
American Journal of Applied Sciences 7 (1): 127-139, 2010
ISSN 1546-9239
© 2010 Science Publications

Corresponding Author: Ahmed Karim Ben Salem, LECAP Laboratory, Department of Electrical Engineering,
 National Institute of Applied Sciences and Technology (INSAT), B.P. 676, 1080 Tunis Cedex, Tunisia

127

Field Programmable Gate Array-Based System-on-Chip for Real-Time Power

Process Control

Ahmed Karim Ben Salem, Slim Ben Othman and Slim Ben Saoud
LECAP Laboratory, Department of Electrical Engineering,

National Institute of Applied Sciences and Technology (INSAT),
B.P. 676, 1080 Tunis Cedex, Tunisia

Abstract: Problem Statement: Nowadays Real-Time (RT) embedded control applications require not
just higher performance but more flexibility as well without increasing cost and resources. Approach: In
this study we presented a promising co-design and implementation of control solution. We developed
flexible solution using software control algorithms coupled with an embedded RT kernel on powerful
embedded processor cores, combined with reconfigurable logic and dedicated resources on the Field
Programmable Gate Array (FPGA). Various architectures were compared and contrasted in terms of
speed and FPGA area. Results: This fully integrated RT control system in a System-on-Chip (SoC) was
applied to electric motors drive in order to enhance both flexibility and performance. Experimental
results showed the feasibility and the efficiency of the approach; they demonstrate the capacity of
implementing, in high-level coding, high speed and more complex control algorithms with RT
constraints. Conclusions/Recommendations: Programmable SoC enabled flexible control system
design. This solution can be readily applied to any control algorithm with minor hardware or software
adapting to specific application requirements.

Key words: Electric drive, embedded control, SoC, FPGA, RTOS, hard-core, soft-core

INTRODUCTION

 A way to get the maximum performance from
motors controlling machinery in industrial applications
is to employ more efficient and sophisticated control
algorithms to optimize the efficiency of motors in a
factory.
 These new sophisticated algorithms place larger
computational requirements on the processor due to the
growth of complexity. Therefore, embedded Real-Time
(RT) control becomes a promising research domain.
The design challenge is ever how to integrate control
complexities of high-sampling-frequency applications
that can execute efficiently on limited embedded
resources. At the same time, many control applications
require updated drive control algorithms to reduce
costs. Hence, there is a need to more flexible control
drive platforms that enable offline system re-use with
various applications.
 New emerging technologies in semiconductor
industry offered the means to create high-performance
digital components allowing implementation of more
complex control applications.

 Recently, the System-on-Chip (SoC) (Eshraghian,
2006; Nurmi, 2007) capabilities have provided the
opportunity to have a more performance digital control
solution. A renewed interest is devoted to Field
Programmable Gate Arrays (FPGAs) for full integration
of all control functions. New FPGA technology
(Rodriguez-Andina et al., 2007) containing both
reconfigurable logic blocks and embedded cores
becomes quite mature for high-speed power control
applications. HardWare (HW) and SoftWare (SW)
components interact in order to perform the given task.
Such systems need a co-design expertise to build a
flexible embedded controller that can execute RT
closed-loop control. The power of these FPGAs has
been made readily available to embedded system
designers and SW programmers through the use of SW
to HW tools.
 This ongoing work aims to apply those HW-SW
architectures and tools capabilities to control
applications. It is proposed a design approach that uses
FPGA-based embedded processor cores to offer
flexibility for the control application via programmable
SW design. This enables system re-use with various
control applications. At the same time, the aim is to

Am. J. Applied Sci., 7 (1): 127-139, 2010

128

achieve high computational performance for control via
a combined HW design.
 Furthermore, control systems are commonly
designed using a set of cooperating periodic sub-
modules where the system should meet timing
constraints to ensure a correct behavior of the closed
loop controller. This can be achieved by integrating an
embedded Real-Time Operating System (RTOS) to
provide support for such systems and to ensure RT
specification. The proposed approach ensures high-
level control application coding with RT performance.
It will be discussed using an application of the Direct-
Current (DC) and Alternative Current (AC) motor
control. It can be readily applied to any other control
system application using the same steps discussed
below with minor adapting.
 Different FPGA-based architectures are proposed
and their comparative study in terms of speed and area
is done. A RTOS support is integrated in the SW design
flow; and a motor emulation concept is used too to
validate the controllers’ functional correctness.

Related work and background:
High speed digital control systems: Various
approaches have been studied in this embedded field in
order to enhance industrial control systems performance
(Monmasson and Cirstea, 2007). The new requirements
of power electronic control systems soon reveal that
digital solutions based purely on microprocessors can
not achieve the required specifications. These
requirements exceed the capability of most common
microcontrollers to execute the new complex algorithm
functions running in SW. The advent of the latest
generation of signal processors or DSP has made it
much less simpler to implement such algorithms
(Hadiouche et al., 2006). However, standalone Digital
Signal Processors (DSPs) can no longer answer this new
generation of control applications that require not just
higher performance but more flexibility as well without
increasing cost and resources.
 A few years ago, new flexible platforms based on
several common interconnected devices in the same
board: such as an FPGA or an Application Specific
Integrated Circuit (ASIC) to implement HW tasks with
a general processor or DSP for SW tasks (Aguirre et al.,
2005), could be an alternative solution ensuring higher
performance and more flexibility (Bueno et al., 2009).
However, the use of mixed devices adds cost and
introduces complex functional partitioning or
communication latencies.
 Nowadays, thanks to novel gate-array integration
levels and cost, SoC solution based on single
programmable device is considered as an appropriate
solution (Ben Saoud et al., 2005) in order to boost

performances of controllers. Commonly used SoC
devices are FPGA chips. Several works have been
conducted in recent years using these devices for
high-speed control (Chan et al., 2007; De Castro et
al., 2007; Idkhajine et al., 2009) and they have proved
efficiency of these highly reconfigurable solutions. A
comparison between DSP and FPGA-based control
capabilities has been carried out in (Fratta et al., 2004),
it has been demonstrated how FPGA-based digital
control properties are better than DSP ones for any
comparative term.
 But the last FPGA-based designs and modeling
techniques lack flexibility since these HW-dedicated
implementations are fixed with no possibility of
upgrade or use with another algorithm. So the FPGA
core-based approach, interconnecting pre-designed HW
Intellectual Property (IP) cores around the
reconfigurable logic blocks of the component and
programmable embedded processors on the same chip
has been proposed as a solution to ensure more
flexibility. It has been recently applied, in few works, to
Mechatronic systems design (Kung et al., 2009;
Astarloa et al., 2009).
 Moreover, the implementation of digital control
systems and RT systems belong together and they
should be connected in the design process. The closed
loop control system is the most common type of control
that requires RT execution.

Embedded real-time control systems: A complex
control system involves sub-systems with different
dynamics which must be further coordinated. Some
parts of the control algorithm, e.g., controlling slow
modes, can be executed slower than the one used for
fast modes. The control system can be divided into
subtasks that operate at different update rates depending
on the available bandwidth. This can be achieved by a
RT system that satisfies these various processing
speeds. A RT system (Gambier, 2004) poses stringent
requirements on precisely time-triggered synchronized
actions in feedback loops.
 With RTOS, also called a RT kernel, there has
been a tendency to provide facilities for creating several
tasks within the same program to have faster task
switch and unrestricted access to shared memory. A
RTOS allows applications to be easily designed and
expanded in the sense that it simplifies the design
process by splitting the application code into separate
tasks, so functions can be added without requiring
major changes to the SW. Multitasking allows a
modularized solution and increasing code reuse. So
application’s performance is enhanced, regardless of its
size and complexity.
 Nowadays, there has been an interest in enabling
multiple embedded control applications to share a

Am. J. Applied Sci., 7 (1): 127-139, 2010

129

single processor and memory. Hence, RTOS feature
insertion in the system level design process of an
embedded control system becomes an interesting design
step, showing its benefits when applied to embedded
processors in order to enhance modularity and
determinism in code execution. A RTOS represents the
future of secure embedded systems where the end point
of the predictability, called determinism, is extremely
important.
 Several research works have shown the benefits of
having the RTOS activities integrated in embedded
systems (Engel et al., 2004; Theelen et al., 2003).
However, in embedded RT control system literature
(Zhou et al., 2005; Gambier, 2004), the RT system
design is commonly treated from the optic of control
engineering without to consider implementation
aspects. Therefore, this study aims to highlight the new
opportunities of inserting SW RTOS in the system level
design process of flexible SoC embedded controllers. It
also shows the gain in terms of modularity and RT
execution for complex control systems.

Design approach for control drive: The design
approach aims to switch control system functionalities
to SW instead of implementing all of them in HW
which is not desirable for several reasons. On the one
hand, some control heavy computation tasks are hard to
parallelize and their HW implementations yield low
speedup. On the other hand, some system tasks require
little computation and can be executed on a processor
with low utilization of FPGA area. So the goal of
switching to SW is to alleviate the need to design a
dedicated HW block for a task, which saves
design/verification time and reduces chip area. At the
same time, implementing system functionalities in SW
allows reuse of already available SW libraries and tasks.
 The control application design was built using
Xilinx EDK Base System Builder toolchain. Both the
reconfigurable interconnections associated to
Configurable Logic Blocks (CLBs) (HW) and the
programmable embedded processor cores (SW) were
used in varying combinations so that application can be
rapidly tested for performance, by selectively partitioning
the design into portions suitable for the HW or for SW
resources on the FPGA as illustrated in Fig. 1.
 The decision regarding the type of processor core
used were based on a balance between computing time,
unit cost, space constraints, toolset and flexibility
needs. Two types of embedded core are available to a
designer: The “hard” processor core, which is embedded
in HW as dedicated silicon; and the “soft” processor
core which is a fully described in SW and capable
to be synthesized in programmable HW solution.

Fig.1: HW/SW partionning and design flow

The soft-core will not operate at the speeds or have the
performance of a hard-core but performance can be
traded for expanded functionality and flexibility
through the configurable nature of this FPGA core.
 Concerning the HW-SW design partitioning,
peripheral devices, memories and custom IP were
implemented in HW using the CLBs around the
embedded processor. They were integrated in the
design as configurable HW IP. Whereas, the closed
control loop behavior was modeled on top of a RTOS
and implemented on embedded processors running at
100 MHz. The model was written in C to perform the
following tasks: Motor emulating and motor
controlling. Having a motor control platform that is
reprogrammable in SW allows for easy tweaking of
systems to increase efficiency and flexibility.
 SW configuration was implemented as Executable
and Linking Format (ELF) file. However, HW
configuration was implemented by a partial bit stream,
a file representation of the CLB.
 The proposed architecture allows integrating a full
control system in a single chip, avoiding external
components and additionally reducing cost and
complexity. Additional application-specific components
such as Pulse Width Modulation (PWM), encoder, etc,
can be added as custom HW IP without major adapting.
Such SW-HW designed platform combines the time
predictability and high performance of HW execution
with the flexibility of SW execution on processors.
 In addition, motor emulation (Ben Saoud, 2000) is
an interesting approach to complete the validation of
new digital control unit and to perform the diagnosis
tasks. The objective of this approach is to design an
electronic system, which can reproduce exactly the
physical system functioning in RT and with high
precision. This system, called emulator, will be used for
the new control device validation with the opportunity
of extensive testing, before it is switched for use with
the physical process in real conditions. The emulator is
represented with a few simple and idealistic equations.

Am. J. Applied Sci., 7 (1): 127-139, 2010

130

Software design: The designed system, consisting of
closed loop controllers running on top of an embedded
RTOS on the same processor, meets timing constraints
like periods and latencies, which can be expressed as
deadlines. The RTOS task manager is composed by the
dispatcher and the scheduler. The dispatcher carries out
the context switch and the scheduler has the function of
selecting the task, which will obtain the processor as
next. RT systems need special algorithms to schedule a
set of tasks. In RT control scheduling, theory priorities
are principally applied to control loop periodic
activities. So it is opted to fixed priority based
preemption mechanism. In this scheduling, each task
has a fixed static priority which is computed pre-run
time. The runnable tasks are executed in the order
determined by their priorities. The scheduler should be
triggered by a timer generating interrupts at a fixed time
interval called the time tick and fixed at 100 µs. Hence,
the system requires a scheduling interrupt handler
routine.
 In the SW flow (Fig. 1), the RTOS is structured as
a library. So the user application source files must link
with the RTOS to access its functionality. The final
image linking the RTOS to the application becomes an
ELF file that can be downloaded, bootloaded and
debugged as with any other ELF file for stand-alone
program.
 The most important consideration when choosing a
RTOS for control applications is reliable performance.
So, to find the right RTOS for the control applications,
many features must be considered such as: control
algorithm integration, robust scheduling algorithms,
fast context-switch, HW and I/O support, code
footprint.
 µC-OS/II has been chosen among various existing
RTOSes due to the following interesting features:
 µC-OS/II (Labrosse, 2002) has been widely used in
several applications (Engel et al., 2004) such as safety-
critical systems, including avionics RTCA DO-178B
where failure could result in catastrophic loss of the
aircraft and Level A Class III medical devices where
failure could result in loss of life for the patient
(Vargas, 2006).
 µC-OS/II is a highly portable, very scalable, RT
multitasking kernel. µC-OS/II is portable since it has
been written in ANSI C and contains a small portion of
assembly language code to adapt it to different
processor architectures. µC-OS/II has been ported to
different processor architectures, among them, the
PowerPCTM 405 (PPC405) and Microblaze.
 In order to achieve timeliness, priority scheduling
is supported. Furthermore, preemption is supported in
order to perform a time-critical function.

 µC-OS/II is a small RT kernel with a small
memory footprint of about 20kB for space-constrained
embedded designs. It is easily scaled because of the
modular nature of the source code.
 Moreover, µC-OS/II is freeware for academic
purpose and a well-documented source code. This
makes it a good candidate for this study.

Hardware design:
Platform: ML-310 evaluation board: The
development platform consists of Xilinx ML310 board
(Xilinx Inc., 2009) with a SoC FPGA. Its Xilinx Virtex-
II Pro XC2VP30 FPGA combines more than 30,000
logic cells and dual IBM PPC405 hard-core processors
on a single chip. The large amount of peripherals offers
a variety of different interfaces. The Virtex II Pro can
be partially and dynamically reconfigured.
 The Xilinx EDK 7.1i environment (Xilinx Inc.,
2009) provides the tools and libraries to integrate the
PPC405 cores on chip, soft Microblaze cores, IBM
CoreConnect buses and customizable peripherals to
design Multi-Processor SoC (MPSoC) micro-
architectures.

Design contents: The constructed platforms utilize
both hard-coded PPC405 and soft-core Microblaze
processors (Xilinx Inc., 2009). Both processors offer
some unique benefits through circuitry dedicated to
interfacing with on-chip peripherals in the FPGA fabric.
 The embedded PPC405 core is a 32 bit Harvard
architecture processor with integrated functional units
such as cache unit (separate 16 KB instruction and data
caches). Most instructions execute in a single cycle
(Xilinx Inc., 2005). Considering that PPC405 has
instruction and data cache built into the silicon of the
hard processor, so enabling the cache is almost always a
performance advantage for the design.
 The Microblaze core is a 3 stage pipeline 32 bit
RISC Harvard architecture with a rich instruction set
optimized for embedded applications (Xilinx Inc.,
2010). There are different processor versions from
which to choose: the smaller three-stage Microblaze
v4.0 core is ideal for cost-focused applications. Unlike
PPC405, the Microblaze cache architecture is not
dedicated silicon. Cache controllers are selectable
parameters in the Microblaze configuration and when
they are included, the cache memory is built from
Block RAM (BRAM). Therefore, enabling the cache
consumes BRAM that could have otherwise been used
for local memory.
 The IBM core-connect bus architecture enables the
compliant IP cores to integrate with the previous
processor blocks. It provides various buses for
interconnection of hard and soft IP cores.

Am. J. Applied Sci., 7 (1): 127-139, 2010

131

 For Microblaze, On-chip Peripheral Bus (OPB) is
used to connect larger external memory. But it presents
less performance than implementations using Local
Memory Bus (LMB) interface. LMB is designed to
allow fast memory access. Thus, Microblaze can be
configured to cache instructions or data only over the
OPB interface to enhance system performance
(Gambier, 2008). Therefore, for comparing the
performance of the PPC405 hard-core with the
Microblaze soft-core with cache enabled, the case of
OPB memory controller for the Microblaze versus PLB
controller for the PPC405 should be considered.
 For the designed architectures, the OPB is used to
connect slow peripherals that are the following:

• RS232 serial channel, connected to an UART

peripheral, used for communication between an
external user interface and the platform

• General Purpose Input Output (GPIO) peripheral,
used for time execution measurements on logic
analyzer

• Timer peripheral, used to synchronize the RT
scheduling of the RTOS

• A second timer, used for applications profiling
• Interrupt controller peripheral, used to manage

multiple interrupts

 Both next subsections describe in details the FPGA
embedded system design block diagrams depending on
the complexity of the control case study. The FPGA
architectures are straightforward and can be applied to
any motor drive application.

Monoprocessor architecture: Figure 2 presents the
different FPGA embedded system components used in
the HW design. Both architectures of Fig. 2 are based
on a single processor. This monoprocessor architecture
is suitable for a simple closed loop motor control
implementation.
 In the first architecture of Fig. 2a, the hard-core
PPC405 is used. It is connected to its own BRAM
memory via a fast PLB. PPC405 has only the PLB bus
interface and therefore OPB devices cannot directly
connect to the processor. Consequently, the OPB is
connected to the PLB through PLB-to-OPB bridge.
 In the second architecture of Fig. 2b, the soft-core
Microblaze is used. It is connected to its BRAM
memory via a LMB.

Dual-processor architecture: This architecture is
dedicated to a more complex control algorithm. The
emulator functionality, previously implemented on the
same processor used for controllers, should be ported
on a second processor core. The goal of locking a
separate processor core to the specific motor emulation

task is to obtain more predictability which allows motor
emulator working on RT conditions at its optimal time
period. On the other hand this configuration aims to
reduce the context switch latencies for processor
supporting controllers.

(a)

DLMB BRAM
Controller

UART

SOPB

Interrupt
Controller

SOPB

Timers
1,2

SOPB

GPIO

SOPB

PortAPortBSLMB

OPB

Master connection
Slave connection

Microblaze
v4.0

IOPBDOPB

ILMBDLMB

SLMB

IL
M

B

ILMB BRAM
Controller

BRAM Block

D
LM

B

(b)

Fig. 2: Hardware design block diagram. (a) PPC405

based; (b) Microblaze based

Fig. 3: MPSoC based design block diagram

Am. J. Applied Sci., 7 (1): 127-139, 2010

132

Table 1: Processing speeds and priority
Task Time period Processing priority
Emulator 100 us 1
PI current controller 300 us 2
PI speed controller 20 ms 3

Fig. 4: Control loop diagram for DC motor drive

 So, an MPSoC architecture based on a dual-
processor (Fig. 3) has been used for implementation.
The two embedded processors communicate between
each others via a small shared BRAM. Each processor
has its own BRAM to implement its assigned portion of
code.

Embedded control case studies: A significant number
of industrial applications benefit greatly from variable
speed operation. For this application case study, two
standard electric motor drives have been used: Firstly, a
simple case of a DC motor driven by Proportional
Integral (PI) controllers. Secondly, a generalization of
the first study to a common complex AC machinery
drive consisting of an induction motor driven by a FOC.
 For the second case-study, the aim of this
conducted experiment is to analyze the capability of
SoC to run complex and sophisticated algorithms
executed in SW respecting RT performance.

DC-motor drive: DC motor control systems are simple
control applications commonly used for motion control
applications. PI Derivative (PID) control is the most
applied control strategy around the world (Gambier,
2008) usually for DC Motor. Generally, the PID
controller is formulated in the continuous-time domain.
Therefore, to implement the controller as a
computational algorithm, the controller equations have
been discretized.
 For this case study, the DC motor control loop
based on two PI controllers and a process emulator is
illustrated in Fig. 4. Table 1 details the sample period of
the different components.
 Both PI controllers have been interfaced with the
motor emulator through a very fast circuitry on a single

embedded processor using clearly-defined run-time
behavior.
 Besides, by providing the high CPU computing
power, SoC makes the use of DC machines obsolete in
terms of power conversion efficiency and system
reliability, when compared with AC machines. So a
FOC for AC motor is presented in the next subsection
to highlight the power of the proposed approach.

FOC for induction motor: FOC constitutes a
fundamental concept behind the modern technology of
high-performance vector-controlled drive systems with
three-phase AC motors.

 The FOC was introduced along time ago
(Blaschke, 1972) allowing high torque at very low
speed. The properties of these controllers are well
known and have been presented by several authors
(Trzynadlowski, 1993). They are not the subject matter
of this contribution. Instead of that, it is looked at the
efficient implementation of this advanced machine
drive algorithm using FPGAs. Figure 5 presents the
scheme of FOC principle. The key idea of the FOC
algorithm lays in performing basic transformations and
rotations on the state variables of the asynchronous
machine, in such a way that the resulting machine
becomes equivalent to an easy to control DC motor.
Indeed, the principle of the FOC method is to transform
the equations of the three-phase induction motor in
order to allow a separate control of both flux and
torque. It senses 3-phase motor current is1, is2 and is3
and transforms into 2 variables, torque current (Iq) and
flux current (Id), so that it simplifies the torque Ce
control (1):

()Ce p M Isq Ird Isd Irq= ⋅ ⋅ − ⋅ (1)

Where:
Ce = Electromagnetic torque
P = Pole pairs number
M = Mutual inductance
Isd, Isq = Stator flux current, stator torque current
Ird, Irq = Rotor flux current, rotor torque current
Φr = Rotor flux
ρ = Rotor flux position

 So, as showing in Fig. 5, the control device
consists of a set of sub-controllers. There is two
separate current control loops. Each loop consists of
several control elements: Vector rotator, Park
transformation, PI, PWM and current sensing that are
essential in each closed loop current control.

Am. J. Applied Sci., 7 (1): 127-139, 2010

133

Fig. 5: Induction motor control loop using FOC

 Moreover, once the torque is controlled, an
external control loop could be added which is the
speed controller block. The latest can also be a slow
mode PI regulator; it produces the torque command
Cemref to run the machine at a given speed (the speed
set-point Ωref).
 Considering the complex general structure of this
FOC algorithm, demanding a certain digital power
computing (e.g., Park transformations, trigonometric
functions manipulation, integration, regulation, etc.), it
should be embedded using the dual-processor
architecture of Fig. 3 to achieve high-speed
performance. So, the emulator has been implemented
separately on the processor PPC1 to track the real
functioning of the set Inverter/AC Motor. Whereas, the
control device has been implemented on the processor
PPC0. The closed control loop behavioral has been
modeled by SW tasks on top of a RTOS in both
processors. The PI currents SW task consists of
Clarke/Park transformations, the flux estimator, the
rotor flux position computing and all the PI current
controllers (torque and flux). For the motor emulator,
the set Inverter/AC Motor model has been partitioned in
two sub-modules: electric and mechanic computing.

RESULTS

 During the entire validation process, the system
was tested using the ML310 board with the Virtex-II
Pro FPGA. The final bit stream generated by the EDK
Xilinx environment has been used to program the
FPGA and the system has been tested with the SW
sources running on the HW platform.
 Time measurements have been carried out with a
logic analyzer connected to the system bus via the
GPIO component. The measurements were done using
GPIO SW functions with set and reset of the different
pins.
 A PC-based user interface allows easy data
acquisition for different control variables of the system
and performance analysis. The PC communicates with
the test board through the UART serial connection.

RTOS Benchmark: Every RT kernel has a heart beat,
which is configured with an interval timer using a RT
interrupt clock as a HW peripheral device. So the HW
timer periodically interrupts the processor to invoke the
scheduler, it allows task control on a timed basis using a
tick routine. The best tick rate for the µC-OS/II is 100 µs.

Am. J. Applied Sci., 7 (1): 127-139, 2010

134

 For the µC-OS/II benchmark, the simple DC motor
control case has been used and it has been implemented
on the hard-core PPC405 with cache enabled. The
RTOS uses a fixed-priority scheduling. Each task has a
fixed static priority which is computed pre-run time
(Table 1). For the closed control loop components, the
emulator task has the highest priority to be as closer as
possible to the physical process and the control system
task has a lower priority. Considering that the controller
involves two sub-controllers with different dynamics: A
fast PI current controller and a slow PI speed controller,
the current controller task should have a higher priority
order compared to the speed controller task. The
granularity of the highest priority task (emulator) should
be sufficiently small than the time slice duration.
Otherwise this active thread remains active for several
iterations and consequently does not yield the processor.
 The RT scheduling of the adopted multitask case
study using µC-OS/II is illustrated in Fig. 6 to show
how deterministic it is and its responsiveness. Both
chronograms parameters SCHEDU and ISRF IN
represent respectively task-level SCHEDUling and
Interrupt Service Routine-level scheduling which are
done respectively by OS_Sched() and OSIntExit()
routines of µC-OS/II. The last ISR is used to perform
the context switch.

Concept validation: These tests have been done to
initially validate and evaluate the proposed
architectures for motor control implementation and to
show the feasibility of the adopted approach.

Fig. 6: The RT scheduling of a DC-Motor closed control

loop

In Fig. 7, the behaviors of the feedback speed Ωm and
the current Im have been analyzed for the DC motor
closed control loop case using the monoprocessor
PPC405 architecture with cache enabled and µC/OS-II
support.
 Figure 8 details the graphs of the rotation speed
response for the FOC of AC machine drive. For Fig. 8a
and b the algorithm implementation is done on PPC405
embedded processors using a single bloc FOC
algorithm. Figure 8b compares the approach of
implementing the FOC with µC/OS-II support with
another approach (Ben Othman, 2008) using a periodic
interrupt to handle the FOC algorithm.
 Concerning Fig. 8c; on the one hand, two different
SW approaches have been analyzed: The first one is
using a unique control task (a single bloc control
algorithm) and the second one is using two separate
control tasks with different update rates scheduled by
µC/OS-II RTOS: One task for PI current controllers
with related computing and the other one for PI speed
controller which delivers the reference current Isqref for
the PI Isq current controller. On the other hand, the
dual-processor HW design, using two interconnected
PPC405s, has been implemented to separate control
algorithm from emulator functionality.

Timing measurements: Tests were run both with and
without cache for PPC405 on PLB. For MicroBlaze
(Mblaze) core, as previously explained, processor
performance using LMB is faster than implementation
using OPB, so test were run with LMB.
 Table 2 represents the results of the average
execution time for DC motor control using
monoprocessor architecture with µC-OS/II support.
 Considering that the PPC405 processor with cache
enabled gives a good compromise in terms of
speed/area as illustrated by Table 2 and 4, the induction
motor case implementation was carried using the
PPC405 processor cores. µC-OS/II allows the complex
FOC algorithm to be partitioned into sub-tasks that
operate at different update rates, the first task related to
PI current controllers run every 300 us while the PI
speed controller run every 1.2 ms. Table 3 gives the
execution time of each sub-task of the FOC. This FOC
for induction motor presents a sophisticated control
algorithm that needs advanced algorithms and higher-
level functions; this will lead to a complex SW coding
and therefore a comparatively high computing time
(especially for PI current controllers’ task including
Park/Clarke transformations and trigonometric
functions).

Am. J. Applied Sci., 7 (1): 127-139, 2010

135

Fig. 7: Current and rotation speed waveforms for implemented DC-motor control

Table 2: Timing analysis of DC-motor case
 Execution time
 --
 On PPC405 On PPC405
 PLB bus PLB bus On Mblaze
 memory cache On Mblaze memory cache LMB bus
Task disabled LMB bus enabled FPU enabled
Emulator ~138 us ~128 us 22 us 900 ns
PI current ~114 us ~88 us 16 us 1 us
controller
PI speed ~85 us ~78 us 12-14 us 700 ns
controller

Table 3: Timing analysis of a FOC for induction-motor case
 2 control tasks 1 control task
 Execution Execution
Module Task Time (us) Time (us)
Motor Electric 90 90
emulator computing 4 4
module (te* = 100 us)
 Mechanical
 computing
 (te* = 100 us)
Controller PI Current 206
module controllers
 (te* = 300 us) 229
 PI speed
 controller
 (te* = 1.2 ms) 7.7
te: The sampling perio

Hardware resource utilization: Using the Virtex-II
Pro FPGA XC2VP30, the synthesis report gives the
following design summary presented in Table 4.

Systems were designed with only the required
components.
 Concerning the BRAM utilization, a certain
memory space is required to record the values of
selected signals during a defined amount of clock
cycles. This memory space has to be taken from the
free space of the BRAMs and its sizing depends on how
many signals are selected to be recorded and on the
number of samples required (64 kb of BRAM size is
used for all instruction and data storage for DC motor
case and 192 kb of BRAM size and 16 kb of shared
memory BRAM size are used for AC motor case). This
will consequently increase the number of used BRAMs.

DISCUSSION

 Fig. 6 describes clearly the respect of the fixed
priority preemptive scheduling policy. The runnable
tasks are executed in the order determined by their
priorities (Table 1). If no task is running and all tasks
are not in the ready state, the idle task executes. The
idle task is always the lowest-priority task. The RTOS
allows a good periodic behavior of the different closed
loop sub-modules within defined sample period.
 Equally, as shown in Fig. 8b, the waveform
representing the response of the FOC implemented using
µC-OS/II support gives a little more precision compared
to the second approach using periodic interrupt.

Am. J. Applied Sci., 7 (1): 127-139, 2010

136

(a)

(b)

(c)

Fig. 8: Comparasion between different AC-motor FOC behaviors using various HW-SW design concepts. (a)

Analysis of different speed references; (b) Analysis of one controller SW architecture with two
periodic SW approaches; (c) Analysis of different HW/SW architectures with μC-OS/II support and
cache enabled

Am. J. Applied Sci., 7 (1): 127-139, 2010

137

Table 4: Device utilization summary
Type of architecture
configuration 1 Mblaze (%) 1 Mblaze with FPU (%) 1 PPC405 (%) 2 PPC405 (%)
Number of occupied Slices 1,704 out of 13,696: 12 2,396 out of 13,696: 17 1,583 out of 13,696: 11 3089 out of 13,696: 22
Number of used BRAMs 32 out of 136: 23 32 out of 136: 23 32 out of 136: 23 104 out of 136: 76
Number of multipliers 3 out of 136: 2 7 out of 136: 5 0 out of 136: 0 0 out of 136: 0
(MULT18X18s)
Total equivalent gate 4,287,966 out of 4,316,485 out of 2,158,755 out of 6,928,698 out of
count for design 30,000,000: 14.2 30,000,000: 14.3 30,000,000: 7 30,000,000: 23

Additionally, the second approach assumes that an
interrupt handler routine and a HW timer must be
assigned for every control sub-bloc. If the FOC
algorithm will be partitioned in other sub-blocs, they
will need several HW timers that will increase FPGA
area cost (a HW timer component consumes about 15%
of the total number of occupied Slices). While the first
approach needs only a unique HW timer for µC/OS-II
tick routine. Hence, RTOS introduced more
predictability to control system response without
increasing area cost.
 Table 3 confirms the gain with using RTOS. It
demonstrates that separating the control task into two
separating tasks with different dynamics gives more
speed performance (206+7.7 us instead of 229 us). This
is also noted from graphs of Fig. 8c using two
controllers versus others using one controller. The
RTOS plays a major role in tasks scheduling and
control loops synchronizing.
 On the other hand, the motor control good
functioning is verified in Fig. 7and 8. Figure 7a depicts
that the rotation speed Ωm of the DC motor is able to
follow the speed reference Ωmref set to 100 rad sec−1,
with good dynamics and relatively low error, while the
good motor current behavior can be seen in Fig. 7b.
Figure 8a shows that the rotation speed of the AC motor
can track any fixed reference with good dynamic
behavior. In Fig. 8b and c, the different rotation speed
graphs reach exactly the speed reference assigned
initially as 100 rad sec−1 and modified to -100 rad sec−1 at
1s time. Hence, these experimental results validate
successfully both motor control implementations with the
proposed SoC designs.
 Furthermore, concerning HW architectures
comparison in terms of speed/area, we have obtained
the following:
 Firstly, the study in Table 2 highlights the great
benefit of using cache in the design of PPC405
processor. The system goes faster when the cache is
enabled in this system design. This confirms the fact
that enabling the cache is almost always a performance
advantage. Moreover, assuming that Mblaze can not be
configured to cache instructions or data over the LMB
interface, the timing results of Table 2 confirm that the

control drive implementation gives more speed
performance on the hard-core PPC405 with cache
enabled than on the soft-core Mblaze without enabling
the Floating Point Unit (FPU). It is equally noted from
Table 4 that the design based on a single PPC405
consumes less logic area resources (7% of total gate
count) than the one using a single Mblaze (14% of total
gate count). This is to be expected, as the Mblaze soft-
core is built from logic units and it uses about 6% of
total occupied slices. While the PPC405 hard-core is
part of the FPGA fabric with no resource usage which
reduces the available area for logic. Therefore, the use
of PPC405 with cache enabled presents better
performance compromise than using Mblaze processor.
 Secondly, Table 2 shows that Mblaze processor
running with the FPU HW module gives the best speed
performance and achieves high sampling frequency for
controller execution. Indeed, enabling the FPU feature
allows accelerating the arithmetic using real numbers.
However, this FPU consumes additional FPGA area
(about 5% of total occupied slices) as can be seen in
Table 4. This can be considered as a space restriction
for more complex design applying a multiprocessor
architecture with several standard and custom HW IPs.
 Finally, Fig. 8c confirms that the dual PPC405
architecture gives more speed performance than the
single PPC405 architecture. It offers more predictability
for the motor emulator, allowing it to work on RT
conditions. It is also interesting to note that the overall
HW summary of Table 4 shows low HW costs for such
an implementation (about 23% of total gate count in the
worst case of a dual-processor design). So assuming
that there are available resources on the FPGA, it is still
better to map certain time-critical or speed sensitive
tasks such as trigonometric computing onto the FPGA
logic.

CONCLUSION

 In this study, it is contrasted different FPGA-based
architectures capabilities. These architectures were
designed to serve in two electrical motor control case
studies and were successfully validated. They have
confirmed the feasibility of such implementations.

Am. J. Applied Sci., 7 (1): 127-139, 2010

138

 Practical experiments on DC motor control SoC
implementation have shown the benefits of using hard-
core embedded processor with cache enabled for
handling embedded control system with good speed
performance without increasing FPGA area.
 Experimental results with AC motor case study
have demonstrated how new SoC technology enables
designers to implement advanced machine drive
algorithm including complex computing, such as FOC
for induction motors, with good precision, low FPGA
area usage and respecting RT constraints. The study
highlight successfully that the use of a RTOS in
handling embedded control tasks accelerates SW
implementations and ensures more determinism and
modularity for embedded closed loop control systems.
 The FPGA-based designed control system is able to
support both HW and SW customization. It allows
inserting additional interfaces and controllers as SW
tasks to enable system re-use with other control
applications. This fully SoC integrated RT control
system provided not only lower cost and high speed
execution, but it also accelerated the development
schedule by simplifying the HW porting effort and
enhancing product flexibility. Thus make the designed
control system long-lived.
 Finally, when trying to design the embedded control
system, it has been met various sorts of quantifiable
goals. But it can be concluded that the control speed
sensitive tasks should always be implemented in HW to
respond to high sampling frequencies. This can be
performed in the flexible platform by adding custom
HW IP cores.

REFERENCES

Aguirre, M.A., J.N. Tombs, V.B. Lecuyer, J.L. Mora

and J.M. Carrasco et al., 2005. Microprocessor and
FPGA interfaces for in-system co-debugging in
field programmable hybrid systems. Microproc.
Microsyst., 29: 75-85. DOI:
10.1016/j.micpro.2004.06.009

Astarloa, A., J. Lázaro, U. Bidarte, J. Jiménez and
A. Zuloaga, 2009. FPGA technology for multi-axis
control systems. Mechatronics, 19: 258-268.
DOI: 10.1016/j.mechatronics.2008.09.001

Ben Saoud, S. and J.C. Hapiot, 2000. Parallel
architectures applied to real time emulation.
Proceedings of the 26th IEEE International
Conference on Industrial Electronics, Oct. 22-28,
Nagoya, Japan, pp: 1719-1724, DOI:
10.1109/IECON.2000.972535

Ben Saoud, S., A. Gerstlauer and D.D. Gajski, 2005.
Codesign methodology of real-time embedded
controllers for electromechanical systems. Am. J.
Applied Sci., 2: 1331-1336. DOI:
10.3844/ajassp.2005.1331.1336

Ben Othman, S., M. Ghrissi, A.K. Ben Salem and
S. Ben Saoud, 2008. FPGA HardCore single
processor implementation of RT control
applications. Proceeding of the 3rd International
Conference Design and Technology of Integrated
Systems in nanoscale era, Mar. 25-28, IEEE Press,
Tozeur, Tunisia, pp: 1-4. DOI:
10.1109/DTIS.2008.4540272

Blaschke, F., 1972. The principle of field orientation as
applied to the new transvektor closed loop control
system for rotating-field machines. Siemens Rev.,
34: 217-220.

Bueno, E.J., Ã. Hernandez, F.J. Rodriguez, C. Giron
and R. Mateos et al., 2009. A DSP- and FPGA-
based industrial control with high-speed
communication interfaces for grid converters
applied to distributed power generation systems.
IEEE Trans. Ind. Elect., 56: 654-669. DOI:
10.1109/TIE.2008.2007043

Chan, Y.F., M. Moallem and Wang Wei, 2007. Design
and implementation of modular FPGA-based PID
controllers. IEEE Trans. Ind. Elect., 54: 1898-
1906. DOI: 10.1109/TIE.2007.898283

De Castro, R.P., H.S. Oliveira, J.R. Soares,
 N.M. Cerqueira and R.E. Araujo, 2007. A new
FPGA based control system for electrical
propulsion with electronic differential. Proceeding
12th European Conference Power Electronics
and Applications, Sept. 2-5, Aalborg, Danmark, pp:
1-10. DOI: 10.1109/EPE.2007.4417434.

Eshraghian, K., 2006. SoC emerging technologies.
Proc. of IEEE. JPROC, 94. DOI: 1197-1213.
10.1109/JPROC.2006.873615

Engel, F., I. Kuz, S.M. Petters and S. Ruocco, 2004.
Operating systems on SoCs: A good idea?
Proceeding of the Embedded Real-Time Systems
Implementation (ERTSI) Workshop, Lisbon,
Porgutal, Dec. 2004. DOI: 10.1.1.59.5431

Fratta, A., G. Griffero and S. Nieddu, 2004.
Comparative analysis among DSP and FPGA-
based control capabilities in PWM power
converters. Proceeding of the 30th Annual
Conference of IEEE, IECON 04, IEEE press,
Busan, Korea, Nov. 2004, pp: 257-262. DOI:
10.1109/IECON.2004.1433319

Gambier, A., 2004. Real-time control systems: A
tutorial. Proceeding of the IEEE, 5th Asian Control
Conference, July 2004, Melbourne, Australia,
pp: 1024-1031.

Am. J. Applied Sci., 7 (1): 127-139, 2010

139

Gambier, A., 2008. Digital PID controller design based
on parametric optimization. Proceeding of the
IEEE International Conference, Control
Applications (CCA 08), Sept. 2008, Texas, USA,
pp: 792-797. DOI: 10.1109/CCA.2008.4629671

Hadiouche, D., L. Baghli and A. Rezoug, 2006. Space-
vector PWM techniques for dual three-phase AC
machine: Analysis, performance evaluation and
DSP implementation. IEEE Trans. Ind. Appli., 42:
1112-1122. DOI: 10.1109/TIA.2006.877737

Idkhajine, L., E. Monmasson, M.W. Naouar, A. Prata
and K. Bouallaga, 2009. Fully Integrated FPGA-
Based controller for synchronous motor drive.
IEEE Trans. Ind. Elect., 56: 4006-4017. DOI:
10.1109/TIE.2009.2021591

Kung, Y.S., R.F. Fung and T.Y. Tai, 2009. Realization
of a motion control IC for $X{-}Y$ table based on
novel FPGA technology. IEEE Trans. Ind. Elect.,
56: 43-53. DOI: 10.1109/TIE.2008.2005667

Labrosse, J.J., 2002. MicroC/OS-II: The Real-Time
Kernel. 2nd Edn., CMP Books, ISBN-10: 1-57820-
103-9 2002, p: 648.

Monmasson, E. and M.N. Cirstea, 2007. FPGA design
methodology for industrial control systems-a
review. IEEE Trans. Ind. Elect., 54: 1824-1842.
DOI: 10.1109/TIE.2007.898281

Nurmi, J., 2007. Processor design: System-on-chip
computing for ASICs and FPGAs. Kindle Edn.,
Springer. ISBN: 978-1-4020-5529-4, pp: 528.

Rodriguez-Andina, J.J., M.J. Moure and
M.D. Valdes, 2007. Features, design tools and
application domains of FPGAs. IEEE Trans. Ind.
Elect., 54: 1810-1823. DOI:
10.1109/TIE.2007.898279

Theelen, B.D., A.C. Verschueren , V. V. Reyes Suarez,
M.P.J. Stevens and A.A Nunez, 2003. Scalable
single-chip multi-processor architecture with on-
chip RTOS kernel. J. Syst. Architecture, 49: 619-639.
DOI: 10.1016/S1383-7621(03)00101-2

Trzynadlowski, A.M., 1993. The Field Orientation
Principle in Control of Induction Motors. 1st Edn.,
Springer. ISBN: 13: 978-0792394204, pp: 280.

Vargas, F., L. Piccoli, A. Alecrim, M. Moraes and M.
Gama, 2006. Summarizing a time-sensitive
control-flow checking monitoring for multitask
System-on-Chip. Proceeding of the IEEE
International Conference, Field Programmable
Technology (FPT 06), Dec. 13-15, Bankok, India,
pp: 249-252. DOI: 10.1109/FPT.2006.270320.

Xilinx Inc., 2009. Products and services. Xilinx.
Xilinx Inc., 2005. MicroBlaze Processor Reference

Guide. Xilinx
Xilinx Inc., 2010. PowerPC Processor Reference Guide.

Xilinx.
Zhou, P., J. Xie and L. Wang, 2005. Co-design of

embedded real-time control systems: A feedback
scheduling approach. Proceeding of the 11th Joint
International Computer Conference, Nov. 10-12,
World Scientific, Chonqing, China, pp: 316-319.
DOI: 10.1142/9789812701534_0070

