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Abstract: Mechanical forces acting on bone during growth affect their final shape and strength. 
Mechanoregulation of bone growth is maybe recognized in embryogenesis, and also in the adaptation 
of the adult skeleton to changes in mechanical loading. By combining equations describing bone 
remodeling and growth with an iterative finite element analysis, a computational model to simulate the 
simultaneous effects of bone remodeling and bone growth was proposed in this study. Strain-energy 
density was assumed as mechanical stimulus of bone adaptation process. Negative exponential decay 
function over time was considered as metabolic growth rate. Based upon numeric results, the model 
shows an acceptable behavior under various modes of loading, e.g. altering in trabecula’s orientation 
or its thickness. This model also shows that by neglecting growth part in the adaptation model, a 
considerable error would result in both final density distribution and microstructural pattern of spongy 
bone. 
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INTRODUCTION 

 
 The development, growth, and remodeling of 
skeletal structures is a highly regulated process 
beginning with mesenchymal stem cells condensations 
in the early embryo and finishing with the homeostatic 
skeleton of the adult. It is widely accepted that both 
genetic and epigenetic factors determine the final shape 
and strength of the skeleton, and many authors have 
specifically proposed an epigenetic role for mechanical 
forces[1,2,3]. Equations have been proposed to describe 
how mechanical forces modulate growth where a 
mechanobiological remodeling rate is superimposed on 
a baseline biological growth rate[4]. 
 In 1976 a rigorous mathematical bone remodeling 
model was proposed by Cowin and Hegedus which is 
so-called adaptive elasticity theory. In the adaptive 
elasticity theory, it is assumed that the rate of change in 
bone mass is correlated with the history of mechanical 
strain[5]. Skalak et al. later formulated a continuum 
model of growth[6]. Carter[7] proposed a bone 
remodeling model which was targeted to produce a 
homeostatic level of an effective stimulus and at the 
same time, Huiskes et al. proposed that the process of 

bone remodeling is aimed at producing a homeostatic 
value of the strain energy density in the tissue[8].  
 Bone growth models incorporating both biological 
and mechanobiological influences have been proposed 
by Van der Meulen and colleagues[9] for modeling the 
cross-sectional growth of long bones and by Stevens et 
al. for modeling endochondral growth using a finite 
element model[4]. An alternative approach is that 
remodeling of bone is in response to microdamage, 
either to regulate microdamage to a homeostatic level 
or as the stimulus for the activation of the coupled 
responses of osteoclast and osteoblast cells[10,11,12]. 
 Recently, Vahdati and co-workers incorporated a 
cellular accommodation effect into the Huiskes et al.’s 
semi-mechanistic model[13]. They showed that the 
model is sensitive to temporal sequence in which 
loading is applied. In a very recent effort, Vahdati and 
Rouhi proposed another modification on the Huiskes et 
al’s model[13]. They included the effects of both 
microcracks and disuse on activation of resorption in 
one unifying formulation based on latest experimental 
findings besides considering cellular accommodation 
effect. These findings have not been published, yet. In 
2004, Rouhi and co-workers proposed a modification 
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on the adaptive elasticity theory by replacing volume 
fraction with free surface density in the constitutive 
equations[14]. In another attempt, Rouhi et al. 
incorporated a microcrack factor in their first model and 
showed that not only mechanical stimuli, but also their 
rate and history are effective and at play in the bone 
remodeling process[15]. Considering the great 
importance of bone resorption process in the 
osteoporotic cases, Rouhi et al. proposed a separate 
model of bone resoprtion by using mixture theory with 
chemical reactions. In their bi-phasic mixture model, 
they found that not only mechanical factors are at play 
in the resorption process, but also chemical and 
biological factors have crucial effects[16]. Considering 
three different constituents of bone, i.e. bone matrix, 
bone fluid, and bone resorbing cells; Rouhi proposed a 
tri-phasic model of bone resorption using mixture 
theory with chemical reactions[17]. It is concluded that 
rate of bone resorption is a function of apparent density 
of bone matrix and bone fluid, fluid velocity, 
momentum supply to the fluid phase, and internal 
energy densities of different constituents, in the former 
model. 
 Frost demonstrated that not only 
mechanoregulation diagram is not plateau in the lazy 
zone for growing bone, but also it has a considerable 
time dependent positive slope. This positive slope 
represents modeling process (Fig. 1)[18]. 
 

MATERIALS AND METHODS 
 
 It is widely accepted that immature bone structure 
can be altered via two major mechanisms: (1) 
Metabolic base growth, which is dependent on genetic 
patterns, nutrition, etc., (2) Mechanoregulatory 
mechanisms. The former is called Genetic Factor while 
the latter is called Epigenetic Factor[19]. Generally 
speaking, it can be applicable superimposing Genetic to 
Epigenetic effects[20]. 
 Computational simulations are used to investigate 
the mechanoregulation of bone growth. The bone 
growth model employed here was proposed by Van der 
Meulen et al.[9]. It simulates the growth of the cross-
section of a long bone from an embryonic bone collar to 
maturity, where the rate of bone apposition, tρ� , is equal 
to the sum of the baseline biological rate, bρ� , and the 
rate due to mechanobiological effects, mρ� , as defined in 
Eq. (1): 

  bt m
• • •
ρ = ρ + ρ  (1) 

 
 
  
Fig. 1:   Mechanoregulation diagram differs in mature and 

immature bones. Positive slope in the lazy zone 
represents modeling process in growing bone[18]. 

 
 The baseline biological growth rate is a decaying 
exponential function of time that reduces to 
approximately zero by the age of 18 years, defined as 
follows[9,20]: 

  
t

b b0(t) .e
−

τρ = ρ� �  (2) 
 
  b v trSρ = ρ� �  (3) 

where � = 3.6 years, 
b0

•
ρ  is the initial biological growth 

rate in �gr.cc-1.day-1, arisen from Eq. (3) in which initial 
r�  is taken to be 10 �g.day-1 in this model[9], where r�  

is the rate of change in trabecular thickness, Sv is the 
specific surface area and �t is the density of bone matrix 
which is assumed to be constant and equal to 2 g.cc-1. 
Figure 2 shows how r�  changes as an individual ages[9]. 
 Figure 3 shown the specific surface area (Sv), as a 
function of porosity (p) with coefficients in mm2.mm-3 
as follows[3]: 
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Fig. 2:  Rate of change in trabecular thickness due to growth 

vs. age[9] 
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Fig. 3:     Specific surface area (SSA) vs. porosity (p). SSA is 

near zero at lower and higher extremes of p[21] 
 
 The finite element stress analysis is used to 
calculate stress and strain within bone. The strain 
energy density, SED, can be expressed as follows: 
   

  e e
e ij ij

1
SED

2
= ε σ   (5) 

 
where σij and � ij are the stress and strain tensors, 
respectively and e represents the number of each 
element in the model. The resulted SED is assumed to 
act as the mechanical stimulus of the remodeling 
process. The bone remodeling set of equations was 
introduced by Ruimerman et al. in the following 
form[22]: 

 
e R

e

e D

R

R D

D

c(SED u :SED u
d

0 : u SED u
dt

c(SED u ) :SED u

− <�
ρ �= < <�

� − >�

  (6) 

 
 As stated earlier, since there are two mechanisms 
contributing in the bone adaptation process before 
maturation, i.e. Genetic and Epigenetic; we 
hypothesized here to superimpose their effects. Thus, 
adaptation equation will consist both growth rate, bρ� , 
and the remodeling rate, mρ� . It is performed by 
inserting a linear alternative, instead of plateau, into the 
lazy zone of common remodeling models, appeared in 
Eq. (6). The superposition assumption takes place at 

mid point of lazy zone at which the magnitude of ed
dt
ρ  

is equal to the calculated growth rate from Eq. (3). This 
model also interpolates the growth rate over the lazy 

zone to determine the magnitude of ed
dt
ρ  for any other 

point within the domain. Thus, updated governing 
equations will be as follows (Fig. 4): 
 

 

e R

e m

D R

e D

D

R R D

D

c(SED u :SED u

d
2 .(SED u ) : u SED u

dt u u
c(SED u ) :SED u

− <�
�ρ ρ�= − < <� −�
� − >�

  (7) 

 
where uR is the lower or resorption SED threshold, uD is 
the upper or deposition SED threshold, ρe represents 
elemental density and c is a growth rate constant. The 
values of uR and uD are age–dependent and will 
approach the mature values with linear approximate 
variation within 18 years. The value of uR starts from 
zero at birth and increases until reaches its mature 
value, i.e. 0.002 J mm3. Based on Ruberg’s study[23], uR 
is considered as 80 percent of midpoint SED in lazy 
zone, while uD is assumed to be 20 percent greater than 
midpoint SED in the lazy zone. By this assumption, uD 
is also a linear function of time during first 18 years of 
life. 
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Fig. 4: Mechanoregulation diagram. Schematic 

visualization of adaptation for: a) 1, b) 10, c) 20 
years of age. These figures show that immature 
bone is more sensitive to epigenetic variations, i.e. 
SED.  

 
 The superposition process also alters the resorption 
and deposition zones. This is carried out via replacing 
common models’ constant, i.e. c, with its alternative for 
growing bone[24,25]. As it is quite evident in Fig. 1, the 
proportionality constant c in immature bone is not the 
same as in mature bone. Thus, we have considered a 
linear approximate temporal variation, like the ones for 
lazy-zone thresholds, which starts from its initial value, 
i.e. c = 0.01 g.day.mm-3., and approaches its mature 
value, i.e. 0.02 g.day.mm-3, at the age of 18 years[23]. In 
other words, the constant c is, in fact, a time dependent 
coefficient which affects the rate of bone adaptation 
under the effect of external load placed on the bone. A 
higher value of c will lead to more expansion and a 
thicker bone; it also acts as a handle for controlling the 
convergence[20]. 
 Concentrating on Eq. 7, it is obvious that the 
second term imposes a positive, age-decaying slope to 
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mechanoregulation diagram over the lazy zone. 
Assuming that the maturity happens at the age of 18 
years, this model converges to common remodeling 
models proposed by others (e.g. Jacobs[28] ,Carter et 
al.[19], Huiskes et al.[12]), for mature bone. 
 As a physical run-time constraint, the elemental 
densities were assumed not to outrage the following 
range (0.001, 1.74 g/cc). The lower bound is taken 
0.001 instead of zero due to some computational 
considerations. Zero density will lead to zero stiffness, 
internal stress shielding, checkerboard configuration, 
and even singularity in global stiffness matrix of 
structure in finite element solution[26]. Thus, the 
following constraint was set: 
 
  

e

g g
0.001 1.74

cc cc
< ρ <   (8) 

 
 The Van der Muelen et al.’s model uses age-
dependent loading cases to simulate the loading history 
for an individual bone (Fig. 5). This force was obtained 
from body weight during growth, and it is assumed that 
the force and age are linearly proportional. The load 
starts from approximately zero values and gradually 
increases with a mean slope of 1.11 Newton per year, 
until reaches 20 Newtons at the age of 18 years[27]. 
 The relation between the elastic modulus and the 
bone density is assumed to be in the following form as 
proposed by Jacobs in 1994[28]: 
 

 
2.5
e

e 3.2
e

2014 1.2g / cc
E (MPa)

1763 1.2g / cc

� ρ ρ <�= �
ρ ρ >��

  (9) 

 
where eρ  refers to the density of each element. In 
addition to elastic modulus regulation, the model 
proposed here uses the following equation, also 
proposed by Jacobs[28], to update elemental Poisson’s 
ratios: 
 

 e

e
e

0.2 1.2g / cc
0.32 1.2g / cc

ρ <�
ν = � ρ >�

   (10) 

 
 In this study, the simulation was performed 
utilizing a MATLAB code. Bone specimen was 
assumed a 2-dimensional 0.1 x 0.1 mm2 square 
containing a uniformly distribution of bone sensor cells, 
i.e. osteocytes (1600 Osteocytes per cubic millimeters). 
The aforementioned square geometry was meshed with 
linear constant strain triangular elements. The minimum 
appropriate size of mesh was obtained 25 x 25 nodes 
from independency test, while independency test 
variable was defined by Eq. (11) as follows: 

  
2304

e e
ij ij

e 1

F .
=

= ε σ�                  (11) 

 
where, F is target function and e is the summation index 
number over elements. First and second degrees of 
freedom of first node at left-bottom corner and first 
degree of freedom of 25th node at right-bottom corner 
were restrained as minimum required boundary 
conditions. We also prevented overconstrained 
condition in applying boundary conditions. Applied 
boundary conditions are shown in Fig. 7. 
 These two factors also converge to zero at 25 nodes 
per side and higher. 
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Fig. 5:  Applied force on bone specimen used by Van der 

Muelen et al. Dashed line shows our   approximation 
with mean slope equal to 1.11 N/yr [3,29]  

 
 Post-processing was performed to calculate stresses 
and strains at gauss integration points. Then, the state of 

remodeling, i.e. td
dt
ρ , is calculated using Eq. 7. Finally, 

at the end of each iteration new elemental densities are 
updated with the following equation: 
 

 e
e e

(t,n)
(t t,n) (t,n) t

t
∂ρρ + δ = ρ + δ

∂
 (12) 

 
where e (t t)ρ + δ  is the updated density of nth element 
which will lead to updated young’s moduli and 
Poisson’s ratios. 
     The iterative solution procedure includes two loops 
which one fulfils temporal simulation and the other 
stands for convergence testing. 
     The convergence loop is the inner and the temporal 
loop is the outer one. Number of temporal iterations 
was considered 75 which approximately reveals 20th 
year of age, assuming 365 days each year, and 100 days 
each iteration. 
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 Fig. 6: (A) Independency criterion defined by Eq. (11). It 

is concluded that the criterion is independent of the 
mesh size (horizontal axis) at 25 nodes per side and 
higher. (B) and (C) represent 1st and 2nd derivatives 
of the criterion. These two factors also converge to 
zero at 25 nodes per side and higher 

 

 
 
 
Fig. 7:     First and second degrees of freedom of first node at 

left-bottom corner and first degree of freedom of 
25th node at right bottom are omitted as minimum 
required boundary conditions 

 
 Ruberg defined volume-averaged change in bone 
volume fraction, e, as follows: 
 

  b
V

V

v dV
e

dV

∆
=
�

�

  (13) 

where, V represents geometry volume and vb shows 
bone volume fraction. Stoppage threshold of e was set 

between 10-4 and 10-5. Considering B
b

T

V
v

V
= , in which 

VB is volume of bone tissue and VT represents total 
bone specimen volume, this formulation leads to Eq. 
(14). Algebraic procedure can be found in[23]. 
 

 If 4ed gr
10

dt cc.day
−ρ > , then continue!  (14) 

 
where e represents an arbitrary element within the 
geometry. Fig.8 shows a general flowchart of our 
solution. 
 

 
Fig. 8:    Solution flowchart, temporal and convergence loops 

are shown. 
 

RESULTS AND DISCUSSIONS 
 
 Four different simulations were performed to 
determine whether our model shows reasonable 
behavior under various loading conditions. The 
conceptual initial architecture was considered as a 
uniform density distribution with a density of 0.7 
g/cc[29]. In the figures 9-12, final configurations of 
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density distributions within our model can be seen. The 
density increases on contours from blue, the lowest, to 
red, the highest. 
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Fig. 9:  Figures a-e show adaptation process due to changes in 
external loading state. Final masses of both 
configurations are similar and equal to 0.853 g 

 
 In the first simulation, we have applied a 1 Newton 
force on the upper side of square which was oriented 
45o clockwise with respect to horizon (Fig. 9a). 
Then, we changed the orientation of force to 45o 
counterclockwise, with same magnitude. Figures (9b-e) 
show the adaptation process due to change in external 
force orientation. It is obvious that hard tissue mass is 
gradually transferred from initial major strut to second 
major strut. It is strongly in agreement with Huiskes et 
al. findings in[12]. Both final architectures show similar 
configurations and mass distributions (Fig. 9). 

 

 
 

Fig. 10: Shear forces induce strut formation in two directions; 
one in maximally tensed and other in maximally 
sheared directions 

 

 
 

Fig. 11: Bending condition: model responds in a way in which 
final configuration has a high resemblance with distal 
femur architecture 

 
 

Fig. 12: Alteration in external force magnitude changes 
trabecular thickness. Middle: Normally loaded 
specimen; Left: Under-loaded specimen, trabecula’s 
thickness is decreased; Right: Over-loaded 
specimen, thickness of trabecula is elevated 

 
  
In the second test, we applied a uniformly distributed 
shear force on the right side of the square. As can be 
shown in Fig. 10, model has regulated itself by 
producing two struts in response to loading; first just 
beneath loaded nodes and second is developed with 45o 
angle oblique to the first. The first strut is developed in 
the direction of maximum shearing stress and the 
second is produced in the direction of principal 
direction of normal stresses. Based on Wolff’s law, 
some researchers have interpreted that bone reinforces 
itself in orientation which is maximally stressed[7,8,28]. 
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Our 2nd simulation is in agreement with the former 
interpretation of Wolff’s law. 
 In the third simulation, the bending condition was 
simulated by applying a bi-ramp on the upper side of 
the model. As can be shown in Fig. 11, the final 
configuration of this case has a strong qualitative 
correlation with distal femur macroscopic architecture. 
Asymmetricity found in final configuration of this 
loading case is interpreted in relation with asymmetric 
boundary conditions.  
 Trabecular thickness, which is one of the most 
important geometric parameters relevant to 
osteoporosis and also osteopenia[30], is the next issue we 
are going to discuss. In the forth and last qualifying 
round of tests, initially we have loaded the model with 
an oblique 1 Newton force. Then, we have over- and 
under-loaded the model by 25% of the original force 
(1N). Graphical presentation of such test can be seen in 
Fig. 12. As it is obvious in the Fig. 12, over-loading 
condition induces an elevation and under-loading or 
disuse, induces a reduction in trabeculae thicknesses. It 
is widely expressed by authors that the former (over-
loaded one) causes a hypertrophy, and the latter (the 
under-loaded and/or disused case) will lead to an 
atrophy and osteoporotic condition in a healthy 
bone[31,32]. 
 In this model, nothing was said about growth yet. 
We have introduced our growth included model (GIM) 
by Eq. 7. We also mentioned growth excluded model 
(GEM) in Eq. 6. After applying these two models on 
loading cases, specimens’ masses were drawn as a 
function of age. All the diagrams show qualitative 
resemblance, but not numeric. We have included the 
diagrams of first test results for both GIM and GEM in 
Fig. 13, for instance. As the figure shows, both models 
start from initial mass in the order of 0.61 grams. As 
individual ages, the GIM accelerates more than GEM 
due to the growth term. This situation continues until 
the growth is stopped at the age of 18. The difference 
between GIM and GEM at the age of 18 is about 80mg. 
This difference represents approximately 9.3% of 
weight for homeostatic mature GIM in first loading 
case, which is 0.856 grams. The aforementioned 
difference can be considered as the error included in the 
model due to growth effect cancellation assumption. 
 

 
 
Fig. 13:  Temporal variation in total mass of growth included 

(GIM) model (solid blue line) and growth excluded 
(GEM) model (dashed red line) 

 

 
 

 Fig. 14: Temporal variation in impact of growth  
 
 Figure 14 contains a diagram which is calculated 
by subtracting mass of the growth excluded model 
(GEM) from the mass of growth included model (GIM) 
which is called as “impact of growth assumption” by 
the authors. Based on this figure, convergence takes 
place at the age of 18. This shows that bone mass 
calculated using the GIM will approach the one of 
derived employing the GEM after maturation. In 
addition to that, this diagram resembles a step response 
of a 2nd –order closed-loop control system which can be 
studied considering the magnitude, nature and 
physiologic interpretation of its particular System 
parameters, i.e. damping ratio and natural frequency. 
Some authors have interpreted system parameters of 
such system as a gauge of bone health and youth and its 
ability to response to remodeling stimulus[33]. 
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Fig. 15: Rate of change in mass for GIM (dashed red line) and 
GEM (solid blue line) 

 

 
 
Fig. 16: This figure shows variation in GEM-GIM difference 

versus time. Numeric analysis fits a negative 
exponential curve to diagram with 0.001(g) 
residual (R2 = 0.987) 

 
 The rate of change in bone mass diagram is also 
studied in this research (Fig. 15). Figure 15 shows the 
rate of change of bone mass as individual ages. The 
values of this parameter are 0.0436g/day and 
0.0674g/day at birth for GEM and GIM, respectively. 
This difference is relevant to the initial rate of growth.  
     Figure 16, also shows temporal variation in the 
difference between GEM and GIM. The parameter 
decays exponentially with time and the numeric 
analysis shows that the time constant is equal to that of 
the growth rate equation, introduced in Eq. 2. 
 

CONCLUSIONS 
 
 In this research, the authors are trying to put an 
emphasis on the point that growth and remodeling can 
be considered simultaneously to predict homeostatic 
structures of growing bone during the first two decades 
of life. It is well accepted that in a growing bone, or 
immature bone, both genetic and epigenetic factors are 
at play. In other words, both modeling and remodeling 
are active. Thus, in this study, the authors superimposed 

bone modeling equation on bone remodeling equation, 
in the hope of modeling immature bone adaptation. 
 From the simulations performed in this study, it is 
concluded that this model can produce strut- and plate-
like structures found in substructures of spongy bone; 
as was resulted in other studies[1,23]. All the homeostatic 
configurations show a fair agreement with Wolff’s 
law[3]; topologic optimization methods[34]; bone micro-
structure; and also other researchers’ works[22,35]. This 
study also shows that neglecting growth effect in 
immature bone models can cause a noticeable error into 
the final results. In this study, neglecting growth effect 
in bone adaptation process could cause an error of 
about 9.3% in final bone mass.  
 It is evident that the biomechanics society is 
suffering from the lack of a mechanistic model of bone 
adaptation. One reason of this shortage comes from the 
fact that bone adaptation is a multidisciplinary problem 
which is related to different fields (e.g. cell biology; 
mechanics; and chemistry). One of the most important 
challenges in the field of bone adaptation is 
mechanotransduction of bone cells. In other words, 
understanding how mechanosensors, i.e. osteocytes, 
react to different mode of loadings. It is hoped that by 
closer collaboration among researchers from medicine 
and engineering more insight will be gained in the near 
future, and more lights will be shed on this very 
essential and complex problem of biomechanics.  
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