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Abstract: Problem statement: Protein sequence clustering is a method used to discover relations 
between proteins. This method groups the proteins based on their common features. It is a core process 
in protein sequence classification. Graph theory has been used in protein sequence clustering as a 
means of partitioning the data into groups, where each group constitutes a cluster. Mohseni-Zadeh 
introduced a maximal cliques algorithm for protein clustering. Approach: In this study we adapted the 
maximal cliques algorithm of Mohseni-Zadeh to find cliques in protein sequences and we then 
parallelized the algorithm to improve computation times and allowed large protein databases to be 
processed. We used the N-Gram Hirschberg approach proposed by Abdul Rashid to calculate the 
distance between protein sequences. The task farming parallel program model was used to parallelize 
the enhanced cliques algorithm. Results: Our parallel maximal cliques algorithm was implemented on 
the stealth cluster using the C programming language and a hybrid approach that includes both the 
Message Passing Interface (MPI) library and POSIX threads (PThread) to accelerate protein sequence 
clustering. Conclusion: Our results showed a good speedup over sequential algorithms for cliques in 
protein sequences. 
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INTRODUCTION 

 
 One of the basic applications of protein sequence 
comparison is in protein sequence clustering. Protein 
sequence clustering is an element of protein sequence 
analysis. The results of protein sequence clustering 
can be used as a basis for the prediction of new 
protein sequence structure and function, or as a basis 
for protein sequence classification. The two basic 
steps to protein sequence clustering include 
calculating distances among the protein sequences and 
grouping the sequences into groups of similar 
sequences based on these distances. The N-Gram-
Hirschberg technique[2] is used to calculate the 
pairwise distance between a pair of sequences. The 
resulting distance values are stored in a distance 
matrix. We used a clustering algorithm based on a 
maximal clique proposed by Mohseni-Zadeh et al.[1]. 
Maximal cliques are used to find a cluster in a set of 
protein sequence graphs. However, we adapted the 
algorithm to find cliques of different sizes using the 
graphs. Relationships between protein sequences can 
readily be shown on a graph. Nodes or vertices in the 
graph represent protein sequences while each edge 
represents a relation between two vertices. A clique is a 

subset of vertices, such that all vertices in the subset are 
directly connected to each other. The out-degree of 
each vertex is (n-1), where n is the number of vertices 
in the subset. 
 The cliques algorithm is an extension of a large 
scale clustering algorithm that is based on extracting 
maximal cliques[1]. There are three steps involved in 
finding cliques:  
 
• Search for a Maximal Clique (MC) that is a core 

cluster. Other nodes that do not meet the clique 
criteria are placed in a set of Non-Cliques (NC) 

• Extend the maximal cliques by finding all the 
nodes related to any of the core clusters 

• Find more sequences that are linked to the new 
nodes just added to the core clusters in step 2 

• Repeat steps 1-3 to find additional cliques 
 
 In this study, we extend this study to find multiple 
maximal cliques and we apply the Parallel Maximal 
Cliques Algorithm (PMCA) on the protein sequences 
taken from various protein databases. Our algorithm 
has been implemented by[2] in a single-processor 
computer system. The framework for clustering 
protein sequences is shown in Fig. 1 and the sequential 
algorithm for finding cliques is shown in Fig. 2. 
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Fig. 1: Steps in clustering protein sequences[2] 

 

 
 
Fig. 2: Finding cliques in a graph[2] 

 
The sequential implementation took a long time to 
process because of the huge data volume[2]. This will 
continue to pose a major challenge in the future. Our 
research focuses on parallelization instead of 
implementing the algorithm on a single machine. One 
of the main advantages of the maximal cliques 
technique is that it is inherently parallelizable. The 
choice to implement the Parallel Maximal Cliques 
Algorithm on a cluster was based on the fact that 
workstation clusters are cheap and readily available. 
Clusters can also be easily expanded and have low 
maintenance costs. Moreover, development tools on 
workstations are mature.  
 This study offers three principal contributions. 
First, we present a parallel processing design for the 
Maximal Cliques Algorithm. Second, we apply this 
approach to protein sequencing; and finally, we 
parallelize the maximal cliques algorithm.  
 This study is organized as follows. Describes the 
proposed design then addresses the implementation 
results and discussion. Finally we offer conclusions. 

Proposed design: Our purpose is to design a parallel 
version of the maximal cliques algorithm for protein 
sequence clustering. We will discuss the design from 
many perspectives such as the parallel maximal cliques 
algorithm model, hardware and software, number of 
processors and lastly input and output. 
 
PMCA models: the Parallel Maximal Cliques 
Algorithm (PMCA) is implemented using a Task 
Farming (or Master/Slave) model. 
 The master supervises the pre-processing phase in 
which the number of files (FASTA protein files) to be 
placed in the structure is read. This is our project 
database. Then the system reads threshold values and 
clique thresholds. It extracts information from the 
FASTA file and saves it as a number of structures. 
Subsequently, it computes the relation between two 
protein sequences (using N-Gram Hirschberg 
Algorithms). Relations can be similarity values or 
distance values. The distance values are stored in a 
similarity matrix (Fig. 3). The relation between two 
protein sequences is implemented using POSIX threads 
(PThread). The similarity matrix is partitioned and 
distributed into different threads. The threads are forced 
to run on different processors. Threaded programs are 
significantly easier to write because threaded 
applications that run on a single machine can 
subsequently run on multiple machines without changes. 
This ability to migrate programs between different 
platforms is a great advantage for threaded APIs. 
 The master node’s primary responsibility is to 
distribute the protein sequences (jobs) among the 
slaves. The program can run on two, three and five 
processors. Protein sequences are assigned to slave 
nodes based on the total number of sequences (i.e., if 
we have 20 sequences and 3 nodes (1 master, 2 slaves), 
the master sends 10 sequences to each slave node).  
 When the master node receives the results from the 
slaves, it aggregates and processes the final results. In 
summary, the master’s responsibilities are: 
 
• Carry out the pre-processing phase (read FASTA 

protein files, threshold value and clique threshold) 
• Compute relations between two protein sequences 

(using N-Gram Hirschberg Algorithms) 
• Decompose the problem into smaller tasks 
• Distribute the protein sequences among the slaves 
• Gather results from the slaves and process final 

conclusions 
 
 The slave node’s primary responsibility is to build 
a directed threshold Graph Gt that includes values 
greater than a given threshold t. Subsequently the 
slave sorts the graph head nodes in descending order. 
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It then finds all the cliques in the graph and transmits 
the result to the master node.  
 In summary, the slave’s responsibilities are: 
 
• Accept task from master 
• Process the task (build graph and sort it) 
• Find all cliques in the graph 
• Transmit results to master 
 

 
 
Fig. 3: PMCA flow chart 

MATERIALS AND METHODS 
 
Experimental environment: The Parallel Maximal 
Cliques Algorithm is implemented on the Stealth 
cluster using the C programming language and a hybrid 
of the Message Passing Interface (MPI) library and 
POSIX threads (PThread), as mentioned previously. 
The Stealth cluster consists of 5 machines where one 
machine is the server node and the other four are child 
node. The Stealth cluster is located at the Parallel and 
Distributed Computing Lab at the School of Computer 
Sciences, USM. The configuration of the Stealth cluster 
is shown in Table 1. 
 The cluster is interconnected by fast ethernet. One 
limitation of the cluster is that it is shared by many 
users around campus, so result can be unreliable when 
the load of the machine is high. To get appropriate 
usable result, we thus tested the program during the 
middle of the night and ran our test protocol several 
times before averaging the results. 
 

RESULTS AND DISCUSSION 
 
 The protein sequence data was taken from 
experiments that examined protein sequences used 
by[2]. We tested the program on four data sets extracted 
from public domain databases. The first dataset 
(dataset1) was used by[3] and is denoted COG 001. 0160 
was taken from[4]. The first dataset consists of 114 
protein sequences.  
 The second dataset (dataset2) is derived from four 
PFAM families. It consists of 212 protein sequences. 
The third Dataset (dataset 3) consists of 319 protein 
sequences from NCBI and the fourth Dataset (dataset 4) 
consists of 295 families from Swiss-Prot.  
 The second, third and fourth datasets were 
downloaded from Protein Information Resources (PIR) 
at[5]. All the data used were in FASTA format. Table 2 
shows details of each dataset. 
 
Table 1: Stealth cluster configuration 
Compute nodes 1 Master node 
 4 Slaves node 
Hardware Master Node: 
configuration Sun Fire 280R: 
 2 × Sun Sparc III 900 MHc processor 
 2 GB RAM 
 4 network interface cards 
 Other Nodes (slaves) 
 Sun Fire v10 
 2 × Sun Sparc III 900 MHz processor 
 2 GB of RAM 
 1 network interface cards connected using 
  fast ethernet 
Operating system Sun solaris 9 
and software Sun biobox 
 Sun HPS cluster tools 5.0 
 MPI, Gnu C 
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Table 2: Datasets 
Data set Source No. of protein sequence 
1 COG0001_00160 114 
2 PFAM1 200 
3 NCBI 319 
4 Swiss-prot 295 

 
Table 3: Performance measures for dataset 1 

No. of processor Time (sec) Speedup Efficiency 

One  297.71 
Two  169.26 1.75 0.87 
Three 149.37 1.99 0.66 
Five 146.99 2.02 0.40 

 
Table 4: Performance measures for dataset 2 

No. of processor Time (sec) Speedup Efficiency 

One  355.43  
Two  205.94 1.72 0.86 
Three 185.48 1.91 0.63 
Five 180.32 1.97 0.39 

 
Table 5: Performance measures for dataset 3 
No. of processor Time (sec) Speedup Efficiency 
One  4066.01  
Two  2177.31 1.86 0.93 
Three 2169.12 1.87 0.62 
Five 1868.74 2.17 0.43 

 

 

 
Fig. 4: Example of input data in FASTA format from 

PIR 
 
 Each data sequence was labelled according to the 
PFAM number, which denotes the family in which the 
protein sequence belongs. This label assumes the 
existence of a “true” cluster. For example, if the protein 
sequence comes from PIR and features a PFAM 
number of PF00181, then the tag of each protein 
sequence in the FASTA format starts with the family 
number. Figure 4 shows one such entry. 
 The sequential Maximal Cliques Algorithm took 
about 297.71 sec to process dataset1, 355.43 sec for 
dataset 2, 4066.01 sec for dataset 3 and 1392.94 sec for 
dataset 4 (Table 3-6). We implemented the parallel 
version on two, three and five processors. Detailed 
results are shown in Table 3-6. 

Table 6: Performance measures for dataset 4 
No. of processor Time (sec) Speedup Efficiency 
One 1392.94  
Two  840.02 1.65 0.82 
Three 782.13 1.78 0.59 
Five 673.03 2.06 0.41 

 

 
 
Fig. 5: Performance results 
 
 The purpose of executing our program on a single 
processor was to assess sequential running time and to 
subsequently use it as a benchmark against which to 
compare parallel running times. Our subsequent results 
allowed us to calculate both performance gain and 
efficiency of our parallel program. 
 The execution time required to process datasets 1-4 
using PMCA was less than that required when using 
MCA, as shown in Table 3-6. However the accelerated 
PMCA operated faster when implemented on two 
processor nodes. Based on the experiments and results 
shown in Table 3-6 and Fig. 5. But we noted no 
significant difference between the execution time on 
three and five processors because inter-processor 
communication time increased and this negatively 
impacted MPI, which is highly communication-
dependent. 

 
CONCLUSION 

 
 As the volume of biological data continues to 
increase exponentially, parallel systems are urgently 
needed to help scientists accelerate their analyses. This 
can be achieved by enhancing the protein sequence 
clustering algorithm. The parallel maximal cliques 
algorithm is the most widely-used method for protein 
sequence clustering, which constitutes the basic method 
for discovering relations between proteins. 
 In this research, we have applied parallel methods 
to improve the computational time required to identify 
clusters in large biological protein data sets. The 
parallel maximal cliques algorithm has been 
parallelized on two levels. The first level used POSIX 
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threads (PThread). At this level, the similarity matrix 
was partitioned and distributed to different threads. The 
threads were force to run on different processors. The 
Message Passing Interface (MPI) is the second level of 
parallelism. MPI is used as the message passing library 
to allow inter-processor communication. We conclude 
by hybridizing the two levels of parallelism. 
 Our results from running the parallel algorithm 
have shown good acceleration and efficiency in two-
processor tests. However, we observed no significant 
difference between the execution time on three vs. five 
processors, because the time devoted to communication 
between processors increased and this exposed the main 
weakness of MPI, which is highly dependent on 
message parsing. In the future, we hope to run the 
experiments on GPGPU (general-purpose computing on 
graphics processing units) to obtain more conclusive 
results with large data sets.  
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