
American Journal of Applied Sciences 6 (2): 214-218, 2009
ISSN 1546-9239
© 2009 Science Publications

Corresponding Author: Mohammad Qatawneh, Department of Computer Science, KASIT, University of Jordan,
 P.O. Box 13047, Amman 11942, Jordan Tel: 00962-79-5502200 Fax: 00962-6-5681343

214

Parallel Implementation of Polygon Clipping Using Transputer

Mohammad Qatawneh, Azzam Sleit and Wesam Almobaideen

Department of Computer Science, KASIT, University of Jordan,
P.O. Box 13047, Amman 11942, Jordan

Abstract: This research describes a parallel implementation of Liang-Barsky clipping algorithm on a
pipeline network configuration. The implemented configuration uses pipeline of four transputers and
programmed under Occam2 language. In order to achieve the concurrency, to improve the performance
and to cut down the hold-ups caused by the calculation of intersection, data buffering is used.

Key words: Parallel clipping, transputer, pipeline

INTRODUCTION

 Computer graphics is a field of computing which
requires intensive processor use. Algorithms in graphics
are very repetitive and operate on very large data sets.
The process of clipping can be defined as the process of
removing the portion of an image that falls outside the
visible region. In graphics, there are line and polygon
clipping algorithms[3,4,5,7,8]. The polygon clipping
algorithm clips a polygon against one boundary
window after another, rather than clipping against all
boundaries at once. This has certain features which is a
natural candidate for parallel implementation.
 Several well-known polygon clipping algorithms
have been proposed[1,2,4,10,12,13]. The basic idea of these
algorithms is to clip a given polygon against each
boundary line of the window separately. Both
Sutherland-Hogman and Liang-Barsky algorithms
generate connected clipped polygons[9,12]. The Liang-
Barsky algorithm is optimized for rectangular windows
but is extendable to arbitrary convex windows. Results
indicate that for rectangular windows the optimized
algorithm is twice as fast as the Sutherland-Hogman.
Liang-Barsky is a parametric polygon clipping
algorithm.
 The choice of parallel configuration for a particular
problem is not always straightforward. Much research
in parallel processing[6,11] is directed towards matching
problems to configuration. This research presents a
parallel implementation of Liang-Barsky polygon
clipping algorithm which is based on a Transputer
Development System (TDS). The INOMS T414
transputer[7] is a 32 bit microcomputer with 4Kbytes on-
chip RAM for high speed processing, a configurable
memory interface, and all necessary system services. It

has four ports of communication links all in single
wafer. The programming language Occam[7,11] is a
concurrent programming language designed for the
transputer. The implemented system uses pipeline of
four transputer and programmed under Occam2
language.

DESIGN CONSIDERATION

 An arrangement of four processors in a pipeline-
configuration is an obvious method of implementing
polygon-clipping algorithms[2,3] against four
boundaries. Each processor runs the clipping process
for a different boundary, where polygon data passes
from processor to processor. In addition, four other
processes are required to make the pipeline work, these
are: Reading and writing data to the pipeline, create the
polygon data and to display the resulting clipped
polygon.
 Figure 1 shows an example of two processes
(create and write) accessing the common area of
memory have to be synchronized to avoid unpredictable
result. The create process can terminate before the write
process starts. Also, the boundary data (bound data) and
write processes both communicate with clip.bo. Hence
synchronization is achieved through the running order
of the process. Fig. 2 shows the pseudo Occam which
presents the ordering of these processes.
 A problem that can be greatly reducing the
performance of a pipeline is uneven load balance. This
problem may occur when a processor in the pipeline
takes longer to perform some process than the other
elements of the pipeline. Since all the processors, in the
research paper work, run the same code, there is
nothing that can be done to even up the load balance by
redistributing the code.

Am. J. Applied Sci., 6 (2): 214-218, 2009

 215

Po lygon Data

Shared memory
Read /W rite

B ound Data W rite Create

Resu lt Read

Clip .b 0 Clip .b 1 C lip .b 2 C lip .b 3

Clipped po lygon
date

Fig. 1: The interaction of the main processes

SEQ

Create ()

Boundary data
P AR

Write ()
Clip.b0 ()
Clip.b2 ()

Cl

Fig. 2: The pseudo code for create and write processes

in Occam

Processor n

Buffering Clipper

Processor
n+1

Buffering Clipper

Fig. 3: Clipping to buffering communication

 In order to cut down the hold-ups caused by the
calculation of intersections by buffering data which are
sent by previous processor in the pipeline. The
buffering can be done by a process working in parallel
with the clipping algorithm as shown in Fig. 3. As the
buffering process takes place on the same processor as
the clipping processor, concurrency is achieved through
multitasking. The buffer improves the performance by
allowing a clipping process to pass on its data to
another clipping process even if that process is not
ready to process the data. This result a reduction in
waiting times, however, operating a buffer does
introduce an extra processing overhead.
 The clipping algorithm wants to know when one
polygon ends and the next start otherwise, the list of
polygon would be treated as one large polygon. Since
the whole polygon list and pointer table are not passed
from processor to processor, consequently, they can not
be used to find the start, or end of each polygon. The
following solutions could be considered:

Fig. 4: Example of data flow between pipe elements

• By passing an integer to a pipeline telling it how

many vertices are in the polygon, vertex list is then
communicated. However, the clipping process may
reduce the number of vertices in the list. This
means that the number of vertices in the list cannot
be communicated until the entire polygon has been
clipped. The result is an undesirable flow of data

• A more satisfactory solution is to pass a start of
polygon token. It does not communicate the
polygon length. Such token can also be used to
signal the end of the polygon list and therefore
cause the pipeline element to reset. The token can
be a Boolean variable, true for start and false for
end of polygon list (an example shown in Fig. 4).
Notice, those two true values with no vertices
between, signifies that a polygon has no vertices
with the window boundaries, and has therefore an
empty vertex list. Therefore, only two data types
need to be communicated between processes
(Boolean and two element integer arrays, holding
the (x, y) component of each vertex)

 Boundary positions take the form of signal integer
values, two giving x-coordinate and two giving y-
coordinates. The host sends all four positional values,
put in order, to the first processor in the pipeline. The
first processor takes the first value and passes the rest
onto the second processor and so on.

IMPLEMENTATION OF PIPELINE

 The clipping algorithm is implemented on a
pipeline of processors using Transputer Development
System (TDS). The system consists of host PC (CPU
Dual core 2.4 GHz and 1GB RAM), host transputer,
and four transputers as shown in Fig. 5. The TDS runs
on the host Transputer and provides a folding editor,
Occam2 compiler, debugger and various tools. Under
TDS, the code which runs on the transputers network is
stored in a program fold.
 Transputer Network Program consists of a links
configuration and a set of procedures code to be run on
each Transputer in the network. The link Configuration
is concerned with the creation of a unidirectional
pipeline. Each processor must have an output link
connected to an input link of the next processor as
shown in Fig. 6. The channel between processes in the
pipeline must carry INT and BOOL data types and
defined CASE statement as follow:

Am. J. Applied Sci., 6 (2): 214-218, 2009

 216

Host
PC

Host
Tran-
sputer

Processor 0 Processor 1 Processor 2 Processor 3

Fig. 5: Transputer development system

Link2 out
Host

Processor
Link3

Link2 out
Processor 0

Link2 out
Processor 1

Link2 out
Processor 2

Link2 out
Processor 3

Link1 in Link1 in Link1 in Link1 in

Protocol vertex.or.Commnd
CASE
VER, [2] INT
COMM, BOOL

Fig. 6: Links configuration used by the clipping

pipeline

 The processors are configured to run the procedure
called clippoly which can be found in the program fold,
which is run on each processor. The input and output
channels are different for each processor, as is the
boundary against which it clips, which is passed to the
processors as parameters. The clip procedure has the
parameterization clippoly (input channel, output
channel, and boundary). This procedure is effectively
called only once when the network is loaded.
 The clippoly procedure contains all the code which
runs on the pipelining processors. The procedures
declared Clippoly are Boundary.Pos Buffer.Space and
Liang-Barsky algorithm (LB.algm). The overall
structure of the clippoly procedure in pseudo Occam is
shown in Fig. 7.
 The infinite loop exists so that when the pipeline
has finished processing a polygon list, the pipeline
processor code resets itself. A reset is the transition to a
state where the code running on pipeline processor is
waiting for boundary position to be communicated. The
followings are the procedures called within Clippoly
procedure.

Boundary.Pos: This procedure is invoked for each new
polygon list. The pseudo Occam of this procedure is
shown in Fig. 8.

Buffer.Space: To make the operation on the pipeline
more efficient the data is buffered. This process runs
concurrently with the clipping algorithm and reads the
channel from the previous processor in the pipe. If the
clipping code is not ready to receive the data, the
Buffer.Space process is suspended until it is. The
following Pseudo Occam procedure shows the actions:

SEQ
While more vertices
Get value fro m previous processor, communicate to
Clipping code, when ready output vertex.

While True
SEQ
Boundary.Pos ()
PAR
Buffer .Space
SEQ
While vertices left to process
Input vertex
Clippoly ()
Output vertex

Fig. 7: Pseudo code of clippoly procedure

SEQ
Loop once for each Processor, which follows in pipe,
it read a boundary position from previous processor.
If vertex type
If first position read,
Make boundary position = position read
Else
Pass on boundary posit ion to next processor.
Else
Stop (an error)

Fig. 8 The pseudo occam of Boundary.Pos procedure

While more vertices to process
Read a value fro m the input channel
If value is Bool
If not the first vertex of list
Then p = first vertex o f list
P erform LB>alg.
Output a Trues until False or vertex value read
Input True until False or vertex value read
If False value
Then output false value
Else save vertex value
It is first of list
S = vertex value
Else P erform LB .alg
S = P

Fig. 9: The pseudo Occam of Clippoly procedure

 A more conventional circular buffer could be used.
This has the advantage that the storage size of the
buffer does not effect the processing time needed to
operate the buffer.

Clippoly code: This is the main part of the procedure,
which is contained within a while loop. It will continue
while there are vertices to process. The Pseudo code in
Occam is shown in Fig. 9.

Am. J. Applied Sci., 6 (2): 214-218, 2009

 217

SEQ
Initialize ()
Boundary Data ()
Start timing
PAR
Write data ()
Read data
Stop timing
Results

Fig. 10: Interface pseudo code

 The interface program runs on the host Transputer.
Its code is completely separated from the clipping code.
All interactions between the interface and the clipping
code take via channel communication. The interface
code is illustrated in Fig. 10.

RESULTS AND DISCUSSION

 The main draw back in using a pipeline for
polygon clipping is that of processors being forced to
wait for one another to finish tasks. This problem is
addressed by the use of a buffer. However, due to the
overhead of operating a buffer, only a single element
buffer is used. Experiments with a circular buffer show
that between 10-20 data items are being queued up. The
buffer used is therefore only going a small way to deal
with the hold up problem.
 The same causes of hold-up exist on a single
processor system. However, on a single processor,
a process which has to wait for another process does not
cause the processor to be kept idle. Instead a runnable
process is run (i.e., Processes are multi-tasked).
Therefore, the processor in the single processor
implementation will always be kept busy; keeping the
processor busy maximizes performance. The amount of
clipping which has to be done has a direct effect on the
number of hold-ups caused. For example a processor in
the pipeline may have to perform no clipping because
the polygons are all visible, but neighbor processor in
the pipeline, on the other hand, might be clipping for a
boundary, which passes through the polygons. The
result is that one processor takes longer to process the
same data as the other one, such a load imbalance will
cause hold ups. It is found that the speed up is more or
less perfect for four or five processor implementation.
However, two processors implementation is unique in
that it employs the best attributes of the single
processor and multi processor implementation, which
are respectively multitasking and parallel processing.
Multitasking allows each of the processors to alternate
between the two clip processes. Parallel processing
allows boundaries 0 and 1 to be clipped at the same
time as boundaries 2 and 3.

 The processor pipeline performance is at its worst
when there is a lot of clipping and vertex exclusion. It
might be expected that a heavy workload would favor
the parallel system, since it would keep the processors
busy.

CONCLUSION

 A parallel implementation of a polygon clipping
algorithm on a pipeline of four transputers is presented
and implemented, in order to provide a high speed-up
over sequential implementation of the graphics
operations concerned. Transputer Development System
(TDS) hardware is implemented. The procedure code
which runs on the pipeling processors also is written in
Occam.
 The advantage of using general purpose parallel
processors rather than special purpose architecture
include low development costs (only the software has to
be developed) and a large degree of flexibility. Users of
general purpose parallel processors can reduce their
investment in graphics hardware by using algorithm
presented here in order to achieve high graphics
performance.

REFERENCES

1. Ari Rappoport, 1991. An efficient algorithm for

line and polygon clipping, the visual computer. Int.
J. Comput. Graph., 7 (1): 19-28.

2. Bui, D.H. and V. Skala, 1999. New fast line
clipping algorithm in E2 with O (lgN) complexity.
International Conferences SCCG’99, Budmerice,
Slovak Republic, pp: 221-228.

3. Daniel, C. Hyde, 1995. Introduction to the
Programming Language Occam.

4. Day, J.D., 1992. A new two dimensional line
clipping algorithm for small windows. Comput.
Graph. Forum, 11 (4): 241-245.

5. Francis Hill, 2000. Computer Graphics Using
OpenGL, Amazon.

6. Gray, J.P., Technology and Practice (PCAT-94),
Transputer and Occam Engineering Systems,
Parallel Computing, pp: 43-53.

7. James S. Pascoe, 1993. World Occam and
Transputer User Group Technical Meeting-
Technology, 2002. Kai Huwang, Advanced
computer Architecture: Parallelism, scalability,
Programmability, McGraw-Hill.

8. Liang, Y.D. and B.A. Basky, 1984. An analysis
and algorithm for polygon clipping. CACM,
26 (11): 868-877.

Am. J. Applied Sci., 6 (2): 214-218, 2009

 218

9. Liang, Y.D. and B.A. Barsky, 1984. A new concept
and method for line clipping. ACM Trans. Graph.,
3 (1): 1-22.

10. Lu, G.D., X.H. Wu and Q.S. Peng, 2002. An
efficient line clipping algorithm based on adaptive
line rejection, Comput. Graph., 3 (26): 409-415.

11. Nicole, D.A., 1988. Occam and Transputer Tutorial
at a Conference on Economical Parallel Processing,
Berne, Switzerland.

12. Sutherland I.E. and Hodgman G.W., 1974.
Reentrant polygon clipping. CACM,
17 (10): 32-43.

13. Yong Kui Liu, Xiao Qiang Wang, Shu Zhe Bao,
Matej Gomboa� and Borut šlik, 2007. An
algorithm for polygon clipping and for determining
polygon intersections and unions. Comput.
Geosiences, 33 (5): 589-598.

