solution of the 
form ( )w t, ,α β . For a particular initial state and initial 

time, the motion, i.e., state space trajectory is written as 
nf : T R→  (Fig. 3) which is ( )0 0w t, ,α β . Besides, the 

augmented dynamic trajectory, S={(w1,…,w,t): wi, 
t∈R}(denoted as Xt in (Ahmad et al., 2005), but we 
rename it as S to show that it is the augmented 
trajectory of seizure) that resulted when the motion is 
defined over an interval of time was also proven to 
exhibit linear ordering properties under the relation 
induced by the motion, f. 
 More research has been carried out on Flat EEG, in 
(Faisal and Tahir, 2010) for instance, Flat EEG on MC 
was presented as an algebraic structure. In (Faisal and 
Tahir, 2010), MC is rewrite as square matrices and 
transformed into upper triangular matrices using QR-
Schur decomposition and finally as a semigroup of 
upper triangular matrices under matrix multiplication. 
 However, in this study the transformation of the 
dynamicity of seizure to visual platform, namely Flat 
EEG will be discussed and presented. 
 

MATERIALS AND METHODS 
 
 We start as in (Ahmad et al., 2005) to model our 
series of Flat EEG as a dynamical system. Assuming 
that it is a continuous dynamical system and governed 
by a set of m+1 scalar differential equation with a 
solution of the form e(t,λ,γ). For a given initial state and 
initial time we can write the motion as g: T→Rm+1 
which is e(t,λ0,γ0). Hence, when we define over an 
interval of time, the motion produces a set of points 
known as the augmented dynamic trajectory which can 
be written as: 
 

( ) ( )( )
[ )

p 1 1 1 p m m m

Flat EEG

e x ,y ,z ,...,e x ,y ,z ,k,t
S

: t 0, , m,k N

  = 
∈ ∞ ∈  

 

 
where, for each time, t, (ep(x1,y1,z1),…,ep(xm,ym,zm),k,t) 
represents one Flat EEG with ep(xi,yi,zi), the electrical 
potential recorded from sensor (xi,yi,zi) and k as the   
number of cluster centers. 
 Notice that the motion g induce a temporal 
ordering, g≺  on Flat EEGS  which can be formalize as: 
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( ) ( )( )
( ) ( )( )

p 1 1 1 p m m m 1 1

1 2

g p 1 1 1 p m m m 2 2

e x , y ,z ,...,e x , y ,z ,k , t
t t

e x , y ,z ,...,e x , y ,z ,k , t
⇔ ≺

≺
 

 
 This temporal ordering makes ( )Flat EEG gS ,≺  a 
linearly ordered set. 
 
Lemma 1: ( )Flat EEG gS ,≺  is a linearly ordered set. 
 
Proof: By using the theorem from (Ahmad et al., 2005) 
which states that every temporal ordering on an 
augmented dynamic trajectory is a linear ordering, then 

( )Flat EEG gS ,≺  is a linearly ordered set. ■ 
 
Order isomorphism: Our interest now is to show 

( )fS,≺  order isomorphic to ( )Flat EEG gS ,≺ . We will use 

the definition of order isomorphism given in (Steve, 
2008). We rewrite the definition as (with no changes in 
meaning), 
 
Definition 1: Let (P,≤p) and (Q,≤q) be two linearly 
ordered sets and h: P→Q a function, then (P,≤p)  is 
order isomorphic to (Q,≤q) if h is bijective and for all 
x,y∈P and h(x),h(y)∈Q, x≤p y if and only if h(x)≤Q 
h(y). 
 We start by introducing lemma 2 and theorem 1 
which will serve as our tools to prove theorem 2.  
 
Lemma 2: Let ( )1 2 fs ,s S,∈ ≺  and ( )1 2 Flat EEG gu ,u S ,∈ ≺ , 

then 1 f 2 1 g 2s s u u⇔≺ ≺  

 
Proof: Ahmad et al. (2005), the ordering relation 
induced by f gives the following mathematical statement 
 
( ) ( )1 n 1 f 1 n 2 1 2w ,...,w .t v ,..., v , t t t⇔≺ ≺  

 
and as explained before, we know the motion g also 
induce a temporal ordering, g≺  on Flat EEGS  which can 

be formalize as: 
 

( ) ( )( )
( ) ( )( )

p 1 1 1 p m m m 1 1

1 2

g p 1 1 1 p m m m 2 2

e x , y ,z ,...,e x , y ,z ,k , t
t t

e x , y ,z ,...,e x , y ,z ,k , t
⇔ ≺

≺
 

 
 Now, substituting the former into the latter, we 
have: 
 
( ) ( )

( ) ( )( )
( ) ( )( )

1 n 1 f 1 n 2

p 1 1 1 p m m m 1 1

g p 1 1 1 p m m m 2 2

w ,...,w .t v ,..., v , t

e x ,y ,z ,...,e x , y ,z ,k , t

e x , y ,z ,...,e x , y ,z ,k , t
⇔

≺

≺

 

 Thus, the lemma is proven. ■ 
 
 We now construct the required function and show 
that it is a bijection. The function mentioned is θ: 
S→SFlat EEG and are defined as: 
 

 
( )

( ) ( )( )
1 n

p 1 1 1 p m m m

w ,...,w , t

e x , y ,z ,...,e x ,y ,z ,k, t

θ

=
 

 
Theorem 1: The function Flat EEG:S Sθ →  defined as 

 
( )

( ) ( )( )
1 n

p 1 1 1 p m m m

w ,...,w , t

e x , y ,z ,...,e x ,y ,z ,k, t

θ

=
 

 
is a bijection. 
 
Proof: 
Function: Suppose wi = vi for i = 1,2,3,…n and t1 = t2  
Then, ( ) ( )1 n 1 1 n 2w ,...,w , t v ,..., v , t=  

 Now, from lemma 2, this implies: 
 

( ) ( )( )
( ) ( )( )

p 1 1 1 p m m m 1 1

p 1 1 1 p m m m 2 2

e x , y ,z ,...,e x , y ,z ,k , t

e x , y ,z ,...,e x ,y ,z ,k , t=
 

 
 Thus, θ is a function. 
 
Injective: 
 

Suppose 
( ) ( )( )

( ) ( )( )
p 1 1 1 p m m m 1 1

p 1 1 1 p m m m 2 2

e x ,y ,z ,...,e x , y ,z ,k , t

e x , y ,z ,...,e x ,y ,z ,k , t=
 

 
 Again by the same lemma: 
 
( ) ( )1 n 1 1 n 2w ,...,w , t v ,..., v , t=  

 
 Implying, i iw v=  for i 1,2,3,...n=  and 1 2t t=  

 
Thus, θ  is injective. 
 
Surjective: For all 
 

( ) ( )( )p 1 1 1 p m m m Flat EEGe x ,y ,z ,...,e x ,y ,z ,k, t S∈  

 
 There exists: 
 
( )1 nw ,...,w , t S∈  
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 Such that: 
 

( )
( ) ( )( )

1 n

p 1 1 1 p m m m

w ,...,w , t

e x , y ,z ,...,e x ,y ,z ,k, t

θ

=
 

 
  Therefore, θ is surjective. 
 Since θ is both an injective and surjective, 
therefore the function θ is bijective. 
 
Theorem 2: ( )fS,≺  is order isomorphic to ( )Flat EEG gS ,≺  

 
Proof: From lemma 2, we have: 
 
( ) ( )

( ) ( )( )
( ) ( )( )

1 n 1 f 1 n 2

p 1 1 1 p m m m 1 1

g p 1 1 1 p m m m 2 2

w ,...,w .t v ,..., v , t

e x ,y ,z ,...,e x , y ,z ,k , t

e x , y ,z ,...,e x , y ,z ,k , t
⇔

≺

≺

 

 
 Substituting the function θ (from theorem 1) into 
above produces: 
 
( ) ( )

( ) ( )
1 n 1 f 1 n 2

1 n 1 g 1 n 2

w ,...,w .t v ,..., v , t

w ,...,w .t v ,..., v , t⇔ θ θ

≺

≺
 

 

Thus, ( )fS,≺   is order isomorphic to   ( )Flat EEG gS ,≺   as 

desired. ■ 

 
Linearly ordered hausdorff topological space: In the 
following, we will show that the motions of seizure and 
Flat EEG that are modeled as a dynamical system is 
linearly ordered Hausdorff topological space. The 
ordering relation that will be used in constructing the 
interval topology is the induced strict total order 
(irreflexive, asymmetric and transitive) which we will 
denote it as g

•
≺ . We start by introducing a result 

obtained from (Kopperman et al., 1998). 

 
Corollary 1 (Kopperman et al., 1998): If τ  is the 
topology of a well-formed space X , the statements 

 
• X is a GO space 
• X is Hausdorff 
 
are equivalent. 
 
Theorem 3: ( )SS,τ  is a linearly ordered Hausdorff 

topological space. 

Proof: Define a subbasis for set S as the collection of 
all order-open rays (under the induced strict order, g

•
≺ ): 

 

{ } { }{ }f fw S | w u , w S | u w , ,S u S• •∈ ∈ ϕ ∀ ∈≺ ≺  

 
 this will then generate the following basis: 
 

{ } { }
{ }

f f

f f

w S | w u , w S | u w ,
B

w S | u w v , ,S u,v S

• •

• •

 ∈ ∈ =  
∈ φ ∀ ∈  

≺ ≺

≺ ≺
 

 
 and eventually, we obtained the interval topology: 
 

S i i i i
i I

U | U B B B
∈

 τ = = ∋ ∈ 
 

∪  

 
 This generated interval topology makes the pair 
( )SS,τ  a linearly ordered topological space. Note that, if 

the topology of an ordered space X is generated by 
collection of rays, then it is called a well-formed space 
(Kopperman et al., 1998). Using this fact, ( )SS,τ  is then 

a well-formed space. Together with the fact from 
(Bennett and Lutzer, 1996) which says that the class of 
GO-spaces coincides with the class of subspaces of 
LOTS, we can therefore say ( )SS,τ  is a GO-space, by 

viewing ( )SS,τ  as a subspace of the LOTS ( )SS,τ . By 

using corollary 1, we can conclude that S is 
Hausdorff. Thus, ( )SS,τ  is a linearly ordered 

Hausdorff topological space. ■ 
 As the motion of seizure is a Hausdorff LOTS, 
therefore any event during seizure, introduced in  
(Ahmad et al., 2004), can be characterized by an open 
set from the LOTS. In other words, no matter how close 
two events are, it still can be differentiated by two 
unique disjoint open sets. Therefore, we provide the 
following lemma. 
Lemma 3: Any event of seizure can be characterized 
uniquely by an open set from its Lots. 
 

Theorem 4: ( )Flat EEGFlat EEG SS ,τ  is a linearly ordered 

Hausdorff topological space. 
 
Proof: Use similar proof as in theorem 3. ■ 
 
Homeomorphism: Now, we will show that the 
function θ is a homeomorphism and ( )SS,τ  is 

homeomorphic to ( )Flat EEGFlat EEG SS ,τ . 
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 Since an interval topology is generated by 
subbasis, any open set can be written as a union of 
finite intersections of elements of the subbasis. 
Therefore, to prove the continuity of a function, it is 
suffices to show that the inverse image of each subbasis 
element is open (James, 2000). 
 
Theorem 5: The function θ:S→SFlat EEG defined as:  
 

( )
( ) ( )( )

1 n

p 1 1 1 p m m m

w ,...,w , t

e x , y ,z ,...,e x ,y ,z ,k, t

θ

=
 

 
 is a continuous function. 
 
Proof: 
Case 1: Open sets in the form{ }Flat EEG gq S | q c•∈ ≺ , i.e., 

an order-open ray clearly: 
 

{ }( ) { }1
Flat EEG g fq S | q c p S | p a− • •θ ∈ = ∈≺ ≺  

 
for some a S∈  since 1−θ  is bijective 
 From the constructed interval topology for S, any 
order-open ray in S is an open set in S 
 Now, since { }fp S | p a•∈ ≺  is an order-open ray 

 Thus, { }fp S | p a•∈ ≺  is an open set in S 

 
Case 2: Open sets in the form { }Flat EEG gq S | c q•∈ ≺ , i.e., 

an order-open ray clearly: 
 

{ }( ) { }1
Flat EEG g fq S | c q p S | a p− • •θ ∈ = ∈≺ ≺  

  
for some a S∈  since 1−θ  is bijective 
 From the constructed interval topology for S, any 
order-open ray in S is an open set in S 

 Now, since { }fp S | a p•∈ ≺  is a order-open ray 

 Thus, { }fp S | a p•∈ ≺  is an open set in S 

 
Case 3: The whole set Flat EEGS  and empty set ϕ . 

{ }1
Flat EEGS S−θ =  and { }1−θ θ = θ  since 1−θ  is bijective 

 From the constructed interval topology for S, the 
set S itself and the empty set θ  is open. 
Combining all these three cases, the inverse image of 
each subbasis element is open. Thus, 
 

( )
( ) ( )( )

1 n

p 1 1 1 p m m m

w ,...,w , t

e x , y ,z ,...,e x ,y ,z ,k, t

θ

=
 

is a continuous function that maps from ( )SS,τ  to 

( )Flat EEGFlat EEG SS ,τ . ■ 

 
Theorem 6: The function 1

Flat EEG:S S−θ →  defined as:  

 

( ) ( )( )
( )

1
p 1 1 1 p m m m

1 n

e x ,y ,z ,...,e x , y ,z ,k, t

w ,...,w , t

−θ

=
 

 
is continuous. 

 
Proof: Use similar proof as for theorem 5. ■ 

 
Theorem 7: The function Flat EEG:S Sθ →  defined as:  

 

( )
( ) ( )( )

1 n

p 1 1 1 p m m m

w ,...,w , t

e x , y ,z ,...,e x ,y ,z ,k, t

θ

=
 

 
is a homeomorphism. 

 
Proof: Since θ is bijective (theorem 1), continuous 
(theorem 5) and its inverse is continuous (theorem 6) 
therefore, θ is a homeomorphism. ■ 

 
Corollary 2: ( )SS,τ  is homeomorphic to 

( )Flat EEGFlat EEG SS ,τ . 

 
Topologically conjugating: One usual way to relate 
two dynamical systems is with the topological notion of 
conjugacy (Erik and Joseph, 2010). Two dynamic 
systems are topologically conjugated if there exist a 
homeomorphsim h such that 1 2h d d h=� � , where 1d  
and 2d  are the dynamic functions that act on the system 
(Erik and Joseph, 2010). Using this concept, we show 
that the dynamic functions that act on S and Flat EEGS  
share the same dynamics. 
 Firstly, we rewrite the dynamic function that act on 
S and SFlat EEG as f: Rn+1→Rn+1 and g: Rm+1+1→Rm+1+1 
respectively by including the information of system 
state at that particular time into the domain and also 
the time, t into the range. This changes will not create 
any inconsistency as both functions operate only on 
the time, t. Thus, function f and g can respectively be 
defined as: 
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Fig. 4: Framework 
 

( ) ( )1 n j 1 n j 1f w ,...,w , t v ,...,v , t+=  

 
and: 
 

( ) ( )( )
( ) ( )( )

p 1 1 1 p m m m j j

p 1 1 1 p m m m j 1 j 1

g e x ,y ,z ,e...,e x ,y ,z ,k ,t

e x ,y ,z ,...,e x ,y ,z ,k , t+ +=
 

 
Theorem 8: Seizure and Flat EEG that are modeled as 
a dynamical systems share the same dynamics 
(topologically conjugate). 

 
Proof: Composition of functions θ and f is: 
 

( )
( ) ( )( )

1 n j

1 n j 1

p 1 1 1 p m m m j 1 j 1

[f (w ,...,w , t )]

v ,...,v , t

e x , y ,z ,...,e x ,y ,z ,k , t

+

+ +

θ

= θ

=

 

 Composition of functions g and θ is: 
 

( ) ( )( )
( ) ( )( )

1 n j

p 1 1 1 p m m m j j

p 1 1 1 p m m m j 1 j 1

g[ (w ,...,w , t )]

g e x , y ,z ,...,e x , y ,z ,k , t

e x , y ,z ,...,e x ,y ,z ,k , t+ +

θ

=

=

 

 
 This shows that f gθ = θ� �  
 Thus, the two dynamic systems with their 
respective function acting on them share the same 
dynamics. ■ 
 Figure 4 portray the framework. 
 

RESULTS 
 

 In this study, we have shown that seizure and Flat 
EEG that are modeled as a dynamical systems share 
the same dynamics. Besides, their augmented dynamic 
trajectory is linearly ordered and order isomorphic to 
each other by the relation induced from their motion. 
By endowing the interval topology, the LOTS are 
proven to be Hausdorff and homeomorphic to each 
other. Additionally, we show that any event of seizure 
can be characterized uniquely by an open set from its 
LOTS. 
 

DISCUSSION 
 
 We have shown that seizure and Flat EEG share 
the same dynamics by using the concept of topological 
conjugacy. Therefore, the dynamics and orders of 
seizure are embedded in EEG signals. 
 

CONCLUSION 
 
 In this study, we linked seizure and Flat EEG from 
few aspects. By modeling Flat EEG as a continuous 
dynamical system, we composed it into a set of points, 

Flat EEGS  that exhibit linear ordering properties. A 
function, θ is then introduced to show that the set of 
points are order isomorphic to S and homeomorphic 
when endowed with the interval topology. Finally, we 
show that seizure and Flat EEG that are modeled as a 
dynamical systems share the same dynamics by using 
the same function. 
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