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Abstract: Problem statement: Memoryless QN methods have been regarded effective techniques for 
solving large-scale problems that can be considered as one step limited memory QN methods. In this 
study, we present a scaled memoryless modified Symmetric Rank-One (SR1) algorithm and 
investigate the numerical performance of the proposed algorithm for solving large-scale unconstrained 
optimization problems. Approach: The basic idea is to apply the modified Quasi-Newton (QN) 
equations, which uses both the gradients and the function values in two successive points in the frame 
of the scaled memoryless SR1 update, in which the modified SR1 update is reset, at every iteration, to 
the positive multiple of the identity matrix. The scaling of the identity is chosen such that the positive 
definiteness of the memoryless modified SR1 update is preserved. Results: Under some suitable 
conditions, the global convergence and rate of convergence are established. Computational results, for 
a test set consisting of 73 unconstrained optimization problems, show that the proposed algorithm is 
very encouraging. Conclusion/Recommendations: In this study a memoryless QN method developed 
for solving large-scale unconstrained optimization problems, in which the SR1 update based on the 
modified QN equation have applied. An important feature of the proposed method is that it preserves 
positive definiteness of the updates. The presented method owns global and R-linear convergence. 
Numerical results showed that the proposed method is encouraging comparing with the methods 
MMBFGS and FRCG. 
 
Key words: Large-scale unconstrained optimization, symmetric rank-one method, memoryless 

method, modified quasi-Newton equation 
 

INTRODUCTION 
 
 We consider the following unconstrained 
optimization problem: 
 

nx

f (x)min
∈ℜ

 (1) 

 
where, nf : ℜ → ℜ  is a twice continuously differentiable 
nonlinear function and n, the number of variables, is 
large. There are various iterative methods for solving 
problem (1); Quasi-Newton (QN) methods are one of 
the most exploited methods. 
 The following iterative method can be seen as the 
general QN procedure to solve the problem (1). 
 Calculate the search direction pk by solving the 
equation 1

k k kp = B g−−  then set xk+1 = xk+αkpk at the k th 

iteration, where gk denotes the gradient vector of f at xk, 
Bk is the secant approximation to the ∇2f(xk) and αk is 
the step length that is updated by line search. The 

matrix Bk is usually required to be positive definite to 
ensure a descent direction for f. Bk is updated at every 
iteration to a new Hessian approximation Bk+1 for 
which the general QN equation: 
 

Bk+1sk = yk 
 
Where: 
sk = xk+1-xk 
yk = gk+1-gk 
 
is satisfied. 
 We are interested in elaborating an algorithm for 
solving large-scale problems for which we could use 
both function and gradient values to possess more 
accurate information. Memoryless QN methods were 
firstly introduced by Perry[10] and Shanno[12]. They can 
be considered as the QN methods for which the 
approximation to the inverse of the Hessian is taken as 
the identity matrix at every iteration. Limited memory 
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BFGS (LBFGS) method[9] and conjugate gradient 
method are two important classes of methods to solve 
large-scale unconstrained optimization problems. Wei 
et al.[13] proposed the modified QN equation: 
 

*
k 1 k kB s = y+  (2) 

 
Where: 
 

*
k k k ky = y A s+  (3) 

 
and Ak is a simple symmetric and positive definite 
matrix. The modified QN equation uses not only the 
gradient but also function value information in order to 
get the higher order accuracy in approximating the 
curvature of the objective function. 
 In this study, we consider the famous SR1 method: 
 

T
k k k k k k

k 1 k T
k k k k

(y B s )(y B s )
B = B

s (y B s )+
− −+

−
 

 
which makes a rank-one modification to the previous 
Hessian approximation Bk and hence it is a simpler 
update to use and it requires less computational effort 
per iteration. Conn et al.[4] and Khalfan et al.[7] have 
investigated the computational and numerical results of 
the SR1 methods. The results showed that in practice 
when the SR1 update solves a given problem, its 
efficiency is at least, if not better, as good as other QN 
methods. With these encouragement, it seems 
reasonable  to extend the modified QN equations of 
Wei et al.[13] to the memoryless method and obtain the 
memoryless modified SR1 update. 

 
  MATERIALS AND METHODS 

 
Modified QN equation: We begin by reviewing the 
modified QN equation. Li and Fukushima[8] proposed 
the modified QN equation: 
 

*
k 1 k kB s = y+  (4) 

 

 where, *
k k k k ky = y t g s+ , with 

T
k k

k 2

k

s y
t = 1 max ,0

s

  + − 
  

. 

The modified QN equation takes advantage of not only 
the gradients but also the function values. The proposed 
equation guarantees the global convergence without 
using convexity assumption but this modification does 
not outperform the BFGS update with general QN 
equation Bk+1sk = yk. Inspired by this Wei et al.[13] 
proposed the similar modified QN equation: 

*
k 1 k kB s = y+  (5) 

 
Where:  
 

* k
k k kT

k k

y = y u
s u

φ+  (6) 

  
T

k k k 1 k 1 k k= 2[f (x ) f (x )] (g g ) s+ +φ − + +  

 
and uk∈Rn is any vector such that Tk ks u 0≠ . By 

substituting uk with sk in (6), we obtain the following 
modified QN equation: 
  

k 1 k k k k kB s = y = y s+ + µɶ  (7) 

 
Where: 
 

k
k 2

k

=
s

φµ  

 
 With (7), the SR1 update has the form: 
 

T
k k k k k k

k 1 k T
k k k k

(y B s )(y B s )
B = B

s (y B s )+
− −+

−
ɶ ɶ

ɶ
 

 
 Furthermore, to avoid solving a linear system of 
equations on every iteration, we can update 1

k kB = H−  

directly based upon (5) as an approximation to the 
inverse of the Hessian. So the search direction pk can be 
computed by pk = -Hkgk and (7) is written as: 
  

k k 1 ks = H y+ ɶ  
 
Where: 
 

T
k k k k k k

k 1 k T
k k k k

(s H y )(s H y )
H = H

y (s H y )+
− −+

−
ɶ ɶ

ɶ
 

 
 This modified SR1 update efficiently exploits both 
gradient and function information. 
 Since memoryless SR1 formula updated from 
modified QN Eq. 7 may lose positive definiteness of 
updated matrix in the following we present a scaling 
factor to update modified SR1 formula from a scaled 
identity matrix.  
 
Scaling factor: In 1993 Dennis and Wolkowicz[5] 
suggested the following measure: 
 

A
1/n

(A) =
det(A)

ζσ  (8) 
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Where: 
A = An n×n positive definite matrix 
ζA = The largest eigenvalue of A 
 
 Note that finding the optimal scaling factor for the 
modified SR1 update in the measure given by (8) is 
easier than to find it in the l2-norm condition number. 
Hence in the following theorem we try to find the 'best' 
modified SR1 update from a positive multiple of 
identity matrix that satisfies the modified secant Eq. 7 
and preserves positive definiteness of the update. 
 
Theorem 1: Let: 
 

( )
( )

1/22TT T
k kk k k k

k 2T TT
k k k kk k

y yy y y y
=

y s s sy s

 
 λ − −
 
 

ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶ

 (9) 

 

Then the modified SR1 matrix updated from 
k

1
I

λ
:  

 
T

k k k k k k
k 1 T

k k k k k

1 [y (1 / )s ][y (1 / )s ]
B = I

s [y (1 / )s ]+
− λ − λ+

λ − λ
ɶ ɶ

ɶ
 (10) 

 
is the unique solution of: 
 

1
k 1min (B )−

+σ  (11) 

 
1

k 1 k ks.t. B y = s−
+ ɶ  

 
and 1

k 1B−
+  positive definite. 

 
Proof: The proof of this theorem is a result of Theorem 
1 of[14] which Hk and yk is replaced by the identity 
matrix and the modified kyɶ , respectively. Note that 

since the proof in[14] is not depended to yk, the result is 
true after such replacement.  
  
Corollary 1: Let: 
 

( )
( )

1/22TT T
k kk k k k

k 2T TT
k k k kk k

s ss s s s
=

s y y ys y

 
 λ − −
 
 

ɶ

ɶ ɶ ɶɶ

 (12) 

 
Then the scaled modified memoryless SR1 update:  
 

T
k k k k k k

k 1 k T
k k k k

(s y )(s y )
H = I

y (s Iy )+
− λ − λλ +

− λ

ɶ ɶɶ ɶ
ɶ

ɶɶ ɶ
 (13) 

 
is the unique solution of: 

1
k 1min (H )−

+σ  (14) 

  
1

k 1 k ks.t. H s = y−
+ ɶ  

 
and 1

k 1H−
+  positive definite. 

 
Proof: The proof is the direct result of the above 
theorem by interchanging the role of s and yɶ . 
  
Remark 1: The scaling factor kλɶ  is positive by using 

the Cauchy-Schwartz inequality.  
  
Description of algorithm: 
MMSR1 algorithm: 
 
• Given an initial point x0, set k = 0  
• Set the termination test, kf (x )∇ ≤ ε . If the 

termination test is achieved, then stop  
• Compute the scaling modified memoryless SR1 

direction, for k = 0, let p0 = -g0 and for k>0 
compute pk by pk = -Hkgk: 

 

 

T T
k 1 k k 1 k 1 k

k k 1 k k 1 k 1T T
k 1 k 1 k 1 k 1 k 1

T T
k 1 k k 1 k 1 k

k 1T T
k 1 k 1 k 1 k 1 k 1

s g y g
p = g ( )y

y s y y

s g y g
( )s
y s y y

− − −
− − −

− − − − −

− − −
−

− − − − −

− λ−λ + λ
− λ

− λ−
− λ

ɶ ɶ
ɶ ɶ ɶ

ɶɶ ɶ ɶ

ɶ ɶ

ɶɶ ɶ ɶ

 (15) 

 
 where, k 1−λɶ  and Hk is given by (12) and (13) and: 

 

k
k k k2

k

y = y s
s

φ+ɶ  

 
 where, T

k k k 1 k 1 k k= 2[f (x ) f (x )] (g g ) s+ +φ − + + . 

• Find the step-length βk such that βk satisfy Wolfe 
conditions:  

 
 T

k k k k 1 k k kf (x p ) f (x ) g p+ β ≤ + δ β  (16) 
  
 T T

k k k k 2 k kg(x p ) p g p+ β ≥ δ  (17) 
 

 where, 1 2 1

1
0 < < < 1, <

2
δ δ δ  

• Update k 1 k k kx = x p+ + β   

• Set k = k+1  and go to the step 1 
 

RESULTS 
 
Convergence result: We establish our analysis for the 
convergence result of MMSR1 Algorithm. We apply 
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our results to obtain globally convergence and R-
linearly result under some standard conditions. For this 
purpose, we present the following assumption: 

 
Assumptions: 
 
(i) The level set 0= {x | f (x ) f (x)}Ω ≤  is contained in a 

convex set D. 
(ii) Let G be the matrix of second derivatives of f then 

there exists constant L1 and L2 such that: 

 

 2 2T
1 2L z z G(x)z L z≤ ≤  (18) 

 
 for all z∈Rn  and all x∈D.  

 
Theorem 2: Let f satisfy the Assumptions and the 
sequences {xk} be generated by MMSR1 Algorithm. 
Then the sequences {xk} converge globally to x*.  

 
Proof: The Wolfe conditions in step 3 of MMSR1 
Algorithm and the positive definiteness and 
boundedness of the memoryless modified SR1 matrix 
implies that: 
 

2

k 1 k 1 k kf (x ) f (x ) q g+ ≤ − β α  (19) 

 
for some positive constant q. Therefore k 1 kf (x ) f (x )+ ≤  

for all k and since f is bounded below, it follows that: 
 

k k 1
k

[f (x ) f (x )] = 0lim +
→∞

−  

 

Since 2

k 1 k 1 k kf (x ) f (x ) q g+ − ≤ −β α , as a consequence 

||gk||  goes  to  zero,  i.e.,  {xk} converges to x*.  
 
Theorem 3: Let f satisfies in the Assumptions and the 
sequences {xk} generated by MMSR1 Algorithm. Then 
there exists a constant 0≤t<1 such that: 
 

* k *
k 0f (x ) f (x ) t (f (x ) f (x ))− ≤ −  (20) 

 
hence we can  deduce that {xk} converges R-linearly 
to x*.  
 
Proof: Using Theorem 3.1 and Corollary 3.1 of[14], one 
can show that: 
 

k k

1 1
and

′λ λ
 

Where: 

( )
( )

1/22TT T
k kk k k k

k 2T TT
k k k kk k

y yy y y y
=

y s s sy s

 
 λ − −
 
 

ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶ

 

( )
( )

1/22TT T
k kk k k k

k 2T TT
k k k kk k

y yy y y y
=

y s s sy s

 
 ′λ + −
 
 

ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶ

 

 
are two distinct eigenvalues of Bk+1. Using Assumption 

(ii), we can show the boundedness of 
T
k k
T
k k

y y

y s

ɶ ɶ

ɶ
 and 

T
k k
T
k k

y y

s s

ɶ ɶ
. 

Therefore there exists constant 1m  and 2m  such that 

1 i 2m m≤ µ ≤  for each eigenvalues iµ  of k 1B + . Hence by 

taking the trace operation on Bk+1 and the fact that the 
sequence { }kB  is bounded we can see that the trace of 

k 1B + satisfies: 

 

k 1 2tr(B ) nm+ ≤  (21) 

 
and the determinant of Bk+1 is bounded from below 

 
n

k 1 1det(B ) m+ ≥  (22) 

 
 Therefore from (21) and (22), we conclude that 
there exists a positive constant δ such that: 

 
T
k k k

k
k k k

s B s
cos =

s B s
θ ≥ δ  (23) 

 
 By using Assumptions and the Wolfe conditions in 
step 3 of MMSR1 Algorithm, we can show that there 
exists a positive constant c such that: 

 
* *2

k 1 k kf (x ) f (x ) (1 c )(f (x ) f (x ))cos+ − ≤ − θ −  (24) 

 
See for example[11]. 

 Applying (24) recursively together (23), we obtain 
(20). Finally, from (18): 

 
2* *

1 k k

1
L x x f (x ) f (x )

2
− ≤ −  

 
which together with (20) implies 

2* k /2 * 1/2
k 0 1x x t [2(f (x ) f (x )) / L ]− ≤ − . Hence the 

sequence {xk} is also R-linearly convergent.  
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Table 1: Ratio of algorithm MMSR1 cost to MMBFGS cost 
  MMSR1 
 ------------------------------------------------------ 
Mean  Iterations   Function evaluations  
Arithmetic  0.67  0.88 
Geometric   0.56  0.80 
 / 
Table 2: Ratio of algorithm MMSR1 cost to FRSCG cost 
 MMSR1 
 ------------------------------------------------------ 
Mean Iterations Function evaluations 
Arithmetic 0.51 0.58 
Geometric 0.43 0.46 

 
Numerical result: Now we present the computational 
performance of MMSR1 Algorithm. We use the 
following existing packages:  
 
• The limited memory QN package by Liu and 

Nocedal[9] was modified to fit with the modified QN 
equation. The package has the variable storage 
capability controlled by the parameter m, where m is 
the number of stored updates. For our case, m = 1 is 
chosen. Therefore this method is called memoryless 
modified BFGS (MMBFGS) method in this study  

• The conjugate gradient algorithm by Birgin and 
Martínez[2] (FRSCG), which is mainly a scaled 
variant of Perry’s[10]. The algorithm is preserving 
the nice geometrical properties of Perry’s direction 
and uses Fletcher-Reeve formula. It is implemented 
in such a manner in which the parameter scaling 
the gradient defining the search direction is 
selected by means of a spectral formula. 

 
All the algorithms are implemented in Fortran 77 and 
stopped whenever kg ≤ ε  where 5= 10−ε . Seventy-

three large-scale unconstrained optimization functions 
has been tested from Cute collection[3], along with other 
large-scale optimization problems from[1]. The 
problems tested have variable dimensions and we tested 
our algorithms with dimensions 1000≤n≤10000. This 
has resulted in a total of 730 runs. 
 In Table 1 and 2, we summarize our numerical 
experiments by using the Geometric and Arithmetic 
means of number of iterations and function/gradient 
evaluations requires to solve these problems by the 
MMSR1 Algorithm to the corresponding mean for the 
MMBFGS and FRSCG method. 
 Also in order to access the performances of these 
algorithms, the performances have been evaluated using 
the performance profiling of Dolan and Moré[6]. In Fig. 1 
and 2 we compare the performance of MMSR1, 
MMBFGS and FRSCG referring to the number of 
iteration, function/gradient calls, respectively. 

 
 
Fig. 1: Performance profile based on iterations 
 

 
 
Fig. 2: Performance profile based on function/gradient 

calls 
  

DISCUSSION 
 

 In this study we presented a new method, in which 
the well known SR1 update is computed in the 
framework of memoryless method through modified 
secant condition. Memoryless method is very powerful 
method for solving large-scale unconstrained 
optimization problems characterized by low memory 
requirements and strong local and global convergence 
properties. The method takes both the available gradient 
and the function values information in two successive 
iteration points and achieves high-order accuracy in 
approximating the second-order curvature of the 
minimizing function. Under very mild assumptions, the 
method is proved to be globally convergent. It is shown 
that the convergence of the MMSR1 algorithm is R-
linear. Also the results presented in Table 1 and 2 imply 
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that MMSR1 Algorithm improved significantly over the 
performance of MMBFGS and FRSCG methods. Thus, 
the improvement of Algorithm MMSR1 over 
MMBFGS is 12-40%, in average, respectively in terms 
of the number of iterations and function/gradient calls. 
  Similarly, the improvement of algorithm MMSR1 
over FRSCG is 40-50%, in average, respectively, in 
terms of the number of iterations and function /gradient 
calls. Therefore the algorithm MMSR1 is 12-50% in 
average faster and cheaper than MMBFGS and FRSCG 
methods. Moreover, the experimental results also show 
that MMSR1 solves 80% of all problems while 
MMBFGS and FRSCG can solve 70% and 72% of all 
problems, respectively.  
 From Fig. 1 and 2, we observe that, MMSR1 
performs better than the MMBFGS and FRSCG 
methods. From the numerical results, MMSR1 
Algorithm is clearly better than MMBFGS algorithm 
and vast superior than FRSCG algorithm. 
 

CONCLUSION 
  
 We have presented a scaled memoryless modified 
SR1 algorithm, MMSR1, based on the modified QN 
equation by employing modified SR1 formula within 
the memoryless QN framework for solving large scale 
unconstrained optimization problems. We use the 
positive multiple of identity matrix to update the 
modified SR1 matrix. MMSR1 algorithm can be 
computed without the storage of matrices, namely n2 
storages. Therefore we conclude that by incorporating a 
simple scaling factor into the modified memoryless 
SR1 update we can preserve positive definiteness of the 
modified SR1 matrix. Moreover the numerical results 
show that, the MMSR1 method performs significantly 
better than the other two methods and the 
improvements exhibited by the MMSR1 algorithm over 
MMBFGS and FRCS are evident in both 
function/gradient evaluations and iterations. Also we 
have considered the global and local behavior of the 
scaled memoryless modified SR1 algorithm with some 
standard conditions. Specifically, we have showed R-
linear convergence property of our method. 
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