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Abstract: Problem statement: Memoryless QN methods have been regarded effetolaiques for
solving large-scale problems that can be considasedne step limited memory QN methods. In this
study, we present a scaled memoryless modified Sgtnon Rank-One (SR1) algorithm and
investigate the numerical performance of the pregaadgorithm for solving large-scale unconstrained
optimization problemsApproach: The basic idea is to apply the modified Quasi-New{QN)
equations, which uses both the gradients and thetiin values in two successive poimtghe frame

of the scaled memoryless SR1 update, in which thedified SR1 update is reset, at every iteration, to
the positive multiple of the identity matrix. Theasing of the identity is chosen such that the (i
definiteness of the memoryless modified SR1 updsaitpreservedResults: Under some suitable
conditions, the global convergence and rate of eogence are established. Computational results, for
a test set consisting of 73 unconstrained optingragbroblems, show that the proposed algorithm is
very encouragingConclusion/Recommendations: In this study a memoryless QN method developed
for solving large-scale unconstrained optimizatmoblems, in which the SR1 update based on the
modified QN equation have applied. An importantide@ of the proposed method is that it preserves
positive definiteness of the updates. The presemtethod owns global and R-linear convergence.
Numerical results showed that the proposed metlodncouraging comparing with the methods
MMBFGS and FRCG.

Key words: Large-scale unconstrained optimization, symmetr@mkrone method, memoryless
method, modified quasi-Newton equation

INTRODUCTION matrix By is usually required to be positive definite to
ensure a descent direction for f, B updated at every
We consider the following unconstrained iteration to a new Hessian approximation. Bfor
optimization problem: which the general QN equation:

minf (X) 1) Brs1Sk = Yk

xoa"

Where:
where,f:0" - O is a twice continuously differentiable s = x,;-x,
nonlinear function and n, the number of variabiss, vy, = g.;-g«
large. There are various iterative methods for iaglv
problem (1); Quasi-Newton (QN) methods are one ofs satisfied.

the most explo?ted_meth_ods. We are interested in elaborating an algorithm for
The following iterative method can be seen as th&olving large-scale problems for which we could use
general QN procedure to solve the problem (1). both function and gradient values to possess more

Calculate the search direction py solving the accurate information. Memoryless QN methods were
equationp, =-B'g, then set x; = x+ayp, at the k th  firstly introduced by Perff! and Shanrt’. They can
iteration, where gdenotes the gradient vector of f gt x be considered as the QN methods for which the
By is the secant approximation to théf(x,) and oy is approximation to the inverse of the He_SS|_an is nake
the step length that is updated by line search. Thi€ identity matrix at every iteration. Limited mem
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BFGS (LBFGS) methdd and conjugate gradient B, s, =y, (5)
method are two important classes of methods toesolv

large-scale unconstrained optimization problemsi We\y/nere:

et al.™* proposed the modified QN equation:

B...S = V. 2 YT +%uk (6)
Where: @ = 2[1(6) =106, )] #0240,

Y =V HAS, 3

and wOR" is any vector such thatsiy # 0. By

substituting W with s in (6), we obtain the following

and A is a simple symmetric and positive definite - )
modified QN equation:

matrix. The modified QN equation uses not only the
gradient but also function value information in erdo 3
get the higher order accuracy in approximating theBisS« =% = ¥ FH&
curvature of the objective function.

In this study, we consider the famous SR1 method:Where:

(7)

__®
2
I

B, =B, + N BS)0BS) M
Sc (Y% = Bes)

k+1

which makes a rank-one modification to the previous  With (7), the SR1 update has the form:

Hessian approximation (Band hence it is a simpler
update to use and it requires less computatiorfattef
per iteration. Conret al.”! and Khalfanet al.l”’ have
investigated the computational and numerical resuilt ) ) _
the SR1 methods. The results showed that in peactic ~ Furthermore, to avoid solving a linear system of
when the SR1 update solves a given problem, it€quations on every iteration, we can updafe=H,
efficiency is at least, if not better, as good #®0QN  directly based upon (5) as an approximation to the
methods. With these encouragement, it seemiverse of the Hessian. So the search directiarap be
reasonable to extend the modified QN equations ofomputed by p= -Hcg, and (7) is written as:

Wei et al.™® to the memoryless method and obtain the

(YK — Bk% )(yk — Bk§< )T
SI (S’k - Bk$< )

k+1 —

B

B, +

memoryless modified SR1 update. S = Hea i
MATERIALSAND METHODS Where:
Modified QN equation: We begin by reviewing the H., = H, + (5 - HY%)& - HWT

modified QN equation. Li and Fukushiffiaproposed Yie(se = Hii)

the modified QN equation:
This modified SR1 update efficiently exploits both

gradient and function information.

Since memoryless SR1 formula updated from
modified QN Eq. 7 may lose positive definiteness of
updated matrix in the following we present a saalin
factor to update modified SR1 formula from a scaled

(4)

c} .

BiuSc = Yk

_SY
s’

where, y, =y, +t]g,] s, with t =1+ max{

The modified QN equation takes advantage of nog on
the gradients but also the function values. The@psed

equation guarantees the global convergence witho

using convexity assumption but this modificatioreslo

| identity matrix.

Lﬁcaling factor: In 1993 Dennis and WolkowiE,
suggested the following measure:

not outperform the BFGS update with general QN

equation B.S. = V. Inspired by this Weiet al.'*
proposed the similar modified QN equation:

det(A)"

o(A) (8)
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Where:
A = An nxn positive definite matrix
(s = The largest eigenvalue of A

Note that finding the optimal scaling factor ftwet
modified SR1 update in the measure given by (8) i
easier than to find it in the-horm condition number.
Hence in the following theorem we try to find thest'

mina(H},)

(14)

st. HLg =Y,
iand H.}, positive definite.

Proof: The proof is the direct result of the above

modified SR1 update from a positive multiple of theorem by interchanging the role of s and

identity matrix that satisfies the modified sec&iat 7
and preserves positive definiteness of the update.

Theorem 1: Let:

Remark 1: The scaling factoiA,
the Cauchy-Schwartz inequality.

is positive by using

Description of algorithm:

A=

< =

~ |~

(S/ka)z _ y:yk - (9)
(~Isk)2 S

Vi _
S

Then the modified SR1 matrix updated fr%\%nl :

Kk °

1, B =@A)s I3 - @/A)s T

B, =—I+ K (10)
A SV - (@A) ]

is the unique solution of:

mino(B,) (11)

st B:ﬂyk -
and B}, positive definite.

Proof: The proof of this theorem is a result of Theorem
1 of'¥ which H, and y is replaced by the identity
matrix and the modifiedy, , respectively. Note that

since the proof i is not depended ta.ythe result is
true after such replacement.

Corollary 1: Let:

5 =SS ((51%)2_ %%]ﬂz

‘ SIX/k_ (Slyk)z lek

12)

Then the scaled modified memoryless SR1 update:

(13)

MM SR1 algorithm:

Given an initial point  setk =0
If the

Jse.

termination test is achieved, then stop
Compute the scaling modified memoryless SR1
direction, for k = 0, let p = -g¢y and for k>0

compute pby p = -Hi:
T
Py :_Xk—lgk +)~\ ~TSk_lgk = 1YT 15 W
VS eV i (15)
( Sk lgk k 1y|< 1gk )§<—1

Ve-1Sia )\k VietVier

where, A, ; and H is given by (12) and (13) and:

=Y +izsx
sl

Where,(Pk = 2[f (Xk) _f(xk+1)] +(g K+1 +9 k)Tsk .
Find the step-lengtB, such that, satisfy Wolfe
conditions:

O, +Bpi) T (X)) +3BGPy (16)

9% +BP) R 23,4 R (17)

where,0<9, <8, <19, <%

Updatex,., = x, +B,py
Set k = k+1 and go to the step 1

RESULTS

Convergence result: We establish our analysis for the

is the unique solution of:
2056

convergence result of MMSR1 Algorithm. We apply



Am. J. Applied Sci., 6 (12): 2054-2059, 2009

our results to obtain globally convergence and RWhere:

linearly result under some standard conditions. thisr . I
purpose, we present the following assumption: A = I _ (ykyk) Yi¥k
k = oT T \2 T
Vs | (vis) &%
Assumptions: e w2
NI AN 0257 )
T 2 T
(i) The level setQ ={x|f(x,) <f(x)} is contained in a YieSc (”ISK) R

convex set D.
(i) Let G be the matrix of second derivatives dhén

. are two distinct eigenvalues o Using Assumption
there exists constant land L, such that: g k8 g P

T ~Te,
(i), we can show the boundedness% and %
Yi
2 2
L[] <Z"G()z= L4 (18)  Therefore there exists constant, and m, such that
m, <y, <m, for each eigenvalueg, of B,,,. Hence by
for all ZIR" and all XID. taking the trace operation on.Band the fact that the

sequencq|B,|} is bounded we can see that the trace of

Theorem 2: Let f satisfy the Assumptions and the g gatisfies:
sequences {} be generated by MMSR1 Algorithm. K
Then the sequencesxconverge globally to x*.
tr(By.,) <nm, (21)

Proof: The Wolfe conditions in step 3 of MMSR1
Algorithm and the positive definiteness and and the determinant ofi& is bounded from below
boundedness of the memoryless modified SR1 matrix

implies that: det(B.,)z m’ (22)

f(x,,) <f(x) —-Bo z 19
() £0c) ~Baalod (19) Therefore from (21) and (22), we conclude that

for some positive constant q. Therefare, ) <f(x,) there exists a positive constansuch that:

for all k and since f is bounded below, it follottet: .
co 3 :ﬁ > 6 (23)
lim[f(x,) ~F(x,,)] =0 IsdlBesd

. _ _ By using Assumptions and the Wolfe conditions in
Since f(x..) =f(x, 5_ B.oalo step 3 of MMSR1 Algorithm, we can show that there
lladl goes to zero, i.e., gxconverges to x*. exists a positive constant ¢ such that:

2

, as a consequence

Theorem 3: Let f satisfies in the Assumptions and the . .
sequences {3 generated by MMSR1 Algorithm. Then (Xia) ~f(x) <(2=ccodB,)(f(x,) =f(x)) (24)
there exists a constantt&1 such that:
See for exampl&”.
f(x,) —f(x") <t“(F(x) —f(x)) (20) Applying (24) recursively together (23), we obtain
(20). Finally, from (18):
hence we can deduce that}>converges R-linearly
to x*. 1 .12 .
5|_1ka—x (ECORICY
Proof: Using Theorem 3.1 and Corollary 3.78f one
can show that:

which together with (20) implies
1t % =X st22(f (x) -f(x)/LJ**.  Hence  the
Ay A sequence {¥ is also R-linearly convergent.
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Table 1: Ratio of algorithm MMSR1 cost to MMBFGSsto 1

MMSR1 05
Mean Iterations Function evaluations 08
Arithmetic 0.67 0.88 07
Geometric 0.56 0.80 '
/ 0.6
Table 2: Ratio of algorithm MMSR1 cost to FRSCGtcos 2 s
MMSR1 d
0.4
Mean Iterations Function evaluations 03
Arithmetic 0.51 0.58 )
Geometric 0.43 0.46 02
) i 0.1
Numerical result: Now we present the computational
performance of MMSR1 Algorithm. We use the T . . - e s .
following existing packages: T

. The limited memory ON package by Liu and Fig. 1: Performance profile based on iterations

Noceddf' was modified to fit with the modified QN 1

equation. The package has the variable storage 0 *ﬁ-"”'f:;.-*-’-'-"""!:"' """"" !
capability controlled by the parameter m, wheresm i e /
the number of stored updates. For our case, ms= 1 i / )\
chosen. Therefore this method is called memoryless o7 mheG
modified BFGS (MMBFGS) method in this study 05
* The conjugate gradient algorithm by Birgin and £ s MMBFGS
Martine#! (FRSCG), which is mainly a scaled .
variant of Perry’§”. The algorithm is preserving ' o
the nice geometrical properties of Perry’'s dirattio o
and uses Fletcher-Reeve formula. It is implemented 02
in such a manner in which the parameter scaling 01
the gradient defining the search direction is N
selected by means of a spectral formula. 1 2 3 4 5 & 7 8 9

T

All the algorithms are implemented in Fortran 7@ an Fig. 2: Performance profile based on function/geatli

stopped whenevellg,|<e where £=10°. Seventy- calls

three large-scale unconstrained optimization fomsti

has been tested from Cute collectihralong with other DISCUSSION

large-scale optimization problems frBin The _ o
problems tested have variable dimensions and wedes In this study we presented a new method, in which
our algorithms with dimensions 100@&10000. This the well known SR1 update is computed in the
has resulted in a total of 730 runs. framework of memoryless method through modified

In Table 1 and 2. we summarize our numerica/S€cant condition. Memoryless method is very powerfu
experiments by using the Geometric and Arithmetic€thod for solving large-scale  unconstrained
means of number of iterations and function/gradienfPtimization problems characterized by low memory
evaluations requires to solve these problems by thEfquirements and strong local and global convergenc
MMSR1 Algorithm to the corresponding mean for the Properties. The method takes both the availabldigna
MMBEGS and FRSCG method. and the function values information in two sucoessi

Also in order to access the performances of thesi€ration points and achieves high-order accuraty i
algorithms, the performances have been evaluaied us @PProximating the second-order curvature of the
the performance profiling of Dolan and MBkéin Fig. 1~ Minimizing function. Under very mild assumptioniset
and 2 we compare the performance of MMSR1 method is proved to be globally convergent. Ithewen
MMBFGS and FRSCG referring to the number 0]c'that the convergence of the MMSR1 algorithm is R-
iteration, function/gradient calls, respectively. linear. Also the results presented in Table 1 airdpy
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that MMSR1 Algorithm improved significantly overgh 3.
performance of MMBFGS and FRSCG methods. Thus,
the improvement of Algorithm MMSR1 over
MMBFGS is 12-40%, in average, respectively in terms
of the number of iterations and function/gradieaitsc

Similarly, the improvement of algorithm MMSR1 4.
over FRSCG is 40-50%, in average, respectively, in
terms of the number of iterations and function digat
calls. Therefore the algorithm MMSR1 is 12-50% in
average faster and cheaper than MMBFGS and FRSC&
methods. Moreover, the experimental results algavsh
that MMSR1 solves 80% of all problems while
MMBFGS and FRSCG can solve 70% and 72% of all6.
problems, respectively.

From Fig. 1 and 2, we observe that, MMSR1
performs better than the MMBFGS and FRSCG
methods. From the numerical results, MMSR17.
Algorithm is clearly better than MMBFGS algorithm
and vast superior than FRSCG algorithm.

CONCLUSION 8

We have presented a scaled memoryless modified
SR1 algorithm, MMSR1, based on the modified QN
equation by employing modified SR1 formula within 9.
the memoryless QN framework for solving large scale
unconstrained optimization problems. We use the
positive multiple of identity matrix to update the
modified SR1 matrix. MMSR1 algorithm can be 10.
computed without the storage of matrices, namély n
storages. Therefore we conclude that by incorpuogei
simple scaling factor into the modified memoryless
SR1 update we can preserve positive definitenetiseof
modified SR1 matrix. Moreover the numerical results
show that, the MMSR1 method performs significantly
better than the other two methods and thell:
improvements exhibited by the MMSR1 algorithm over
MMBFGS and FRCS are evident in both
function/gradient evaluations and iterations. Alse
have considered the global and local behavior ef th
scaled memoryless modified SR1 algorithm with some
standard conditions. Specifically, we have showed R
linear convergence property of our method.
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