
American Journal of Applied Sciences 5 (7): 829-834, 2008
ISSN 1546-9239
© 2008 Science Publications

Corresponding Author: Ahmed Sharieh, Department of Computer Science, The University of Jordan, Amman 11942, Jordan
829

A Dynamic Resource Synchronizer Mutual Exclusion Algorithm for

Wired/Wireless Distributed Systems

Ahmed Sharieh, Mariam Itriq and Wafa Dbabat
Department of Computer Science, The University of Jordan, Amman 11942, Jordan

Abstract: A mobile host has small memory, relatively slow processor, low power batteries, and
communicate over low bandwidth wireless communication links. Existing mutual exclusion algorithms
for distributed systems are not enough for mobile systems because of several limitations. In this study, a
mutual exclusion algorithm that is more suitable for mobile computer systems is developed. The
algorithm tends to minimize the number of messages needed to be transmitted in the system, by
reducing the number of sites involved in the mutual exclusion decision, and reducing the amount of
storage needed at different sites of the system.

Key words: Distributed systems, synchronization, mutual exclusion, mobile computing

INTRODUCTION

 A mobile computing system is a distributed system
consisting of a number of mobiles and fixed processing
units. A distributed application consists of a collection
of processes executing on a set of computers in the
mobile system. The sites do not share any memory and
communicate completely by message passing. The
wireless communication channels used by the mobile
system have a lower bandwidth than the wired
communication links. Any distributed mutual exclusion
algorithm should take this constraint into
consideration[1,7,9].
 Distributed mutual exclusion is an important
activity that is required to coordinate access to shared
resources (usually called critical sections CS) in a
distributed system. A set of n processors synchronize
their access to a shared resource by requesting an
exclusive privilege to access the resource.
 The privilege is sometimes represented as a token,
where access to the token can represent the ownership
of the shared resource. Another method for accessing
the shared resource is by requesting to and granting by
a central coordinator. Access to the CS can also be
based upon the idea of broadcasting and timestamps in
networks that supports broadcasting[15].
 In a distributed system, the design of a mutual
exclusion algorithm consists of defining the protocols
used to coordinate access to a shared object. A
distributed algorithm for mutual exclusion is
characterized by: all processes having an equal amount
of information, and all processes making a decision
based on local information[15].

 Many distributed algorithms for mutual exclusion
have been proposed. In Lamport's algorithm[9], each
process has a queue. A process that wants to execute a
critical section broadcasts a request message with a
time-stamp. The return of time-stamped
acknowledgements allows it to check whether a process
has invoked the critical section earlier than itself.
 Several algorithms reducing the number of
messages were presented in Ricart and Agrawala[12],
Carvalho and Roucairol[3]. The number of messages
was proportional with the number of processors-which,
and is denoted by N. The algorithm presented by
Chandy and Misra[4] (in which the permission is in the
form of a fork) is the most efficient of the three in terms
of message complexity per resource. Maekawa[10]
introduced the notion of arbitrating processes. A
process wishing resource access must obtain the
permission from a fixed set of �N arbitrating processes.
Each arbitrating process gives permission on behalf of
itself and (�N-1) other processes. Kumar[8] presents a
quorum consensus algorithm that requires O(�N)
messages per request.
 A solution for the above limitations needs to
consider the following assumptions and conditions for
the distributed environment:

• All nodes in the system are assigned unique

identification numbers from 1 to N
• There is only one requesting process executing at

each node. Mutual exclusion is implemented at the
node level

• Processes are competing for a single resource

Am. J. Applied Sci., 5 (7): 829-834, 2008

 830

WIRED
NETWOK

M
H

M
H

M
H

M
H

M
H M

H
M
H

M
SS M

SS

M
SS

M
SS Fix

ed
Ho

st

Wireless
Cell

Wireless
Cell

Fig. 1: System model[1]

Table 1: Underling communications network properties
Property Meaning
Message delivery Messages are not lost or altered and are
guaranteed. correctly delivered to their destination in a
 finite amount of time.
Message-order Messages are delivered in the order they are
Preservation. sent. There is no message overtaking.
Message transfer Messages reach their destination in a finite
delays are finite, but amount of time, but the time of arrival is
unpredictable. variable.
The topology of the Nodes know the physical layout of all nodes in
network is known. the system and know how to communicate with
 each other under wireless environments.

• At any time, each process initiates at most one

outstanding request for mutual exclusion

 Also, the aspects as shown in Table 1 about the
reliability of the underlying communications network
should be considered.
 As we mentioned previously, the mobile systems
have special constraints that cannot be captured by
traditional distributed systems. These constraints are
memory limitations, limited battery life, and working
under low bandwidth.
 In this paper, the proposed algorithm takes in
consideration these constraints based on the same
system model used in[1] as shown in Fig. 1. A host that
can move while retaining its network connections is a
MobileHhost (MH). The infrastructure machines that
communicate directly with the mobile hosts are called
Mobile Support Stations (MSS). A cell is a logical or
geographical coverage area under an MSS. All MHs
that have identified themselves with a particular MSS,
are considered to be local to the MSS.
 An MH can directly communicate with an MSS
(and vice versa) only if the MH is physically located

within the cell serviced by the MSS, and each MH
belongs to only one cell at a time.
 In method section, we present two versions of the
proposed algorithm. In the discussion, we show how the
new algorithm guarantees mutual exclusion, and derive
the algorithm message complexity. Finally, in
conclusion section, we present conclusions and
remarks.

MATERIALS AND METHODS

 Based on the above system model, we propose a
new algorithm for distributed mutual exclusion- which
can be used in mobile computing environments. We
refer to it as Dynamic Resource Synchronizer (DRS)
algorithm, because the node that manages the critical
section “synchronizer” is dynamically changed
according to certain criteria that reduce message traffic
among the nodes.
 Assume that the system consists of n independent
mobile nodes labeled (N0, N1, …, Nn). These nodes
communicate by a message passing over a wireless
network. Assumptions on the mobile nodes and the
network are:

• The nodes have unique node identifiers, (i.e. node i

have identifier Ni)
• A node failure does not occur
• Communication links are bi-directional and First In

First Out priority
• Communication links failures are predictable-

providing a reliable communication
• A partition in network does not occur

 Each node in the system is assumed to be running
an application whose states are partitioned into four
states: WAITING, CRITICAL, SYNCHRONIZER and
REMINDER. In the WAITING state, the node has
requested access to the CS. In the CRITICAL state, the
node is executing the CS. In the SYNCHRONIZER
state, the node is currently responsible for handling
mutual exclusion access to the CS. There is one and
only one node in this state in the system at any moment.
Initially one node is set to this state. A node exits the
SYNCHRONIZER state if any other node exits CS. In
the REMINDER state, the node is neither requesting
nor executing the CS. All nodes are initialized to this
state. Nodes are in the system cycle through
REMINDER to WAITING to CRITICAL to
REMINDER to SYNCHRONIZER state. Other nodes
do not need to stop executing while one is in a
CRITICAL state.

Am. J. Applied Sci., 5 (7): 829-834, 2008

 831

Table 2: Major data structures used in DRS
Data
structure Description
Status Indicates the state of a node.
Next Pointer to the process next in the logical ring. Processes
 are connected to each other forming a logical ring.
Queue Pointer to the process next in the waiting queue. This
 pointer is set to nil if the process is the one at the end of
 the queue or if it is not involved in the queue.
Busy A Boolean flag used only by the SYNCHRONIZER. It
 is set to TRUE if and only if any node in the system is
 currently in CRITICAL state. Initially this is FALSE in
 all nodes.
Synch Address of the current SYNCHRONIZER node.
Critical Address of the node currently in the CRITICAL state.
 The node uses this variable when it is in the
 SYNCHRONIZER state.

Table 3: Types of messages and events used in DRS
Message Description
REQUEST(r,c) A message sent by a REMINDER node r, that is
 wishing to be in CRITICAL state, to c.
GRANT(s,q) A message sent by the SYNCHRONIZER s to the
 next process q in queue.
RELEASE(s,c) A message sent by the CRITICAL c to the
 SYNCHRONIZER s when exiting the CS.
YAS(w,a,s) A message sent by the current SYNCHRONIZER s
(You Are to transfer the synchronization state to new node w.
synchronizer)
ADD(q,s) A message sent by the SYNCHRONIZER s to add
 a new node q to the queue.
GHANGE(c,s) A message sent by the SYNCHRONIZER s to the
 CRITICAL c to inform it of the SYNCHRONIZER
 state transfer.

 The major data structures used by the DRS
algorithm are shown in Table 2. There are six types of
messages for communication in the system, as shown in
Table 3.
 The DSR algorithm for mutual exclusion is event-
driven. An event at a node consists of receiving a
message from another node-or input-from the
application on the node to request or release the CS.
Modules are assumed to be executed automatically.

Rule 1 (Requesting the CS): When a node wishes to
enter the CS, it checks status .If it is at the REMINDER
state, it prepares a REQUEST message containing it’s
address and sends it to next and sets the status to
WAITING. The requesting node has no idea of who is
the current synchronizer. If status is SYNCHRONIZER
and busy is FALSE, it sends a YAS message to next,
changes it’s status to CRITICAL and enters the CS. If
status is SYNCHRONIZER and busy is TRUE, then
another node is currently at the CS. Thus, the
SYNCHRONIZER adds itself to the end of the queue,
sends a YAS message to next and finally changes its
status to WAITING.

Rule 2 (handling a REQUEST message): When a
REQUEST message arrives at a node, it checks its
status. If it is not SYNCHRONIZER it simply forwards
the message to next. If the state is SYNCHRONIZER,
the node checks busy; if another node is currently using
the CS, the SYNCHRONIZER adds the requesting
node to the end of the queue. To add a node to the end
of the queue, the SYNCHRONIZER checks its queue
pointer. If it is not nil, a message is prepared with the
address of the requesting node and sent to the node in
queue. Then, queue is set to the address of the
requesting process, else, the address of the requesting
process is stored in queue. If there isn’t any node that
is currently CRITICAL (busy is FLASE and status is
SYNCHRONIZER), a GRANT message is sent to the
requesting node, the address of the requesting node is
stored in critical and busy is set to TRUE.

Rule 3 (handling a GRANT message): when a node
receives a GRANT message from the
SYNCHRONIZER, it sets the status to CRITICAL;
enters the CS, and saves the address of
SYNCHRONIZER in synch.

Rule 4 (exiting the CS): when a node exits the CS, it
sends a RELEASE message to the SYNCHRONIZER
(using the address stored in synch). Then it changes its
status to REMINDER.

Rule 5 (handling a RELEASE message): when the
SYNCHRONIZER receives a RELEASE message, it
changes its status to REMINDER, sets busy to FALSE,
and sends a YAS message to the node that completed
the CS (i.e. node from which it received the RELEASE
message). Together with the message, the
SYNCHRONIZER sends the address of the node
currently at the end of the queue (current contents of
queue), sending a nil if there is not any nodes currently
in the queue.

Rule 6 (handling a YAS message): when a node
receives a YAS message-if it is not in the REMINDER
state-it forwards the message to next, and sends a
CHANGE message containing next to critical(note that
it knows critical from the YAS message). However, if
the node is currently in the REMINDER state, it should
handle the message. First, it changes its status to
SYNCHRONIZER. Then, the node checks the contents
of queue; if it is not nil a GRANT message is sent to the
node in queue and busy is set to TRUE. After that, the
node stores the address attached with the message in
queue.

Am. J. Applied Sci., 5 (7): 829-834, 2008

 832

Rule 7 (Handling an ADD message): When a node
receives an ADD message, it stores the address in the
message in a queue. The ADD message is used in Rule
1and in Rule 2 when there is a node at the CS.

Rule 8 (Handling a CHANGE message): when a node
receives a CHANGE message, it overwrites its synch to
the address in the message.
 The rules of the Dynamic Synchronizer Algorithm
are shown in Fig. 2.
 An illustration of the algorithm is depicted in
Fig. 3. Snapshots of the state of the system during
algorithm execution are shown, with time increasing
from 3(A) to 3(F). The logical ring connections (next)
are shown as dashed lines connecting circular nodes.
 In Fig. 3A, node N1 is initially SYNCHRONIZER
and all other nodes are in REMINDER state. Node N2
will send a REQUEST message that will follow the
logical ring from N2 to N3 to N4 and then to the
SYNCHRONIZER (N1). When the SYNCHRONIZER
receives the REQUEST message, it will check busy.
Since there isn’t any node currently CRITICAL, it
sends a GRANT message to node N2 , this in turn
changes it’s state to CRITICAL and enters the CS as in
Fig. 3B.
 Figure 3C shows the system state after node N3 has
sent a REQUEST message. Since one node (node N2) is
currently CRITICAL, the SYNCHRONIZER will add
node N3 to the queue by sending N3’s address to N2 in
an ADD message The SYNCHRONIZER will store
N3’s address in it’s queue pointer.
 In Fig. 3D the SYNCHRONIZER has received a
REQUEST message from node N5. Since queue is not
nil, the SYNCHRONIZER will add node N5 to the
queue and sends an ADD message containing it’s
address to N3 (node at the end of the queue). This in
turn stores that address in its queue pointer. The
SYNCHRONIZER will also change its end of queue
pointer by storing N5’s address in its queue pointer.
 Figure 3E depicts the system after node N2 has
finished the CS; sent a RELEASE message to
SYNCHRONIZER, and changed its status to
REMINDER. In Fig. 3F, after SYNCHRONIZER
received the RELEASE message, it will send a YAS
message to N2. The address of N5 (current content of
queue pointer in SYNCHRONIZER which points to the
node at the end of queue) will be attached with the
message. Then the SYNCHRONIZER will change its
status to REMINDER. When node N2 receives the YAS
message, it will change its status to SYNCHRONIZER,
send a GRANT message to current content of it’s queue
pointer (node N3), and store the address attached with
the YAS message in queue. Now N3’s status changed to

Rule 1: When a node Ni requests access to the CS:
if status = REMINDER.

 REQUEST(next, Ni).
 status = WAITING.
if status = SYNCHRONIZER and busy = FALSE

YAS(next, Ni, Ni).
status = CRITICAL.

if status = SYNCHRONIZER and busy = TRUE
ADD(queue, Ni).
YAS(next, critical, Ni).
status = WAITING.

Rule 2: When a REQUEST(Nj, Ni) is received by a node Nj:
if status ≠ SYNCHRONIZER, REQUEST(next, Ni).
if status = SYNCHRONIZER and busy = FALSE.

GRANT(Ni, Nj).
critical = Ni.
queue = Ni.
busy = TRUE.

if status = SYNCHRONIZER and busy = TRUE.
ADD(queue, Ni).
queue = Ni.

Rule 3: When a GRANT(Ni, Nj) is received, from SYNCHRONIZER, by node Ni:
 synch = Nj.
 status = CRITICAL.

Rule 4: When a node Ni exits the CS:
RELEASE(synch, Ni).
status = REMINDER.

Rule 5: When a node Nj receives RELEASE(Nj, Ni):
YAS(Ni, nil , queue).
status = REMINDER.
busy = FALSE.

Rule 6: When a node Nj receives YAS(Nj, Ni, Nk):
if status ≠ REMINDER.

forward YAS(next, Ni, Nk)to next.
CHANGE(Ni, next).

if status = REMINDER.
status = SYNCHRONIZER.
if queue ≠ nil

GRANT(queue, Nj).
busy = TRUE.
queue = Nk.

Rule 7: When a node Ni receives an ADD(Ni, Nj):
 queue = Nj.

Rule 8: When a node Ni receives CHANGE(Ni, Nj).
synch = Nj.

Fig. 2: Rules used by the dynamic synchronizer

algorithm

1

2

34

5

1

2

34

5

1

2

34

5

1

2

34

5

1

2

34

5

1

2

34

5

A
C

ED

B

F

Fig. 3: Snapshot of some operations of the dynamic

synchronizer algorithm

Am. J. Applied Sci., 5 (7): 829-834, 2008

 833

CRITICAL and the system have a new
SYNCHRONIZER (node N2).
 A slightly different version of the DSR algorithm is
presented. This version of the algorithm takes into
consideration the fact that it is not desirable in a
dynamic system for the same node to be in the
SYNCHRONIZER state for a long time, in order to
insure fairness in the system. Using this version, the
SYNCHRONIZER state will circulate among all the
nodes in the system and none of the nodes will remain
in SYNCHRONIZER state forever. In this algorithm, a
node exits the SYNCHRONIZER state either if any
other node exits the CS, or its quantum time is finished.
A node that frequently enters the CS will have higher
probability to be in the SYNCHRONIZER state.
 A new data structure called timer needs to be
maintained by the SYNCHRONIZER. Assuming T is
the maximum period of time a node may stays in
SYNCHRONIZER state, some handling events will be
altered, and new events will occur. This version
complies with the rules: Rule 1 to Rule 8 for the first
version. Rule 6 is modified as follows.

Rule 6 (handling a YAS message): as stated before,
plus the timer is set to T

Rule 9 (expiration of timer): if the node is in the
SYNCHRONIZER state and the timer value becomes
zero, the node prepares a YAS message and sends it to
next, attached with the message the address of the node
at the end of the queue. A nil address is attached if there
isn’t any node currently in the queue. A critical is also
attached. Then, it stores next in a CHANGE message
and sends it to the critical. After that, it changes its
status to REMINDER. Rule 9 is added to check the
expiration of the quantum time.
According to previous changes, the rules of the
algorithm (DRS) will be modified.

RESULTS AND DISCUSSION

 We are concern to prove three conditions: the
mutual exclusion is satisfied; using DRS will not lead
to deadlock or starvation.
 To show that the algorithm achieves mutual
exclusion, we have to show that two or more nodes can
never execute the CS simultaneously. That is, one node
exits the CS before any other node can enter the CS.
This will be shown by contradiction.
 Assume that two nodes Ni and Nj are executing the
CS simultaneously. This means that both nodes have
received a GRANT message from the
SYNCHRONIZER node. But, according to our

algorithm, a GRANT massage is sent in two cases:
either by the SYNCHRONIZER when it receives a
REQUEST message and busy is FALSE (Rule 2), or by
a node that receives a YAS message from the
SYNCHRONIZER after it exits the CS (Rule 4, Rule 5
and Rule 6). It is clear that in both cases only one
GRANT message is sent and that message is sent when
busy = FALSE (no other process is currently in the CS).
As a result, mutual exclusion is reserved.
 The system of nodes is said to be deadlocked when
no requesting node can ever proceed to critical section.
This can occur as consequence for any of the following
situations: either, no node is SYNCHRONIZER or
SYNCHRONIZER node is not aware that other nodes
have requested the critical section.
 As we assumed in the algorithm, one node must be
initiated as SYNCHRONIZER. During the time the
algorithm is working, Rule 1, 5 and 6 manage the YAS
message that is used to transfer the synchronization
state from one node to another.
 Rule 2 shows how the SYNCHRONIZER becomes
aware when other nodes require the grant to enter the
critical section. It either stores the address of requesting
node in its queue or sends it to the node in its queue
when busy is true; which is in turn serves the waiting
nodes based on Rule 6, 7 and 8. In Summary, the DRS
algorithm is deadlock free.
 Starvation occurs when few sites repeatedly
execute their CS while other sites wait indefinitely for
their turns to do so. It means that there exists a node
(call it Ni) that can enter the CS two or more times
while another node in the WAITING state (call it Nj)
and cannot enter the CS at all. According to Rule 5,
when a node Ni exits the CS, it changes it’s state to
REMINDER, to enter the CS again it must send a
REQUEST message. Using Rule 2, if there is any other
node in the WAITING state (node Nj), node Ni will be
added to the end of the queue after node Nj. So, node Nj
will enter the CS before node Ni. Accordingly, there is
no starvation.
 The number of messages generated-per critical
section invocation-has traditionally evaluated the
performance of most distributed mutual exclusion
algorithms. Also, a useful mutual exclusion algorithm is
characterized as fair to all nodes in the distributed
system; being starvation-free, and deadlock-free[2,13].
 The DRS algorithm results in a substantial
reduction in message traffic generated due to executing
the CS. The number of messages incurred is much
lower than in some other algorithms according to
system assumptions that were previously illustrated.
 The best-case performance happens when the
synchronizer is the immediate neighbor to the sender

Am. J. Applied Sci., 5 (7): 829-834, 2008

 834

from the direction of sending, and no one is waiting for
the resource. In this case, the number of messages to
enter and exit CS is 1(REQUEST) + 1(GRANT) + 1
(RELEASE). This is a constant value of 3 messages.
The waiting time in queue in this case = 0.
 The worst- case performance happens when the
synchronizer is in the far middle of the ring (longest
path node), and all other processors want the resource
(waiting in queue) and each one of them will use the
resource for the longest possible time (max resource
use). Thus, the number of messages to enter and exit CS
is 1(REQUEST)*(n/2) + (n-1) (GRANT)*(n-1)/2 + (n-
1)(RELEASE)*(n-1)/2, which is O(n2).
 The waiting time in queue is (n-1)*(max time for
allocating the resource), where n is the number of
processors. This is O(n).
 The average case performance depends upon the
synchronizer location according to the request node. If
you assume all nodes have the same chance to be
synchronizer at any time, then each node has the
probability (1/n) to be synchronizer and its location can
be: the immediate neighbor to the sender or the next
one, or the far middle in the ring. Then, the number of
messages are 3,6,…,3*(n/2-1) respectively. So, the
average number of messages equals to
(1/n)*�(3*i),I = 1,2,… (n/2)-1 and i is node location.
Which ≅ 3(n/2-1). The waiting time equals to the
average use time of the resource.

CONCLUSION

 The design of algorithms for distributed systems
and their communication costs have been based on the
assumptions that do not take into consideration the
special characteristics of mobile systems such as low
bandwidth, limited storage, and constrained energy
consumption. This makes existing algorithms no longer
valid for mobile systems.
 This work focuses on the mutual exclusion
problem for mobile systems. A system model for the
mobile computing environment is first presented
combined with the general principle for structuring
algorithms for mobile systems. This differs from token-
based algorithms since a token is not used at all, which
means there is no token lost problem.
 A new algorithm is developed to achieve mutual
exclusion in distributed systems is explained (first
version). The first version of the algorithm is then
updated to a (second version) that takes into
consideration the energy savings of mobile hosts.
Finally, this work shows how the algorithms are
adapted to work in mobile system environments.
 Starting from the fact that the distributed
algorithms are more sensitive to crashes than

centralized ones, we are working in a new version for
this algorithm that can work in fault-tolerant systems-
even if there are frequent crashes.

REFERENCES

1. Badrinath, B.R., 1994. Structuring Distributed

Algorithms for Mobile Hosts, Department of
Computer Science, Rutgers University, New
Brunswick, NJ, USA.

2. Bernstein, A. and P. Lewis, 1983. Concurrency in
Programming and Database Systems. Jones and
Bartlett.

3. Carvalho, O. and G. Roucairol, 1983. On Mutual
Exclusion in Computer Networks; Comm. ACM,
26: 146-147.

4. Chandy, M. anD J. Misra, 1984. The Drinking
Philosopher Problem,; ACM TOPLAS, 6: 632-646.

5. Chang, Y.I., M. Signhal and M.T. Liu, 1990. An
Improved O (log(n)) Mutual Exclusion Algorithm
for Distributed Systems; Int’l Conference on
Parallel Processing, pp: 295-302.

6. Imielinski, T. and B.R. Badrinath, 1992.Querying
in Highly Mobile Distributed Environments; 18th
Intl. Conference on Very Large Databases,
pp: 41-52.

7. Ioannidis, J., D. Duchamp and G.Q. Maguire,
1991. IP-Based Protocols for Mobile
Internetworking; Proc. of ACM SIGCOMM
Symposium on Communication, Architectures and
Protocols, pp: 235-245.

8. Kumar, A., 1991. Hierarchical Quorum Consensus:
A New Algorithm for Managing Replicated Data.
IEEE Trans. On Computers, 40: 994-1004.

9. Lamport, L., 1978. Time, Clocks and the Ordering
of Events in a Distributed system. Comm. ACM,
21: 558-565.

10. Maekawa, M., 1985. An Algorithm for Mutual
Exclusion in Decentralized Systems. ACM.
TOCS, 3: 145-159.

11. Raymond, K., 1989. A Tree-based Algorithm for
Distributed Mutual Exclusion. ACM Trans. On
Computer Systems, 7: 61-77.

12. Ricart, G. and A. Agrawala, 1981. An Optimal
Algorithm for Mutual Exclusion in Computer
Networks. Comm. ACM, 24: 9-17.

13. Singhal, M., 1993. A Taxonomy of Distributed
Mutual Exclusion. Journal of Parallel and
Distributed Computing, 18: 94-101.

14. Teraoka, F., Y. Yokote and M. Tokoro, 1991. A
Network Architecture Providing Host Migration
Transparency. Proc. of ACM SIGCOMM’91.

15. Thanebaum, A.S., 1995. Distributed Operating
Systems, Printic-Hall, pp: 134-158.

