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Abstract: The increased interconnection density, bandwidth, nonlocality and fan-out-fan-in offered by 
optics over conventional electronic technologies make it a very attractive medium for a variety of 
application particularity in the field of communication system implementation for all types of 
computing engines is achieved. This is especially true for neural networks in which the demand for 
communication resources is extremely high. In this study, the implementation of a neural network that 
exploits an optical interconnect to perform a real task is described. A pnpn semiconductor device has 
been connected in parallel with a common load resistance for optical switching. When illuminated, 
only this device with maximum input will turn on. The voltages across the other devices drop and 
inhibit their switching ability. With suitable biasing, the winning device can be recall at any time. The 
result shows, a much faster response (<10ns) can be obtained from thyristors made of III-V compound 
semiconductors, because their carrier lifetime is considerably shorter than in silicon. With III-V 
photothyristor, it is possible to combine light emission (even lasing) and photothyristor action in the 
same unit.  
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INTRODUCTION 

 
 In a winner-take-all function, a collective dynamic 
competition takes place, which receives the maximum 
input and suppresses activity in all the other nodes of 
the network. The mechanism that is responsible for this 
type of behavior is the competition for a limited 
resource such as laser resonator gain, current on a bus, 
or current limited by a common load resistor. The latter 
is the case considered in this research. This functional 
unit can be used in a wide variety of applications 
requiring arbitration. The application of most interest is 
in competitive neural networks for unsupervised 
clustering applications, where the winner-take-all is 
used as a powerful nonlocal non-linearity. In these 
networks, each node receives a weighted sum of input 
from a statistical clustered input space. The weight 
vectors lead to a neuron that represents prototypes of 
each of the clusters and the largest inner product is 
related to the prototype to which an input pattern most 
closely matches. The winner-take-all network selects 
the largest inner product, corresponding to the best 
pattern match and assigns class membership.  
 In this study an optically controlled winner-take-all 
circuit is described being, based on a pnpn structure that 

can be used in the optical implementation of a 
competitive network.  
 Such a network is implemented as a parallel-optical 
system that incorporates a diffractive-optical element 
(DOE). Its performance as a scheduler for both crossbar 
and self-routing switching fabrics is measured.  
 In this study, the implementation of a neural 
network that exploits an optical interconnect to perform 
a real task. The operation and the design of such a 
scheduler and operational experimental implementation 
of an SOF is described. The scheduler uses a neural 
network in a winner-take-all strategy to optimize 
decisions on the throughput of Koheen (self 
organizing).  
 

WTA NEURAL NETWORKS 
 
 The basis of the winner-take-all circuit is an 
electrical network[1], that has the capability of both 
lateral and global inhibition. Global inhibition is 
essential to perform the winner-take-all function and 
can be realized as a special case of this network, 
obtained by removing all the local couplings between 
the cells.  
 One of the most important uses of this network in 
Self-Organizing  Feature (SOF) mapping in networks is  
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Fig. 1: Architecture for a competitive network 
 
one of the most fascinating topics in the neural network 
field. Such networks can learn to detect regularities and 
correlations in their input and adapt their future 
responses to that input accordingly. The neurons of 
competitive networks learn to recognize groups of 
similar input vectors. Self-organizing maps learn to 
recognize groups of similar input vectors in such a way 
that neurons physically close together in the neuron 
layer respond to similar input vectors[2].  
 In competitive learning, the neurons in a 
competitive layer are distributed to recognize frequently 
presented input vectors. The architecture for a 
competitive network is shown in Fig. 1, where in this 
figure the input vector p and the input weight matrix 
IW1,1 are accepted to produces a vector having S1 
elements. The elements are the negative values of the 
distances between the input vector and vectors IW1,1 
formed from the rows of the input weight matrix.  
 The net input n1 of a competitive layer is computed 
by finding the negative value of distance between input 
vector p and the weight vectors with the biases b. If all 
biases are zero, the maximum net input neuron can have 
0. This occurs when the input vector p equals the 
neuron's weight vector. The competitive transfer 
function accepts a net input vector for a layer and 
returns neuron output of 0 for all neurons except for the 
winner, that is the neuron associated with the most 
positive element of net input n1. The winner's output is 
1. If all biases are 0, then the neuron whose weight 
vector is closest to the input vector has the least 
negative net input and, therefore, wins the competition 
in order to output a 1. Biases are used with competitive 
layers for reasons to be considered later in this study.  
 

OPTOELECTRONIC WTA 
 
 To demonstrate the operating principle of the 
proposed design a commercially available 
photothyristor  is used as active nonlinear device, in the  

 
Fig. 2: Array for pnpn devices for WTA 

 
form of silicon pnpn structure. A network of 
photothyristor connected in parallel to a power supply 
through  a  load  resistor, R is considered as shown in 
Fig. 2.  
 In order to demonstrate the winner-take-all 
principle in its pure form, it has to be shown that only 
one node wins the competition regardless of the input. 
To show this every device is illuminated with sufficient 
intensity necessary to switch the entire device. After 
switching-off the light, the competition begins and only 
that one node with the maximum light input wins the 
competition and carries nearly all the total current.  
 In the implementation described here, both a 
crossbar and a multistage self-routing switching fabric 
with random-access input queuing is considered. The 
novelty in this approach is the use of an optoelectronic 
neural network to perform the input-output matching. 
The use of neural-network hardware can yield excellent 
performance on resource-allocation and optimization 
problems at low cost, is importance is in exploiting 
analog circuit capabilities and creates a naturally highly 
parallel approach to the problem. Such a neural network 
is, however, intractable to be built to any scalable 
extent in silicon because of the high degree of 
connectivity required[3].  
 In the proposed pnpn switch, the neurons are 
arranged in a two-dimensional array that represents all 
possible input-to-output connections such that each 
neuron corresponds directly to a cross point on the 
switch Fig. 3 The neuron outputs can vary continuously 
between the OFF and the ON levels.  
 The choice of a set of connections requires that the 
neurons representing all the requested connections are 
be enabled simultaneously and set to the same 
intermediate level.  
 Each neuron has a bias input that tends to increase 
output but also receives inhibitory input from those 
neurons that represent blocking connections.  
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Fig. 3: Schematic of the neural-network pnpn switch 

controller for Self -organizing-Feature 
  
Pnpn1 switches can be blocked at their inputs and 
outputs only, so the neurons are arranged to be inhibited 
by others in the same row or column. All other possible 
connections are set to zero.  
 The dynamics of the network resolve the conflicts 
between all the mutually excluded neuron pairs, leaving 
a valid set of neurons in the ON state and the remainder 
in the OFF state. The network thus behaves as a 
winner-take-all (WTA) system with a particularly 
simple interconnect pattern where each neuron sees 
only its row and column neighbors, each of which is 
connected to it by a fixed, inhibitory weight.  
 

SYSTEM IMPLEMENTATION AND 
SIMULATION RESULT 

 
 Here, the basic implementation of the WTA rule in 
SOF as an optoelectronic array system is described 
together with system programming and simulation 
results. The detector array is a commercial photodiode 
array operated at peak sensitivity with a typical 
response time of approximately 30 ns. Figure 4 shows 
schematically DOE (Design of experiment) system that 
requires two lenses as a design requirement, such that 
system operates in the Fourier plane. The following 
describes a typical operational cycle of the neural-
switch scheduler.  
 To represent the pattern, there must be a two state, 
“1” when the presence of light, 0 when the light is off. 
Initially  all the lasers are set to a fixed output level that  

 
 
Fig. 4: Schematic of the experimental optical system 

setup for the crossbar-switch controller 
 
is slightly higher than the OFF level. This level sets a 
stable total power for the array and effectively biases 
the neurons toward the ON State.  
 When the network is enabled, the lasers of all the 
requested neurons are connected to their amplifier 
outputs and the others are set to the OFF level.  
 Between the laser and the detector arrays are a pair 
of lenses and a DOE that splits the light from one 
neuron’s laser and focuses it onto the input detectors of 
the other neurons in the same row and column (for a 
crossbar) or other required pattern but not to its own 
input. Because of signal inversion in the amplifier 
chain, light falling on a detector inhibits the neuron, by 
decreasing its output. The WTA nature of the setup 
guarantees a convergence to a feasible solution with 
those neurons that remain ON.  
 A vitally critical component of this system in terms 
of functionality is the DOE. The inhibitory 
interconnections between the neurons are implemented 
by the use of far-field scalar DOE’s in conjunction with 
a Fourier lens system. These phase-only diffractive 
elements are designed by the use of a standard iterative 
Fourier transform algorithm that is followed by a 
closed-form iterative technique which is required to 
produce the uniformity and the signal-to-noise ratio 
required of the inhibitory interconnections.  
 By testing this design through MATLAB6 program 
for multi iteration is found the real pattern from the 
other stored pattern as follows.  
 In the first step, the network identifies the winning 
neuron, then the weights of the winning neuron and the 
other neurons in its neighborhood, are moved closers to 
the input vector at each learning step using the self-
organizing map learning function (learnsom). The 
winning neuron weights are altered in proportion to the 
learning rate. The weights of neurons in its 
neighborhood are altered in proportion to half the 
learning  rate.   The  learning rate and the neighborhood  
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Fig. 5: An input pattern P through the first training face 
 
distance used to determine which neurons are in the 
winning neuron's neighborhood are altered during 
training through two phases.  
 
Phase 1: (Ordering Phase) This phase lasts for the 
given number of steps. The neighborhood distance 
starts as the maximum distance between two neurons 
and decreases to the tuning neighborhood distance as 
shown in Fig. 5. The learning rate starts at the ordering-
phase learning rate and decreases until it reaches the 
tuning-phase learning rate. As the neighborhood 
distance and learning rate decrease over this phase, the 
neurons of the network order themselves typically in 
the input space with the same topology in which they 
are ordered physically.  
 
Phase 2: (Tuning Phase) This phase lasts for the rest of 
training or adaptation. The neighborhood distance stays 
at the tuning neighborhood distance, which should 
include only close neighbors (i. e., typically 1. 0). The 
learning rate continues to decrease from the tuning 
phase learning rate, but very slowly. The small 
neighborhood and slowly decreasing learning rate fine-
tune the network, while keeping the ordering learned 
acquired in the previous phase stable. The number of 
epochs for the tuning part of training (or time steps for 
adoption) should be much greater than the number of 
steps in the ordering phase, because the tuning phase 
usually takes more iteration.  
 The weight change dw for a given neuron from the 
neuron is calculated by learn some input P, activation 
A2 and learning rate LR: as given below  
dw = lr*a2*(p'-w) 
where the activation A2 is found from the layer output 
A and neuron distances D and the current neighborhood 
size ND.  
 Thus, feature maps, while learning to categorize 
their input, also learn both the topology and distribution 
of their input. The network for 1000 epochs can be 
trained using: 

 
 
Fig. 6: An output pattern P through the second training 

face 
 
P = rands(2,100) 
net. trainParam. epochs = 1000; 
net = train(net,P); 
where P is the input pattern  
 This training produces the plot shown in Fig. 6 
where the (desired) output pattern is produced from the 
lattice in the figure for best recognition of the network 
after 1000 training iteration.  
 

CONCLUSION 
 
 In this study, the problems of high interconnection 
density are solved by using a free-space optical 
interconnect that exploits diffractive optical techniques 
to generate the required interconnection patterns and 
weights. Although in this implementation speed is not a 
goal, impressive performance in terms of convergence 
and noise tolerance is observed, implying that 
scalability is good, so large switch sizes could be 
utilized for optimizing cost. The pure winner-take-all 
property of a net made of photothyristors connected in 
parallel and connected to a common load resistor with a 
fixed bias which acts as a limited energy resource is 
demonstrate. The current network described in early 
version fabricated with rather slow silicon 
photothyristor with a switching time of several µsec. A 
much faster response (<10 ns) can be obtained from 
thyristors made of III-V compound semiconductors, 
because their carrier lifetime is considerably shorter 
than in silicon. With III-V photothyristor, it is possible 
to combine light emission (even lasing) and 
photothyristor action in the same unit.  
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