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Abstract: The finite element method has been used to predict the creep rupture parameter, C*-Integral 
for single and double-edge cracks in eight annular rotating discs under constant angular velocity with 
and without internal pressure. In this study, a new dimensionless creeping crack configuration factor, 
Q* has been introduced. Power law creeping finite element analyses have been performed and the 
results are presented in the form of Q* for a wide range of components and crack geometry parameters. 
These parameters are chosen to be representative of typical practical situations and have been 
determined from evidence presented in the open literature. The extensive range of Q* obtained from 
the analyses are then used to obtain equivalent prediction equations using a statistical multiple non-
linear regression model. The predictive equations for Q*, can also be used easily to calculate the C*-
Integral values for extensive range of geometric parameters. The C*-Integral values obtained from 
predictive equations were also compared with those obtained from reference stress method (RSM). 
Finally, creep zone growth behavior was studied in the component during transient time. 
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INTRODUCTION 

 
 In spite of wide ranging applications of rotating 
discs, relatively very little information on the resulting 
stress intensity factor is available and for C*-Integral 
there is not any comprehensive information for 
rotational discs. This parameter is significant in the 
determination of crack driving force, rate of crack 
growth and crack tip stress fields. 
 Stress Intensity Factor in rotating disc for different 
kind of cracks has been reported in references[1-13]. 
Moreover, fatigue crack growth in rotational disc had 
studied and the results were reported in references[14,15]. 
The size and the number of pie-sector shaped fragments 
produced at the failure of a rotating flat disk contain a 
radial through-thickness crack have been determined in 
the reference[16]. 
 In this study by the analogy with the J-Integral a 
new relation for the C*-Integral has been suggested. 
For this purpose, a new dimensionless creeping crack 
configuration factor, Q*, has been defined in analogy 
with fracture crack configuration factor, Q as follows: 
 
 ( )0J f Q, ,a,E= σ  (1) 

 ( )* *
0C f Q , ,a,n= σ  (2) 

 
 Where 0σ  and a are nominal stress and crack 
length, respectively. E and n are material modulus of 
elasticity and material creep properties, respectively. 
 In the present study, an extensive range of 
configure single- and double-edge cracks in annular 
rotating discs under constant angular velocity with and 
without internal pressure, is used to obtained equivalent 
prediction equations using a statistical multiple non-
linear regression model[17]. The accuracy of this model 
is measured using a multiple coefficient of 
determination 2R  where 20 R 1≤ ≤ . This coefficient is 
found to be greater than or equal to 0.98 for all cases 
considered in this study, demonstrating the quality of 
the model fit to the data. These equations can be used to 
obtain C* values that are based on the geometries and 
material properties being considered. In addition, 
comparison has been made between the results obtained 
from FEM with the results from RSM (reference stress 
method) for some cases. It is also suggested that one of 
the component configurations (i.e. the cracked slit 
rotating disc) can be selected as a suitable experimental 
sample   to  measure  the  real  C*-Integral   of   rotating  
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Fig. 1: Component geometry and loading condition 
 
components, using the relevant predictive equation 
presented in this study. 
 Predictive equations for C*-Integrals enable 
designers to predict rate of crack growth easily. In 
addition, the effect of variation in geometrical 
parameter of the annular rotating disc components on 
Q* and, creep zone growth in the component during 
transient time were considered. 
 

GEOMETRY AND LOADING CONDITIONS 
 
 Three dimensions are used to define the geometry 
as shown in Fig. 1. They are the internal radius iR , the 
external radius OR  and the crack length a. Two non-
dimensional parameters are formed by normalizing with 
respect to the external radius OR , namely  
 

i

O O

R a
,

R R
 

 
 The range of dimensions selected for the 
parametric study is consistent with the geometric cases 
covered by the Engineering Science Data Unit and used 
in references[18,19]. This is considered to present a range 
of practical interest. The selected ranges are 

o

i

o

a
0 0.9

R

R
0.35 0.95

R

< ≤

≤ ≤

 

 
 Eight components, rotating under constant angular 
velocity ω  are considered in this study: 
 
Disc 1: annular rotating disc, containing an internal 

radial single-edge through-crack (Fig. 1a) 
Disc 2: annular rotating disc, containing an external 

radial single-edge through-crack (Fig. 1b) 
Disc 3: annular rotating disc, containing an internal 

radial double-edge through-crack (Fig. 1c) 
Disc 4: annular rotating disc, containing an external 

radial double-edge through-crack (Fig. 1d) 
Disc 5: annular rotating disc, containing an internal 

radial single-edge through-crack with internal 
pressure (Fig. 1e) 

Disc 6: annular rotating disc, containing an external 
radial single-edge through-crack with internal 
pressure (Fig. 1f) 

Disc 7: annular rotating disc, containing an internal 
radial double-edge through-crack with internal 
pressure (Fig. 1g) 

Disc 8: annular rotating disc, containing an external 
radial double-edge through-crack with internal 
pressure (Fig. 1h) 



Am. J. Applied Sci., 5 (8): 997-1004, 2008 
 

 999 

FINITE ELEMENT ANALYSIS 
 
 Finite element predictions have been obtained 
using ABAQUS[20]. Six- and eight-noded reduced 
integration, plane stress, triangular and quadrilateral 
elements were used with the crack tip singularity 
represented by collapsing one side of a quadrilateral to 
form a triangular element so that we have three points 
in crack tip. A typical finite element mesh is shown in 
Fig. 2. Due to lack of creep crack study in rotational 
annular disc, at first, some elastic finite element 
Analyses were used and the results were compared with 
data available in reference[1]. This comparison 
confirmed that the level of mesh refinement and the use 
of the crack tip elements in current study would provide 
accuracy to within ±4 percent. 
 Values for Young's modulus, material density and 
Poisson's ratio are, 209 GPa, 7840kg m−3 and 0.3, 
respectively and has been used throughout the analysis. 
 In creep situation, Strain was assumed to obey 
Bailey-Norton creep law. 
 
 nAε = σ�  (3) 
 
 The material creep properties for Rene 80, used in 
Bailey-Norton creep model are shown in Table 1. 
 

RESULTS AND DISCUSSION 
 
The C*-Integral values based on FE analysis: The 
C*-Integral values have been obtained using a 
numerical procedure based on the Virtual Crack 
Extension Method (VCEM) suggested by Landes and 
Begley[21], as follows: 
 

 
0* i

i

u
C w dy T ds

x
∗

Γ

∂� �= − � �∂� �
�

�
 (4) 

 
Where 
 

 y*
ij ij0

W d
ε

= σ ε�
�

�  (5) 

 
Γ  is a line contour shown in Fig. 3 taken 
counterclockwise from the lower crack surface to the 
upper crack surface. W* is the strain energy rate density 
associated with the point stress, ijσ  and strain rate ijε� . 
Ti is the traction vector defined by the outward normal, 
nj, along Γ . In this section, the VCEM procedure 
incorporated in the ABAQUS[20] finite element program 
has been used to calculate the C*-Integral values. 

Table 1: Material creep properties and rupture stress for Rene 80 
1150 930 650 T (°C) 

16.272×10−3 6.37×10−5 1.855×10−6 
( )

1� �
� �
� �
� �

nA
Mpa hr

 

1.43 4.6 2.54 n 
165 170 175 ( )R MPaσ  

 
Table 2: Normalized C*-Integrals for typical contour paths 
3 2 1 Contour 
0.983 0.991 1 C∗ Normalized 

 
 

 
 
Fig. 2: Typical finite element mesh 
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Fig. 3: C*-Integral contour paths 
 
 It has been shown in reference[22] that the value of 
C* is independent of the path Γ  if the path originates at 
any point on the lower crack surface and goes 
counterclockwise and ends at any point on the upper 
crack surface. 
 In order to validate our predictions based on FEM, 
C*-Integral values have been obtained using three 
separate contours around the crack tip, which are shown 
in Fig. 3 for a typical geometry. All contour integrals 
generally showed good path independence, as 
illustrated in Table 2 where the C* values are 
normalized with respect to the value for the outermost 
contour 1. Consequently, the values for contour 1 were 
used throughout this study. 



Am. J. Applied Sci., 5 (8): 997-1004, 2008 
 

 1000 

Analytical equation for C*-Integral: The J-Integral is 
usually written as: 
 

 
2
IK

J
E

=  (6) 

 
Where 
 I C 0K F a= σ π  (7) 
 
 Where Fc is the crack configuration factor that is 
function of geometry. Substitution of Eq. (7) into Eq. 
(6) gives: 
 

 
2

2c
0

F
J a

E
π= σ  (8) 

 
Or in a simple form: 
 
 2

0J Q a= σ  (9) 
 
Where Q is called fracture configuration factor. 
 In this study a similar equation for C*-Integral has 
been introduced. To drive a new equation for C* it must 
consider that the relation between C* and nominal 
stress in creep situation is not linear. To determine the 
relation, many analyses have been done that kept 
constant all of the parameters and just changed the 
nominal stress. The relation between C* and nominal 
stress have found as follows 
 
 * n 1

0C +∝σ  (10) 
 
 Where n is material creep property. Therefore the 
relation between C* and nominal stress depends on 
creep behavior of material. 
 By the analogy with J-Integral and considering  Eq. 
10, the following equation for C* has been defined: 
 

 
n*

* 0 0

T R

Q a
C

t 0.01
� �σ σ= � �× σ� �

 (11) 

 
 Where Q* is a non-dimensional parameter which is 
function of geometry and creep behavior of material 
and the equations related to each component are given 
in the following, 0σ  is nominal stress, Rσ  is rapture 
stress of material, tr is transition time and a is crack 
length. 
 To use this equation put transition time (tr) equal 
1000 h because this time has been considered in the 

analysis. Amounts of rupture stress ( Rσ ) are shown in 
Table 1 for different temperatures so the average 
amount has been used in this study so put rapture stress 
( Rσ ) equal 170 MPa. This parameter has been used just 
to keep equation right, dimensionally. For all the 
components without internal pressure, the nominal 
stress 0σ  can be defined as: 
 

 
2

2 2 i
0 o

o

3 1 R
R 1

4 3 R

� 	� �+ υ − υ

 �σ = ρω + � �+ υ
 �� �� 


 (12) 

 
 Where υ  is Poisson's ratio and ω  is angular 
velocity. Moreover, in cases that are subjected to 
internal pressure nominal stress can be defined as: 
 
 0 pωσ = σ + σ  (13) 

 
Where 
 

 
2 2
o i

p i2 2
o i

R R
P

R R
−σ = ×
+

 (14) 

 
 

 
2

2 2 i
o

o

3 1 R
R 1

4 3 Rω

� 	� �+ υ − υ

 �σ = ρω + � �+ υ
 �� �� 


 (15) 

 
 
 Also creep crack growth rate da/dt and C* are 
related by the following relationship 
 

 ( )q*da
b C

dt
=  (16) 

 
 Where b and q are material constants obtained 
from regression of the data and are related to the 
intercept and slope, respectively, of the da/dt vs. C* on 
a log-log plot. The values of b and q can change from 
material to material.  
Comparison of C*-Integral values obtained from FEM 
and reference stress method (RSM). 
 It is recognized by present authors that the method 
of calculation C* based on reference stress is not 
necessarily very accurate, but in comparison with other 
methods is fast and relatively reliable. 
 When finite element solutions for C* are not 
available, the following equation can be employed for 
determining approximate estimates: 
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Table 3: Comparison of C* values obtained from FEM and Reference Stress Method ρ = 7840 Kg m−3, w = 200 Rad s−1 
     Temperature C∗(Mpa.m h−1) C∗(Mpa.m h−1)  
Deviation P(MPa) Ro(mm) Ri(mm) a(mm) (°C) (RSM) (Eq. 11) Disc No. 
12% --- 10 3.5 1 1150 5.392×10−9 4.743×10−9 1 
11% --- 10 6.5 1.2 650 2.25×10−12 2.019×10−12 2 
16% --- 30 20 1.4 930 1.340×10−9 3.809×10−9 3 
7% --- 35 15 0.5 930 2.451×10−9 2.278×10−9 4 
14% 0.1 36 26 2 1150 2.65×10−6 2.322×10−6 5 
10% 0.1 34 17 5 650 6.35×10−8 5.748×10−8 6 
9% 0.1 40 22 6.5 650 10.714×10−7 9.743×10−7 7 
11% 0.1 38 30 2.3 930 3.560×10−7 3.229×10−7 8 

 
 ( )2* c

ref ref refC K /= σ ε σ�  (17) 
 
Where c

refε� is the total rate of strain obtained from the 
material stress-strain properties at the reference stress 
and K is stress intensity factor and refσ is reference 
stress. Before Eq. 17 can be evaluated, refσ  must be 
obtained. It can be determined from limit analysis or 
numerical methods[23,24]. When limit analysis is 
employed, for a component subjected to a load P, 
reference stress is given by: 
 

 0
ref y

LCP
σσ = σ  (18) 

 
 Where yσ is the material yield stress and PLC is the 

corresponding collapse load of the cracked component 
that in this study have obtained by FEM. Strain rate and 
stress relation can determine the reference strain rate as 
follow 
 c n

ref refAε = σ�  (19) 
 
 The results were compared for eight different 
components that are shown in Table 3. It is seen that the 
agreement between two approaches is reasonably good 
and this suggests that the FEM results are correct. 
 As it is seen, the RSM is a simplified method so 
the results obtained from this method are over estimate. 
 

TRANSITION TIME 
 
 Riedel and Rice in their original analyses presented 
a concept of transition time, Tt. They defined the 
transition time as the time when the small-scale-creep 
stress fields equal the extensive steady-state creep fields 
characterized by C*. Finite element analyses has been 
performed for time of more than 1000 hours to be 
insure that transition time has passed. Nonetheless, to 
examine the accuracy of this time the results for 
different timing duration were examined and as it was 
expected, no changes were occurred after a certain time,  
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Fig. 4: The variation of normalized C(t) integral with 

respect to normalized time for T = 650°C, Ri/Ro 
= 0.65, a = 0.065 

 
before 1000 hours. Figure 4 compare the transition time 
for different component, loading and times. In order to 
show all the results in one graph the vertical axis is 
normalized by C* and the horizontal axis are 
normalized by transition time. 
 Components that contains external crack, pass 
transition time faster than components with internal 
crack and the components with same crack position that 
are subjected to an internal pressure have shorter 
transition time than components without internal 
pressure. 
 

CREEP ZONE SIZE 
 
 Riedel and Rice[25] arbitrarily defined the creep 
zone boundary as the locus of points where time-
dependent effective creep strains equal the 
instantaneous effective elastic strains in the cracked 
body. Generally, the creep zone starts at some points 
with high stress concentration factor and growths to 
cover all the body. The creep zone in three steps is 
shown in Fig. 5. As it can be seen, the creep zone 
started from the crack tip that has maximum stress 
concentration in the body. Then the creep zone covers 
all inner edge of annular rotating disc. 
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 This is because the inner edge of annular rotating 
disc has maximum amount of stress in all of the body if 
the crack is ignored. 
 

VARIATION IN Q* WITH i o oR / R ,a / R  
 
 In order to understand how Q* varies with 

i o oR / R ,a / R , a number of calculations has been 
performed. This is important because it helps designer 
to choose the best geometry. Figs (6, 7) shows the 
variation of Q* with i oR / R for two kind of loading. As 
it can be seen for i OR / R 0.7≥  the amount of Q* 
increase very fast. also before this point the amount of 
Q* for component with inner crack is higher than outer 
crack. Nevertheless, after this point the amount of Q* 
for component with outer crack is higher than those 
with inner crack. 
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Fig. 8: Variation in Q* with oa / R  for 
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 This is because when the ratio of i oR / R is small 
for components with inner crack, the distance between 
crack tip and inner edge (with higher stress 
concentration in the body) is smaller than components 
with outer crack and it causes higher Q* and when the 
ratio of i oR / R  is more than 0.7 vice versa. 
 Variation in Q* with oa / R for two kind of loading 
is shown in figures (8, 9). It is shown that in the absent 
of internal pressure (Fig. 8) Oa / R 0.23=  is threshold 
point and when there is internal pressure (Fig. 9) 

Oa / R 0.2=  is threshold point, before these threshold 
points the amount of Q* for component with inner 
crack is higher than outer crack. Nevertheless, after this 
point the amount of Q* for component with outer crack 
is higher than inner crack. 
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 This is because for components with inner crack 
and small oa / R , the distance between crack tip and 
inner edge (with higher stress concentration in the 
body) is smaller than components with outer crack and 
it causes higher Q* and when the ratio of oa / R  is more 
than 0.2 the opposite thing will happen. 
 

CONCLUSION 
 
 It has been shown that the relation between C* and 
nominal stress 0σ  as * n 1

0C +∝σ .  Also components with 
external crack or internal pressure has shorter transition 
time than components with internal crack or without 
internal pressure. 
 It has also been shown that Q* can be used to 
predict C*-Integral. Threshold points i OR / R 0.7= , 

Oa / R 0.23=  and Oa / R 0.2=  has been defined which are 
good tools for designing annular discs performing at 
high temperatures. 
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