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Abstract: The geometric convergence ratio, the main focus of a discretized scheme for constrained
quadratic control problem was examined. In order to allow for the numerical applications of the
developed scheme, discretizing the time interval and using Euler’s scheme for its differential constraint
obtained a finite dimensional approximation. Applying the penalty function method, an unconstrained
problem was obtained on function minimization with bilinear form expression. This finally led to the
construction of an operator. The Scheme was applied to a sampled problem and it exhibited geometric
convergence ratio, o, in the open interval (0, 1) as depicted in column 6 of Table 1.
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INTRODUCTION

In“’z], the scheme establishing the solution of
optimal control problems constrained by evolution
equation of the delay type with matrix coefficients was
presented, without addressing the geometric
convergence ratio profile. Here, a class of optimal
control problems constrained by ordinary differential
equation with matrix coefficients 1is considered.
Discretization of the generalized problem is obtained by
discretizing its objective function and using® for its
differential constraint. Usingm, a penalty function
method is applied to convert the constrained problem
into an unconstrained formulation problem. With this
formulation, an associated control operator was
constructed as in'?. Here, again, we state the
constructed operator as a consequence of a theorem in
this paper to allow for brevity and compactness of the
paper. Consequently, consideration of the convergence
profile and the geometric convergence ratio profile as
they relate to such class of problems is highlighted by a
sample problem for the confirmation of the success of
the scheme.

Generalized problem 1
Z

Subject to
}(r): Ax(t)+Cult) x0)=x, 0<t<Z, 1.2)
where, x(t), u(t)eR", x(t)",u(t)" denote the transposes of x(t) and u(t) respectively

P,Q are n by n symmetric matrices

Aand Care nbyn and nbym matrices not necessarily symmetric respectively.

MATERIALS AND METHODS

2.1 Discretization: By discretizing (1.1) and (1.2), we

have X (1) = Ax(t)+ Culr)

('x(tk-H)_x(tk ))/Ak = Ax, (tk)+cuk (tk) (1.3)
X(0)=0

We then have the discretized generalized problem in the
form;

minJ = iAk(XL (0" Px, (t,)+u, ()" Qu, (t, ))

(1.4)
subject to (x(tw)—x(tL ))/Ak = Ax, (tk )+ Cu, (tk)

x(0)=0

Penalty method’s application: Using the standard
penalty function[4], we obtain the unconstrained
problem 1

. Ak('x(tk)Tka (tk)+u(tk)TQMk (tk))
Mind (xu, f) = 3"+l xy (1) =, (1) = A, Ax 0,) = CAu (1)1

. T T
Mlnj (x(t) Px(t)+ u(r) Qu(t)ﬁt (1.1) ] )= An )= CAu ()
0
Corresponding Author: O. Olotu, The Federal University of Technology, Mathematical Science Department, P.M.B. 704,

Akure, Ondo State, Nigeria



1duosnuely Joyiny SNOILYDIT9Nd-10S

Am. J. Applied Sci., 5 (2): 89-92, 2008

1T () IPA + i+ AT AL TA+ 20AA Ix (1) +ug (1) T

A frQa +reTa " age Tt +x (i) () x(tisn) w5
i T (1) 20Ty T 20T Ty Apuy (1)

gt (U )=20 = 2HAAL T () + Xy T (et )I=2RC A Tuye (1)

Lot zk:(zgi;} and 3, (1)= 5,0

In (1.5), let
Mk = PA, +u+uA'A," A+2uAA

Nk = QA +uC™A,"Ac

Bk =2C"A," u+2C"A"A Au
Pk = -2 - 2uAA,

Ak = -2uCA,

Now, (1.5) becomes

N {kakz(lk)+Nkuk2(tk)+Vyk2(tk)+Akxk(tk )"‘k (tk )} (l 6)
+ Bky, (tk )xk (tk )+ Pky, (tk )uk (Zk) .

k=0

2.3. Theorem 1: The exact control operator G
satisfying generalized problem 1 is given by

G G t
GZ,(t,) = 11 R e (17)
G, Gy \u, (@)

where
GU (1) = e, sinh(z, ) + 1, (0)(P, + A, ) cosh(t, ) — sinh(T)(u,, (0)A,” P,)

T
+ [ (507, P)cosh(T = s,)ds,
0

;
7j (1, (s, )(P, + A)sinh(T —s,)ds,  (1.8)
0

Gottp (1) = (1, )N, (1.9)

Goixs (1) = 7, sinh (6, (M, + 1+ 2B, )y, (0)+ (1A, +A, 7B, )vx (0)]cosh(r, )+
—sinh T{x, (00A, g+ A, B+ 5, (0)(uA, A}

:
+ [ (ot + A 7B, )+ i (), A )V osh(T — skyds,

0
100+ 14 2By (k) + id  + A, B, S (k) sinh(7 — sk, (1.10)

Gy X, (1) = X0, (0 )(Pp + A) + Ak xi2(t,) Py (1.11)

2.4. Remark 1: The scheme converges at the 4"
iteration for each penalty parameter constant [ as
depicted in Table 1 for the numerical calculation.

Definition: Let {z, } be a sequence of vectors in a
Hilbert Space H with limit z* in H such that

90

*

Zn-%—l -z

——=y<l as n—o
Z,—2

Then {z,} is said to converge geometrically to z*
with a convergence ratio y as reported by”'. Here, we
recall the various steps of the conjugate gradient
algorithm that generates the convergent sequence {z,}
of solutions of problem 1 according to"*!. The algorithm
employs the explicit knowledge of the control operator
G developed in theorem 1

Step 1: Choose initial values for the conjugate descent
algorithm ;

T
o ()= (xo (1), uy (2, ))’ ()€ H

Compute p, = —g,

While the remaining members are computed as follows;

Step 2: Update x, and u, such that

xn+1 (tk ) = ‘xn (tk ) + an px,n
unﬂ (tk ) = un (tk ) + an pu,n

where «,, p., are the step length and the

descent direction respectively
and o, = 7{5’”,&,”)
(Pen>GPu)

Step 3: Update gradient and descent directions with the
updating rule

gx,n+1 = gx,n + anpr,n
gu,n+1 = gu,n + anGpu,n

px,VH-l = _gx,n + ﬁnpx,n
pu,n+1 = _gu,n + ﬂn pu,n
Where g, , and Penyy

are the gradient and descent direction at the (n+1) th
iteration respectively and
G is the control operator in theorem 1,
,B _ <gn+1’gn+1>
, =—————and

<gn > gn>
T T
8 en = (gx,n ’ gu,n ) Clnd D en = (px,n ’ pu,n )
are the transposes of g, , and D., respectively.

Now,
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Gpn([k)z[

Setting
Jo =V I, @), @) 1) and T, =V, J(x,(@),u, @), 1)
where

G,p,.,t)+G,p,, (1, )] _ [Gpl (1, )J

Glex,n )+ G22pu,n () - Gp, (1)

I 1), (1), 0 = [T @OPx, (1) + "4 (1) Qu 1)),
0

T

T
+ ;u_.. ka () —Ax, (1) — Cu, (t, )H ka )= Ax, (t;) —Cu, (1, )Hdtk
0

V.,k‘](xk (), (1), 10
is the gradient of J(x,(t,),u,(t,), i) at the kth step.
We obtain the following relations,

T
P = _.[ J o (x (2, ),u, (t,), ()de,
0

or more generally

Pos = =[ o Co ), 1), o)

Assuming the following remarks, we state and prove
the following theorem 2

z* is the optimizer for problem 1

-1

7, -7 is the

®
Zn+1 -z

The expression

convergence ratio of the sequence {z,(f)} in the

Hilbert space H.
In', a general quadratic functional in the Hilbert Space
H to be minimized as

F(z)=F,+{a,z) +%<z, Az),

was given, where A is a symmetric positive definite n-
square matrix operator of theorem 1

If F,=(a,z), =0, then (z,Az),
(iv) {P.,} are conjugate with respect to the linear
operator Aie. (P, AP, }=0,n <k

Theorem 2: The sequence {z,(f)} of solutions to

problem 1 using the explicit knowledge of the control
operator A in theorem 1 converges geometrically to

{z*} with ratio
A=1-0,, where

a= 1.MaxAzn ‘(AP P 1.12)
2o
Proof:

Let F(z) =(z=2z%A2),, z' ()= x(®,u(),n)
At the optimality condition, we have Az *(¢) =0

91

Let z.z,be in H. F(z,)=(z,—2.A(z=2")
=(z,,Az,)—(z% A"y  (1.13)

and
F(Zm-l) = <(Zu + ani):,u ) - Z*’ A(Zn + anPZ.u - Z*>

= <Zns Azn> + an<zn’ APz.n> + (Z’1<PZ",AZ,,> + a”2<PZ’",APZ’">
— (2%, Az,) @ (7%, AP,,) (1.14)
From (1.13) and (1.14),
2
Az |".F(z,)
Fz) - Fzy) = (1.15)

(P_,,AP_,){Az,,z,)

z,n?

Since A is a self-adjoint operator,[2’7‘81, Az*=0

n—1

Again, (Az, ,z,)=(Az,,2,) + Zak (Az,,p i)
k=0
n—1

But, Za’n<Azn,szn) =0 for n#k
k=0

Hence, (Az,,z,) =(Az,,2,)

A is bounded, meaning there exists m, M>0 m, M in R
such that for every z in H

w2 <A -] <Ml (1160
So,

(Az,,2,) <|Az, |z (1.16b)

Substituting, (1.16b) in (1.15), we have,

2
HAZH F(Zn)
F(z)-F(z o) =
( n) ( ’ 1) <Pz,n’APz,n> Azn Zn

So,

oy <i-— A% 3 1F(z,) (1.17)

Z) S1———F——]F(z, .
l <Pz,n’APz,n> Z()H

2
By (1.16a), F(z,) = mlz, —z*|",
So that (1.17) becomes

3 -1
P el
F(Zn) - <Pz.n’APz,n>

Thus end the analytic proof of the geometric
convergence ratio.

I D

2 =7

DATA AND ANALYSIS

Hypothetical example: Now, we shall consider an
example to test the efficiency of the developed scheme.

Example 1:
1

Minj (x)" Px(e) + u()" Qule))at

0
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Penalty constant

Number of iterations

Objective function

Constraint satisfaction

Penalty function

Geometric ratio

1 2 3 4 5 6

n=.0001 1 5 10 5.001 9483081
2 3.6554451 7.115152 3.655163 9363912
3 3.568452 7.05019 3.569159 9266359
4 4.07852 8.54454 4.079097 82418

n=.0002 1 5 10 5.001999 952805
2 3.248526 5.669127 3.244966 9430421
3 2.225528 3.799845 2.2262288 9420196
4 1.931005 3.392155 1.931683 .8998834
5 2.364958 4.446056 2.3658446

1=.0003 1 5 10 5.003 9514626
2 3.144416 5.39738 3.145815 9357017
3 2.079541 3.393059 2.080559 9305661
4 1.806033 2.9870036 2.08693 .8250323
5 2.323675 4.19311 2.324929

1=.0004 1 5 10 5.004001 9524865
2 3.211735 5.59364 3.213973 9386605
3 2.161946 3.662971 2.1634411 9263953
4 1.8850631 3.207022 1.851913 .8250323

n=.0005 1 5 10 5.005001 9516159
2 3.244694 5.681146 3.24535 9415714
3 2.24664 3.78466 2.206568 9281042
4 1.879938 3.31896 1.881597 8084613

()= Ax()+Cult) x)=x, 0<r<l, a.18) it relates to problems of this class in terms of convergence

where, x(t), u(t)eR*>, x(t)",u(r)" denote the transposes of x(t) and u(t) respectively
P,Q are 2 by 2 symmetric matrices

Aand Care 2by2 and 2by 2 matrices not necessarily symmetric respectively.

and

s el ol V) eofo Al
RESULTS

As seen in Table 1, column 3, the scheme shows a
good convergence profile, particularly at the 3" iteration
for u=.0001 and at the 4th iteration for .0002<u<.0005,
where the iterates are 3.568452, 1.931005, 1.808033,
1.8850631, 1.879938 respectively. However, the first
cycle at the 3" iteration, is not comparable enough, since
its iterate value 3.568452 is comparatively higher than any
of the other cycles.

Column 6 shows the geometric convergence ratio profile

for each [ per cycle. It is seen that |, , - '| as
—— <\, for nlarge,

z,,—z“
depicted in the convergence ratio column 6 of Table 1.

For pu=.0001, the geometric ratio convergence starting
at .9483081 and ending at .82418, shows values lying
between 0 and 1. This characterizes a geometric ratio
convergence. Similarly, this same trend holds for
.0002 < 4 <.0005 in column 6 of Table 1.

DISCUSSION

In this study, the scheme has demonstrated its objective
having its geometric ratio convergence established between 0
and 1 as seen in Table 1. Hence, its success and reliability as

92

profile and geometric convergence ratio via this sampled
problem is being demonstrated.
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