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Abstract: Problem statement: The risk level predictions in risk assessment often suffer from 
uncertainties and may, thus, overlook some adverse effects. This problem can be reduced by using risk 
reduction strategies that continuously guide activities toward lowest possible risk. Approach: This 
study suggested a method to guide and assess such risk reduction strategies using multi-indicator risk 
characterization. It was a challenge for the method to secure robustness against unavoidable high 
uncertainty and to secure flexibility that embraced multiple indicators for different aspects governing 
the risk level. This methodology was to protect real existing targets, denoted Protection Units (PU), 
against adverse effects and applied knowledge about all PUs, or a representative fraction of those. A 
set of risk indicators described different aspects of the risk level for each PU. A scenario in this context 
contained the set of PUs, each having their risk level described by the set of different risk indicator 
values. Results: The result was a multi-criterion solution that was analyzed using partial order ranking, 
where ambiguities between single criteria prediction of risk level as either higher or lower were 
analyzed and mapped. Conclusion/Recommendations: Risk level hotspots, in which several criteria 
simultaneously predicted higher risk level for specific PUs, was used as key-elements to provide 
guidance and assessment of the need for risk reduction and the method was, therefore, called Hotspot 
ruled ranking (HotsRank).  
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INTRODUCTION 
 
 This study suggests an aggregation method for risk 
indicators that can guide and assess risk reduction. The 
methodology is developed to provide guidance for risk 
assessment of chemicals and biocides including 
pesticides, however, the usefulness is much broader in 
the area of handling risk. The use of chemicals 
including pesticides and biocides, in the following 
unified denoted “chemicals”, may result in adverse 
effects, even though the risk assessment predicts them 
to be harmless. This is not a consequence of insufficient 
work of the risk assessors, but an unavoidable problem 
arising from the highly complicated task of risk level 
prediction. This is often the case in risk assessment and 
it is, therefore, advisable to apply risk reduction to limit 

the likelihood of unpredicted adverse effects and, 
thereby, to support the risk assessment. 
 Most risk indicators quantify real conditions of risk 
and this will often be in contrast to the risk assessment 
that is calculated using estimated fictive scenarios. The 
risk indicators need to include as many factors as 
possible to gain validity and each indicator involves 
some degree of numeric uncertainty. This problem is 
enforced by the fact that risk reduction is most 
important to apply when the risk assessment includes a 
critical degree of uncertainty.   In this study, the 
dilemma is handled by defining the indicators solely on 
a relative basis, where the indicators only can predict a 
risk level in one place as higher/lower than the risk 
level in another place. It is a widely accepted statement 
that relative analyses, in general, are more certain in the 
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conclusion compared to quantitative analyses. This is 
closely related to the statement that a rough prediction 
is more certain about the “limited” amount of 
information that is delivered compared to the certainty 
of the “extended” information delivered by a more 
detailed prediction. 
 The risk hotspot is central in risk assessment as a 
realistic combination of factors that together yield the 
highest risk level. The risk indicator needs to include 
risk hotspots in the same way as is done in the risk 
assessment in order to avoid a conceptual mismatch 
between what the risk assessment protects and what the 
risk indicator protects. This also involves the temporal 
and spatial scaling of the risk parameters. A larger, but 
not very large, scale could be a single field application of 
a pesticide active ingredient (e.g., eco-toxicity 
assessment of a single active ingredient). While a very 
large scale level could be bioaccumulation of a chemical 
in the food chain in a sea area. Risk assessment of 
chemicals analyzes the risk level for risk hotspots, where 
harmful effects are most likely to take place. As an 
example, it is stated in EUs Technical Guidance 
Document (TGD): ‘For existing substances, the 
rapporteur should initially make the generic “reasonable 
worst-case” exposure assessment based on modeling, to 
derive an EU environmental concentration” (European 
commission)’[1]. In this study, the wording “reasonable 
worst-case” and risk hotspots are considered synonyms. 
In more general terms, the risk level in the hotspots are 
estimated based on a set of risk parameter values, each 
assuming to describe central properties on the risk level. 
A realistic combination of risk parameter values that 
jointly yields the highest risk level makes a realistic 
worst-case scenario. Clearly, the worst-case scenario 
controls the outcome of the risk assessment and, in case 
of chemicals, a long ongoing discussion has taken place 
during nearly the past 20 years between involved 
partners (legislation, industry, NGOs) about realistic 
value setting of risk parameters and about the most 
important set of parameters. The actual setting for 
realistic worst-case, thus, reflects a large amount of 
expert knowledge, including a comprehensive degree of 
consensus. However, existing risk indicators for 
chemicals are often based on mean values, or 
accumulated value settings, where heterogeneous 
conditions reflecting hotspots are leveled out and, thus, 
removed from the result. The total production volume of 
a chemical is an example of an accumulated value type 
of risk indicator that is applied as criterion to guide 
chemical risk assessment according to the TGD. The 
total production volume may indicate a likelihood for a 
human or an eco-system to come into contact with the 
chemical. However, if the use and/or production 

resulting in emission takes place in a local area, it may 
enhance exposure locally, also in case of limited total 
volume production. Therefore, in this case, there is a 
mismatch between the total production volume used as 
risk indicator and the principle of risk assessment 
focusing on risk hotspots.  
 This study suggests a method to apply risk indicators 
in a way that fits risk assessment by including the similar 
concept of risk hotspots. The name of the method is 
Hotspot ruled Ranking (HotsRank). 
 

MATERIALS AND METHODS 
 
 The basic concept in the approach is to analyze 
realistic worst case conditions on a relative basis as 
described by several risk indicators. If a benchmark 
condition is defined or estimated, it is possible to derive 
predictions that can trace the fulfillments of objectives 
for risk minimization.  
 The purpose of risk assessment is to protect a 
defined target that has some value for protection. A 
specific real physically existing target is denoted as a 
Protection Unit (PU). If the target is humans, then the 
number of PUs could be the number of humans to 
protect, or, if the target is lakes, then the number of PUs 
could be the number of lakes in the geographical area 
that is covered by the risk assessment activity (e.g., 
EU). The principle of the HotsRank method is to 
identify all, or at least a representative fraction, of PUs 
and to set up risk indicator values for each of them. 
E.g., the risk assessment could consider the adverse 
eco-toxicological effects due to application of pesticide 
active ingredients on the ecosystem close to a field, 
where the pesticide is sprayed. In this case, the PU 
could be the eco-systems that are close to agriculture 
activity such as ponds, streams or hedge rows and the 
risk indicators have to describe the “real” conditions of 
risk level for a representative fraction of those fields in 
the whole country or region that is being considered for 
protection. A PU-scenario contains all the PUs 
that are described by the set of risk indicators. It is, 
thus, possible for two PU-scenarios to be different in 
two ways: (1) Not all the PUs are equivalent, so, in this 
case, the two scenarios are not protecting the same PUs; 
(2) The two scenarios include the same PUs, but the risk 
indicator values are not necessarily the same between the 
two scenarios for the same PU. In case (2), The PU-
scenarios have the same set of PUs in common and they 
are, thus, considered as belonging to the same class of 
PU-scenarios, while in case (1), the difference between 
two PU-scenarios is more fundamental and they are not 
considered as belonging to the same class. In case (1) 
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the two scenarios are not protecting the same, while in 
case (2)  the  two  scenarios  are  protecting the same. 
It is nearly meaningless to compare two scenarios that do 
not protect the same as case (1), as it then will be 
necessary to assign some degree of importance to every 
PU. Because of this, the HotsRank method can only 
rank two PU-scenarios using the assumption that the 
two PU-scenarios belong to the same class (include the 
same set of PUs as in case (2)) and all PUs are assumed 
equal valuable to protect. 
 Figure 1 shows the principle of the HotsRank 
methodology. Two different PU-scenarios contain the 
same set of three PUs and they all have values for the 
same three risk indicators, as shown by different 
shapes. The values of these, respectively, in PU-
scenario A and PU-scenario B are illustrated by 
different shades of darkness/lightness. The values for 
the same risk indicators are compared with the PUs in 
the other PU-scenario. There are no comparisons 
between two different risk indicators, as they describe 
different and, thus, incomparable properties. In real 
cases, the number of PUs will be high, so the number of 
comparisons between two PUs for the same indicator 
will, typically, be very high. A PU that has large risk 
indicator values for several indicators simultaneously in 
one PU-scenario will be ranked above many PUs in the 
other PU-scenario by this principle, which makes the 
method highly sensible to the existence of risk hotspots. 
 

 
 
Fig. 1: The principle of the HotRAggmethod where the 

scenarios A and B are defined by 3 PUs that are 
described by 3 risk indicators ( ). Darker or 
lighter fillings illustrate different stages (values) 
and comparisons are only made between the 
same types of indicators, e.g., circles are only 
compared to circles 

 The HotsRank method aggregates based only on 
ranking and, thus, not numerical weightings, single risk 
indicator values to predict a ranking between two PU-
scenarios. Aggregation of information, including 
application of benchmarks, is a well known principle in 
multi-criteria methods, e.g., discordance-concordance 
analysis; Figuere et al.[2] presents a comprehensive 
description of multi-criteria methods. Selecting the 
principle for multi-criteria analysis is often a matter of 
judgment and, thus, opens for discussion, where 
different schools of principles argue for their approach 
as being superior. The method presented in this study is 
based on the Partial Order Theory (POT) as 
mathematically described e.g. by Davey and Priestly[3]. 
Figuere et al.[2] does not explicitly describe this form of 
multi-criteria analysis, as the POT is fundamentally 
different from most multi-criteria methods. A brief 
description of the multi-criteria methodology based on 
POT is given in Brüggemann and Voigt[4]. Basically 
and in general terms, the conventional multi-criteria 
methods focus  on how to aggregate different criteria 
that conflict in their predictions. Differences between 
different methods are highly dominated by differences 
in the way aggregation of the conflicting information 
takes place. On the contrary, the focus in POT is, 
primarily, to conclude based on the non-conflicting 
fraction of information[4-8]. The strength of using POT 
for identification of risk hotspots is due its ability to 
handle a larger set of PUs using highly transparent rules 
of ranking, which makes it possible to describe 
variations in risk level ranking and, in a very 
transparent way, identify hotspots. The basic idea of 
using POT for ranking scenarios was for the first time 
presented by Sørensen et al.[9]. 
 Let PUz be the z’th PU out of totally Z PUs. Let 
dm

z be the value of the m’th risk indicator out of totally 
M risk indicators for the z’th PU. Two different PU-
scenarios must be different with respect to at least one 
value for at least one risk indicator and at least one PU. 
This is shown in Table 1. 
 The risk indicators need to be ordinal, but there 
are no further restrictions on the type. The POT ranks 
the PUs in relation to each other, as shown in Fig. 1, 
based  on  the  risk indicator values shown in Table 2. 
A simple example shows the principle of HotsRank in 
the following paragraph. Only three PUs are included 
for illustration, but in reality the number of PUs is 
much higher than shown in Table 2, which increases the 
methodological decision power. 

 
Table 1: The setup of values for risk indicators describing every PU in relation to every scenario 
Protection units Scenario 1 - Scenario s - Scenario S 

PU1 d1
1(1)-dm

1(1)-dM
1(1) -- d1

1(s)-dm
1(s)-dM

1(s) -- d1
1(S)-dm

1(S)-dM
1(S) 

PUz d1
z(1)-dm

z(1) dM
z(1)  d1

z(s) dm
z(s) dM

z(s)  d1
z(S) dm

z(S) dM
z(S) 

PUZ d1
Z(1)-dm

Z(1)-dM
Z(1) -- dM

Z(s)-dm
Z(s)-dM

Z(s) -- d1
Z(S)-dm

Z(S)-dM
Z(S) 
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Table 2: Values used in the example for 3 indicators, 3 PUs and 2 
scenarios 

 Scenario A   Scenario B 
 ------------------------------ ------------------------------- 
Objects d1 d2 d3 d1 d2 d3 
PU1 7.2 2 2.2 6.2 2 6.3 
PU2 1.7 2 5.4 1.6 1 1.5 
PU3 0.9 2 3.1 6.1 1 1.2 
 

 
 
Fig. 2: The Hasse diagram for the indicator values in 

Table 2. Where the capital letters A and B refer 
to scenarios A and B respectively and where the 
numbering refers to the numbering of the PUs. 
Thus A1 is the scenario A values of PU1. The 
rank is only defined for objects that have 
connecting lines between them 

 
 The indicator values in Table 2 are used to make a 
partial order, where a ranking is made only in case of 
no disagreement in the ranking among the risk 
indicators. In this partial order, PU1 for PU-scenario B 
(B1) is ranked above PU2 in PU-scenario A (A2) 
because the indicators d1, d2 and d3 all predict this 
ranking between them (d1: 7.2>1.6; d2: 2>1; d3: 
2.2>1.5). Thus, there are no disagreements between the 
indicator values for the ranking B1>A2. The Hasse 
Diagram (HD), shown in Fig. 2, displays all the 
rankings between PUs, where there is no disagreement 
among the indicators. 
 It is now a simple task to count the number of 
ranked pairs in the HD, where a PU in one PU-scenario 
is ranked above a PU in another PU-scenario. The result 
is:  Scenarios  A>B  occurs  3  times  and  B>A  occurs 
2 times. So, based on a simple ‘voting’ algorithm, as 
visualized in the HD, this analysis indicates that 
scenario A, in general, tends to have higher risk than 
scenario B. A principle of making such rankings 
between different groups in a HD is presented by 
Restrepo et al.[10] as the dominance degree method 
based on the equation: 
 

s1 s2 s1 s2
2

s1 s2

Dom(s1,s2)
N N Z

> >= =
⋅

∑ ∑ , for Ns1 = Ns2 = Z (1) 

 
where the sum is the number of times a rank exists in 
the  HD, where an object belonging to group number s1 

Table 3: Summary of all inter PU rankings between scenarios A and 
B shown in Fig. 2 

A B>∑  
B A>∑  Conflict Equal Total Dom (A, B) Dom (B, A) 

3 2 4 0 9 0,33 0,22 

 
is ranked above an object belonging to group number s2 
and Ns1 and Ns2 is the number of objects belonging to 
respectively group number s1 and s2. In the context of 
ranking scenarios, the number of objects (PUs) are 
equal for   all  groups  so  Ns1 = NB = Z   and   the  
groups  are similar scenarios. The total budget for the 
rankings between a PU in one scenario with a PU in 
another scenario in the simple example is shown in 
Table 3 together with the calculated Dom(,) values. 
There are 3 PUs and, thus, 9 different comparisons (32). 
 The Dom(,) values in Table 3 are both below 0.5 
and this shows that there are so many conflicts left that 
it could be claimed that each scenario dominated the 
other, in case some of the conflicts were assigned to 
rank this scenario above the other..  
 The special case of s1 = s2 yields the number of 
times a PU in PU-scenario s1 is ranked above a PU in 
the same PU-scenario. The Indicator Ordering matrix, I, 
is defined as: 
 

s1,s2

Dom(s1,s2) Dom(s2,s1)
I

Dom(s1,s2) Dom(s2,s1)

−=
+

 (2) 

 
 The Ii,j value is in the interval between -1 and 1 and 
Is1,s2>0 indicates that PU-scenario s1 is ranked above s2 
and reverse for Is1,s2<0. In this way, the I matrix 
describes the pair wise ranking between each pair of 
PU-scenarios, but a final consistent ranking of every 
PU-scenario in relation to all the other PU-scenarios is 
only possible to derive if the rankings, as defined by the 
I matrix, are transitive, as explained in the next section. 
This is not, necessarily, true and a partially ordered set 
(POset) for the set of PU-scenarios denoted PS is 
defined using the following statement: 
 
Statement of transitivity: The pair s1, s2 is an order 
relation in PS if and only if: 
 
Is1,s2>0 Λ Is1,s<0 Λ Is2,s<0 for all s = 1..S (3) 
 
 The reasoning behind this statement is that all 
rakings of PU-scenarios need to be consistent: If the 
PU-scenario s2 is ranked below PU-scenario s1 
(Is1,s2>0) and the PU-scenario s1 is ranked below PU-
scenario s (Is1,s<0), then it must be true that PU-scenario 
s2 is ranked below the PU-scenario s (Is2,s<0) in order to 
obey consistency. Another way to apply the I matrix, is 
to define a PU-scenario as a reference (target) scenario 
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and then rank all the PU-scenarios in relation to this, 
where all scenarios are characterized using the I matrix 
by the values in relation to this specific scenario. The 
calculation of the I matrix only includes pairs of PUs 
that can be ordered in the partial ordering by 
concordant rankings; i.e., the I matrix excludes 
discordant rankings between the single indicator values. 
It is, however, important to quantify the fraction of PU 
pairs where such conflicting rankings exist. A so-called 
Ranked Fraction matrix (RF) is defined in this study for 
the purpose of quantifying the degree of discordance: 
 

s1,s2RF Dom(s1,s2) Dom(s2,s1)= +  (4) 

 
 The element RFs1,s2 is equal to the ratio between 
the number of concordant rankings between the 
scenarios s1 and s2 and the total maximum number of 
different comparisons between two PUs and two 
scenarios (Z2). 
 Both positive and negative correlation can take 
place between the risk indicator values and this will 
rule the existence or non existence of risk hot spots. 
Such correlation is described by a characteristic figure 
in this study called the Aggregated Correlation matrix 
AC and defined as: 
 

( )
( )

2

s1,s2 M 1 2

Dom(s1,s2) Dom(s2,s1) Z
AC

½ Z
−

+ ⋅
=

⋅
 

 
Where: 
M = The total number of indicators 
Z2 = The total number of different PU pairs 

including a PU from each scenario and the 
relation 

( )M 1
½

−  = Applied to expresses the probability for a 

concordant ranking (having no conflicts) of a 
single pair of PUs under the assumption of 
non-correlated indicators 

 
 The denominator calculates the number of 
concordant rankings of PU pairs between the two 
scenarios. The denominator estimates the number of 
concordant rankings between PU pairs in case of 
uncorrelated indicator values. The equation is rewritten 
to: 
 

( ) ( )1 M

s1,s2AC Dom(s1,s2) Dom(s2,s1) ½
−= + ⋅  (5) 

 
 ACs1,s2>1 shows a positive aggregated correlation 
between the different risk indicators for two PU-

scenarios s1 and s2, while ACs1,s2<1 shows a negative 
correlation between the indicators. Thus, ACs1,s2>1 
indicates that the risk indicator values are clustered and 
there will tend to be formed risk hotspots, where some 
PUs are much more likely to be at risk compared to 
others. Contrary, in case of ACs1,s2<1, the risk 
indicators tend to level out the difference in risk levels 
between the PUs and the problem of risk hotspots are 
more limited. 
 For two PUs (PU1 and PU2), two PU-scenarios (1 
and 2) and two risk indicators (d1

1(1), d2
1(1) and d1

1(2), 
d2

1(2) respectively), nine possible stages of ranking 
exist: 
 
1. d1

1(1) > d1
1(2) Λ d2

1(1) > d2
1(2) → concordant 

2. d1
1(1) < d1

1(2) Λ d2
1(1) < d2

1(2) → concordant 
3. d1

1(1) > d1
1(2) Λ d2

1(1) < d2
1(2) → discordant 

4. d1
1(1) < d1

1(2) Λ d2
1(1) > d2

1(2)  → discordant 
5. d1

1(1) = d1
1(2) Λ d2

1(1) > d2
1(2)  → weak discordant 

6. d1
1(1) = d1

1(2) Λ d2
1(1) < d2

1(2)  → weak discordant 
7. d1

1(1) > d1
1(2) Λ d2

1(1) = d2
1(2)  → weak discordant 

8. d1
1(1) < d1

1(2) Λ d2
1(1) = d2

1(2)  → weak discordant 
9. d1

1(1) = d1
1(2) Λ d2

1(1) = d2
1(2)  → concordant 

 
 A pair of risk indicators can be analyzed in relation 
to how they rank two PU-scenarios by counting the 
number of events for each of the listed stages above. It 
is a matter of judgment how to interpret the weak 
discordant pairs, this depends on the conditions 
described by the indicators. In this study, only the 
concordant and discordant rankings are included in the 
following correlation analysis using the Kendal Tau 
type correlation[11] from where the correlation matrix τ 
is defined as: 
 

i, j

C D

C D

−τ =
+

 (6) 

 
where, C and D, respectively, are the number of 
concordant and discordant rankings between two PUs 
for the indicators Ii and Ij. Rank correlation and partial 
order is further described by Sørensen et al.[11]. If two 
risk indicators show high positive correlation, then they 
will tend to reproduce each other in the rankings 
between scenarios and there will not be a dramatic 
change in results if one of them is removed. So the 
individual importance of an indicator is low if such a 
correlation exists in relation to, at least, one other 
indicator, while an indicator that has low correlation to 
all the other indicators will tend to have high influence 
on the scenario ranking. If the aggregated correlation 
matrix shows that there is a low number of concordant 
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rankings between PUs, then the τ matrix can identify 
the indicator/s that is/are the major reason for this. Sub 
sets of risk indicators, that together make risk hotspots, 
can be identified using this correlation matrix. 
 

RESULTS 
 
 The results gained by using the HotsRank method 
are illustrated by the following. This considers planning 
and evaluation of strategies for risk reduction in the 
area of ecotoxicological effects due to pesticide usage 
in agriculture. This research includes a total set of 18 
different risk indicators, three of which are selected for 
illustration in this example, representative of the 
geographical area of Denmark. The three selected 
indicators describe adverse effects on the terrestrial 
eco-system close to the agricultural field. In accordance 
with approved pesticide laboratory testing procedures, 
the selected PU are bees (d1), other terrestrial 
invertebrates (d2) and plants (d3). The position of the 
agricultural fields is estimated using GIS and combined 
with information about the position of a series of 
relevant terrestrial habitats. The exposure to the habitats 
is assumed only to be a result of spray drift and to 
follow a Ganzelmeier type of relation[12]. The indicators 
are calculated for every 1 km2 grid that contains 
agricultural fields and the total set for Denmark 
includes 41.400 such grids, each of which is considered 
to be a single PU having three indicator values. The 
argument for having every single km2 as PUs is that the 
ecological risk assessment of pesticide considers local 
ecosystems like hedgerows and meadows and the scale 
of them is local of few hundred meters, so 1 km grids 
will mimic this scale. A more detailed description of the 
pretreatment of data behind and calculation of all 18 
risk indicators will be given in a future paper under 
preparation by the first author. 
 The purpose of this example is to illustrate the 
application of HotsRank to analyze strategies that can 
limit the risk of adverse effects on the terrestrial 
habitats close to agricultural fields. The analysis is 
based on pesticide application that took place during the 
year 2007. Different means for risk reductions are 
tested based on the usage during this year. The amount 
of active ingredients in pesticides used in agriculture 
during year 2007 are distributed on 8 crop types using 
expert knowledge and national use and sale statistics as 
reported by the Danish EPA[13]. The area of each crop 
type is calculated for each grid using the General 
Agriculture Register from the Ministry of Food and 
Agriculture in Denmark. The following equation is used 
to calculate the risk indicators for each grid:  

J
j,a

A
j 1 m, jz

m
a 1 a,z

AR

Tox
d

1 x
=

=

 
 
 =
 +
 
  

∑
∑  (7) 

 
Where: 
dm

z = The m’th risk indicator that describes the 
condition of the z’th PU 

A = The area of the grid (106 m2) and a is index for 
the a’th m2 

xa,z = The closest distance to the boundary to a 
terrestrial habitat outside the agricultural field, 
e.g., a hedge row or an edge of a wood for the 
a’th m2 in the z’th PU 

ARj,a = The mean application rate during one year 
(kg/(m2·year)) for pesticide active ingredient j 
on the a’th m2 

Toxm,j = The toxicity in terms of the standard tested 
lethal concentration (LC50) killing 50% of the 
population for the organism m’th specie type 
and the j’th pesticide active ingredient 

 
 This equation describes a toxic “pressure”, data 
being organized in such a manner that a higher value 
indicates increased toxic pressure[15]. 
 Three different risk indicators are included in the 
analysis based on three different specie types as shown 
in Table 4.  
 Three risk reduction strategies are defined and used 
to simulate PU-scenarios for the pesticide applications 
at field scale. The 2007 use scenario and the three risk 
reduction strategies are shown in Table 6. 
 Two PU-scenarios are ranked using all 41400 PUs 
(1 km2 grids). HotsRank counts the number of cases 
where a PU from scenario 1 is ranked above/below a 
PU from the scenario 2 and this ranking is done for 
each indicator separately and for the all three indicators 
simultaneously as a partial order. In this case, the 
number of discordant rankings are also counted, where at 
least one indicator predicts a rank that contradicts at least 
one other indicator. The results are shown in Table 7, 
where all 6 combinations of ranking scenarios 1 and 2 
are listed in rows. The first column from the left shows 
Ids for the possible ranking combinations as referred to 
in the following discussion. The next two columns from 
the left show the scenarios selected from Table 5 that 
are  assigned  to  PU-scenarios  1   and  2,  respectively. 
 
Table 4: The list of organism groups that are used for the toxicity 

testing applied in each risk indicator 
Risk indicator Organism used for toxicity testing 
d1 Bees 
d2 Arthropods 
d3 Plants 



Am. J. Applied Sci., 6 (6): 1255-1263, 2009 
 

1261 

Table 5: Description of the 4 scenarios that are analyzed by the indicators 
Scenario Description 
Use 2007 The condition of application and the agriculture structure for year 2007 
Substitution Substitution of replaceable and more toxic active ingredients with lesser toxic ones. Usage and agriculture structure 
 like the condition for 2007 
10 m zone Assuming a 10 m unsprayed zone along all agriculture field edges 
Red Insect Reduced application of insecticides 
 
Table 6: Ranking of the 4 scenarios defined in Table 5 
   Partial Order ranking using all indicators  Single indicator ranking 
   -------------------------------------------------------------- -------------------------------------------------------------------- 
   Above Under   Is1,s2   Correlation, τi,j 
   Scenario 1 Scenario 1   ------------------------------- --------------------------------- 
Id Scenario 1 Scenario 2 (Fs1,s2)×106 (Fs2,s1)×106 Conflicts×106 Is1,s2 d1 d2 d3 d1-d2 d1-d3 d2-d3 

1 Use 2007 Substitution 175 429 1112 0.42 0.80 -0.46 -0.01 -0.26 0.19 0.47 
2 Use 2007 10 m zone 423 876 417 0.35 0.28 0.20 0.39 0.64 0.78 0.62 
3 Use 2007 Red Insect 338 824 554 0.42 0.39 0.55 -0.00 0.74 0.54 0.42 
4 Substitution 10 m zone 298 236 1182 -0.12 -0.72 0.60 0.36 -0.33 -0.08 0.66 
5 Substitution Red insect 187 269 1261 0.18 -0.68 0.78 0.47 0.30 0.23 -0.47 
6 10 m zone Red insect 472 538 707 -0.35 0.16 0.38 -0.35 0.65 0.45 0.25 
 
The next three columns show the results of counting 
rankings and conflicts for the partial order, where all 
three indicators are used simultaneously. The next 
column shows the I value (Eq. 2) for the partial order 
including all three indicators. The next three columns 
show the ranking result for every single indicator 
separately in form of I values, where only one indicator 
is used subsequently. The last three columns show the 
correlation results as τ values (Eq. 6) between the 
indicators. 
 Obviously, the PU-scenario “Use 2007” has the 
highest risk of adverse effects compared to all the other 
PU-scenarios, because they all are designed to limit the 
risk of adverse effects. This is shown in Table 6 as 
negative I values every time the PU-scenario “Use 
2007” is assigned to be PU-scenario 1 in the analysis 
and when all indicators are used in the partial order 
(column #7). However, the three strategies behave 
differently when they are ranked in relation to the “Use 
2007” PU-scenario. For Id 1, there are many conflicts 
(1112·106) and the reason for this is seen by consulting 
the ranking of the single indicators, where d2 predicts 
highest rank to “Substitution (= Scenario 2)” (negative I 
value) in contrast to d1, while d3 is close to being 
neutral by having a value close to 0. The correlation 
results for Id 1 confirm the discrepancy between the 
ranking of d1 and d2, respectively, with the negative 
correlation. This shows that only the bee toxicity is 
improved (d1), while the arthropod toxicity (d2) is 
increasing as a result of the substitution. The 
substitution should be reconsidered for improvements 
in order to avoid the observed increase in arthropod 
toxicity. For the Ids 2 and 3 in Table 6, there are less 
conflicts compared to Id 1 and this is also confirmed by 
the positive correlation between all the three indicators 
in these cases.  

 
 
Fig. 3: Ranking of the strategies together with the 

actual pesticide usage in 2007 using the I values 
shown in Table 6 

 
 The Ids 4-6 in Table 6 rank the PU-scenarios 
reflecting the alternative risk reduction strategies in 
relation to each other. Such a ranking is meaningful in 
order to find the best strategy to use in future activities 
for limitation of adverse effects on terrestrial eco-
systems close to agricultural fields. However, the fact 
that the PU-scenario “Substitution” is creating many 
conflicting rankings due to negative correlation 
between the indicators, may violate the statement of 
transitivity. In Table 6, the Id 4 shows that 
(Substitution) < (10 m zone), where the notation of 
“(higher risk level) < (lower risk level)” is used. In the 
same way, the Id 5 shows that (Substitution) > (Red 
insect) and Id 6 shows (10 m zone) > (Red insect). In 
short, this means A < B, A > C → B > C and the set of 
the three reduction  strategies  is,  thus,  transitive. It 
is, therefore, possible to estimate a complete rank of 
the alternative  scenarios as shown in Fig. 3. The 
result is useful in order to decide the best risk 
reduction strategy for best possible limitation of 
adverse effects. 
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DISCUSSION 
 
 This study suggests a method that supports risk 
reduction strategies using risk indicators. The risk 
indicators are integrated to support the risk assessment 
concept based on worst case or risk hotspot analysis. It 
is obvious that the validity of the sets of risk indicators 
is critical and they have to be carefully evaluated before 
being applied in any model that uses them as input. The 
name given to the method is HotsRank from the wish to 
reflect the governing principle of using risk indicators 
to focus on risk hotspots. 
 A Protection Unit (PU) is defined as a real existing 
target that is protected by regulatory approval schemes. 
The definition of PU is general, in the way that all 
activities of risk assessment aim to protect something 
that is real, so some kind of PUs will always exist. The 
hotspot of risk is estimated by setting up risk indicator 
values for each single PU without any aggregation of 
risk indicator values. In this way the multi-criteria 
methodology HotsRank attempts to avoid hiding 
extreme risk indicator value combinations reflecting 
risk hotspots. Furthermore, evaluation and 
interpretation of the ranking results can be performed 
with direct reference to the input risk indicator values 
and, in this way, the methodology has a high degree of 
transparency. A major condition for the HotsRank 
method is that it is possible to make a representative 
description using a set of different risk indicators for 
every PU or for a representative fraction of them. This 
includes simultaneously handling of multiple risk 
indicators and investigation of discordant (conflicting) 
information about the relative risk level between the 
single indicators. The latter is a technical and 
mathematical challenge for any method, where the 
HotsRank method focuses on the fraction of 
information that can be gathered from the set of risk 
indicators without doing any aggregation of different 
indicator values. This is done by counting the rankings 
between two PUs, where there is no discordance 
(conflict) within the sets of risk indicators about how to 
rank the two PUs. An argument against this approach is 
to claim that information is ignored when all the PU 
pairs that have conflicting rankings between the risk 
indicators are disregarded. It is important to make clear 
that there are two “classes” of rankings between two 
PUs: (1) Concordant rankings, where the risk indicators 
agree; (2) Discordant rankings, where the risk 
indicators disagree. The result of the concordant 
ranking is certain because all risk indicators point to the 
same rank of the two PUs. But the result of the 
discordant rankings is more uncertain because, in this 
case, a decision about a rank of the two PUs will 

depend on additional assumptions about the importance 
and weighing of each indicator in relation to each other 
in order to solve the conflicting rankings. So, the 
concordantly ranked PU pairs are more certainly ranked 
than the discordantly ranked PU pairs. The argument 
behind the HotsRank method is that the most certain 
discordant rankings delivers a decision regarding the 
PU-scenario ranking without being “polluted” by more 
uncertain discordant rankings of PUs. Furthermore, 
assuming that the indicators are valid predictors of the 
relative risk, the discordant rankings identify hotspots 
of risk with the highest power of certainty; i.e. where 
several indicators simultaneously agree about the PU as 
being associated to highest risk level. The drawback of 
this approach is that only a fraction of all potential 
rankings between two PUs are included and this 
induces uncertainty about the ranking of the PU-
scenarios. But this uncertainty, due to the discordance 
between the risk indicators, can be mapped and 
evaluated, as shown in the example about pesticide risk. 
This evaluation of discordant rankings is a valuable 
property of the HotsRank method, as it may form the 
basis for elucidation of underlying factors governing 
the conflicting rankings for some scenarios and/or PU 
units. 
 

CONCLUSION 
 
 Definition and application of Protection Units (PU) 
is a good basis in the development of risk indicators, 
where each PU is described by a set of indicators that 
can rank the risk level. This yields a multi criterion 
problem that needs to be handled. In order to do this the 
HotsRank method is a valuable method, where the 
concept of avoiding risk hotspots is used. HotsRank is 
useful both as stand alone analysis and in many cases as 
first step assessment tool, where other and more 
complex, multi-criterion methods are applied to find 
rankings between the discordant ranked pairs of PUs. In 
this case, the HotsRank can analyze the concordant 
rankings (higher quality of information) to evaluate and 
guide the handling of discordant rankings (lower 
quality of information) by the more complex multi-
criterion method.  
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