
American Journal of Applied Sciences 5 (4): 378-384, 2008
ISSN 1546-9239
© 2008 Science Publications

Corresponding Author: Block F, FTSM, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia
UKM, 43600 Bangi, Selangor Darul Ehsan. Malaysia

378

SNL2Z: Tool for Translating an Informal Structured Software Specification

into Formal Specification

Mohamed A. Sullabi and Zarina Shukur
Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia

Block F, FTSM, UKM, 43600 Bangi, Selangor Darul Ehsan

Abstract: In the area of software engineering there have been very few efforts to automate the
translation from specifications written in natural language to the formal specification languages.
Writing of the specifications in natural language is always depending on context and it is commonly
vagueness; this represents the major reasons of the challenge. This paper discusses the design of a tool
for translating a software specification written in natural language into a formal specification. We
apply controlled natural language that limits the syntax and semantics when the natural language
statements been written by proposing structured natural language (SNL) to avoid the ambiguity
problem. The tool uses basic information about the operation schemas and statements describing the
specification of the system written by a group of user collaboratively as input. The output of the tool is
a translation and interpreting of the specification statements into equivalent statements in LATEX
form, which are compiled to produce an equivalent statements in Z.

Key words: Collaborative writing, formal specification, machine translation, Z

INTRODUCTION

The natural language has remained as practiced

choice to specify the software specification because
formal specification languages are not easy to master [1].
Informal software specification normally has a lot of
ambiguity, especially when it is read and interpreted by
different people [13]. Natural language is descriptive
with representation power, but its semantics and syntax
are not formal enough to be used directly as a
specification language. Therefore the requirements
written in natural language has to be reinterpreted into a
formal specification language[1], so that one can analyze
the informal specification to reduce its ambiguity, and
derive an efficient program which satisfies the
specification [8].

Formal specifications, such as Z are based on
mathematics. Even though formal specifications are
very precise and accurate and they have been
considered to be more effective in representing
software specifications, and the benefit of using formal
specifications is generally accepted by most of software
practitioners, they are not widely used in software
development[13] due to the additional technical
knowledge needed [9]. Software developers find that

writing of the formal statements is too complicated due
to they are not familiar with mathematical notation [7].

Over the last decades, a few tools have been
developed, such as SPECIFIER [11], RA [12], NL2ACTL
[5], and FORSEN [17]. The major obstacle of the
conversion of natural language into formal specification
is from the inborn characteristic of ambiguity of natural
language and the different level of the formalism
between the two domains of natural language and the
formal specification. This is why there have been very
few attempts to automate the conversion from
requirements documentation to a formal specification
language [1].To handle this ambiguity problem of
natural language, some have argued that the
requirements document has to be written in a particular
way to reduce ambiguity in the document [18]. Others
have proposed controlled natural languages [6] which
limit the syntax and semantics of NL to avoid the
ambiguity problem.

A possible solution to this problem is by providing
software developers with a tool that can help in writing
structured natural language statements (SNLS), then
translating these statements into mathematical
statements. This paper discusses the design and
implementation of tool that can help software
developers in writing a semi-formal natural language

Am. J. Applied Sci., 5 (4): 378-384, 2008

 379

specification describing the operation schemas of the
software, then these specifications will be translated
automatically into Z formal specifications in LATEX
form.

Background of SNL2Z: SNL2Z is a part of web-based
system that has been developed in Faculty of
Information Science and Technology, University
Kebangsaan Malaysia (UKM) to help a team of
software specifiers to collaborate in preparing a formal
software specification. The team that is involved in
preparing the specification consists of two types of
member: a drafter who co-ordinates and supervises the
process, and a group of rectifiers who write and edit the
specifications document, in a setting where the drafter
and rectifiers are not located in the same room. Through
the Internet, the team members collaborate to write, edit
and correct the shared specifications document. For
more details see [16,15].

The Z notation is a stylized form of mathematics
that is amenable to a standardized syntax and computer
processing [3, 14]. In Z formal notation, specification
constructs are used to modularize system state and
behaviour. Among these constructs, schema is the most
important tool to encapsulate specification chunks.
Schema construct is used to model both system state
(represented by state schemas) and system behaviour
(represented by operation schemas) [10].

Z documents can be placed on-line in PostScript
format or PDF format, but most Web browsers are not
configured to display such documents directly. The
easiest way to solve the problem of accessing and
displaying an on-line Z document directly within a Web
browser window is by using the LATEX.

SNL2Z is used during the second stage of the
system, that is after the team has specified the state of
the software system. Fig. 1 illustrate the first stage
process of the system. In brief, the drafter passes the
draft document (written in LATEX form) of the
specification of system state which consists of: basic
types and state schemas, as well as propose a list of
operation names to the rectifiers. Rectifiers then
examine the document for necessary corrections.
Rectifiers also study on the proposed operation names
for comment. All the views, responses, and comments
from rectifiers will be sent to the drafter. The drafter
will make changes to the document by considering
rectifiers comments. After the team member satisfied
with the document, then the system will analysis the
document to extract and store all the keys, relations and
the structures in the document to be used later on. Now,
the system are ready for the second stage of the process

that is preparing the specification of the operations.
However, before starting the second process, each
member will be assigned with at least one operation.
Their responsibility are: to prepare the specification of
the given operation and to correct the specification
according to the comments given by other members.

 Rectifier (3)

Drafter

Rectifier (1)

The Drafter receive the final
rectified document

The Drafter passes the basic types,
state schemas and the operation names
list for rectifying

Rectifiers examine the
document for a necessary
comments via internet

Drafter

INTERNET

Rectifier (2)

INTERNET

Basic types
+

State
Schemas

+
Operation

Names

Rectifier (n)

Fig 1: Rectifying process of State Schemas

SNL2Z Pre-processing: Preparing the Specification
of Operation: The structure of the operation
specification in SNL2Z has been adopted and modified
from the table proposed by Bottaci and Jones [2]. They
suggest that it is helpful for the specifiers to summarize
the decision about the operations in a table form. This
will free the specifiers from the details of mathematical
formulas at the first round of preparing the formal
specification. Normally, one operation of a system
consists of several basic operations. So as Z language,
one operation might be represented by several schemas.
Each schema handle different type of precondition of
the operation. The table proposed by Bottaci and Jones
is designed in such a way that: a row represents a
schema whilst five columns are used to record the
schema name, the inputs of the operation, the pre-
conditions, the changes to the system state, and the
outputs of the operation. In SNL2Z, we add a new
column which is used to record the other schemas’
name that will be included in the currently specified
schema.

SNL2Z offers the facilities for the team member to
add a new schema to the list and edit or delete his/her
existing one. Besides responsible to the assigned
schemas, every member are encouraged to evaluate
other operation specifications written by other team

Am. J. Applied Sci., 5 (4): 378-384, 2008

 380

Fig. 2: Preparing a schema in SNL2Z

Fig 3: Modifying or Deleting a schema in SNL2Z

Fig. 4: Overall Processes of the SNL2Z

Fig. 5: SNL2Z: Formulating of the Specifications

List of
all state
schemas

List with
variables
of the
included
state
schemas

Specification
fields of the
operation
schema

Other’s
comments
on this
schema
operation

Write / Modify
Read

SNL2Z

Specification
of Operation
Schema (X)
in Formal

Specification
(LATEX)

Comments on Specification
of Operation Schema (X)

Specification of Operation
Schema (X) in Natural Language

Rectifier 1

Rectifier n … Rectifier 2

Am. J. Applied Sci., 5 (4): 378-384, 2008

 381

members. As shown in Fig. 2, in the case of adding a
new schema, the system provides the user with a form
to write the details of the schema. The form consists of
six fields which represents the six column of the table
discussed previously. Usually, an operation schema
composes of local variables and state variables.
Therefore, the system helps the user by providing two
pull down menu that provide an information for the
state schema names and it’s component. Both
information are automatically generated by the system.

SNL2Z Pre-processing: Handling Comments: When
the user intends to edit the assigned schemas, the
system, as shown in Fig. 3, provides the user with
currently received comments by clicking a pull up
menu at the top of the form. Also, in order not to get
redundant comments, the user can also refer to the list
of other comments before writing his/hers comments on
the other team member’s schemas.

Because of rectifying is an ongoing process, the
system needs to stamp each comment to record it’s
validity. For the user perspective, the message
<Updated> or <Not Updated> is shown together with
the comments. This will help the user maintains and
modifies his/her specifications in the light of the
updated comments.

SNL2Z: The Mapping: After all the operation are
completely specified and satisfied by the members of
the team, as Fig. 4 illustrated, the drafter will do the
final review, and convert the whole specifications into
Z (in LATEX form) by using SNL2Z. Through the
simple case study, Internal Telephone Directory taken
from a book [4], we will show how SNL2Z translates
the specification prepared in previous way (controlled
natural language) into formal specification statements
in LATEX form.

 A university wants to computerize its internal
telephone directory. The database must keep a record of
all the people who are currently member of the
university (as only they can have telephone extensions).
The database must cope with the possibility that one
person may be reached at several extensions and also
with the possibility that several people might have to
share an extension. The system has several main
operation names such as adding a number, adding a
name, adding an entry, removing a number and several
other operations. Each main operation name may has a
several operation schemas. As stated previously, one
operation might compose of several small operations,
therefore for an operation such as adding an entry, it
can compose of several small operations; an ideal

situation of adding an entry, an operation that handle a
situation where the entry is invalid, and lastly a
situation where the entry is already exist in the
database.

In this case study, a basic type PERSON represents
a set of person and PHONE represents a set of
telephone numbers.

\begin{zed}
 [PERSON, PHONE]
\end{zed}

A REPORT is a type with specific values and is
declared by using free type definitions:

\begin{zed}
REPORT ::= success �invalidStaff � invalidExt �

invalidEntry � alreadyExist � alreadyRemoved
\end{zed}

The state space for the system is represented by the
following:

staff: to store information about staff members
of the university.

ext: to store information about internal
telephone numbers.

directory : denotes the relation that exists
between people and their internal telephone numbers.

Fig. 5 shows an example of specifications of two main
operations that are; adding a staff to the list and adding
an entry to the database. Entry means the telephone
number of the respective staff. We decide that adding a
staff composes of three small operations that are an
ideal situation, namely AddStaff, AlreadyExist, and
InvalidStaff. For the second operation, as has been
discussed above, we decide that it composes of three
small operation: AddEntry, AlreadyExist, InvalidEntry.
Assume that both operations have been completely
specified and satisfied by the team member and the
result is shown as in Fig. 5. The following section
shows how the translation is made based on the case
study.

Construction of the Knowledge: The knowledge is
build from the syntactic, semantic, structure and
contextual of the operation schema specifications. The
knowledge representation has to capture the
corresponding structure for the later translation.
Because of the space limitations of this article, we only
show the translation of one of the operation name’s
operation schemas that is adding an entry to the
database. This operation schema is called AddEntry.

Am. J. Applied Sci., 5 (4): 378-384, 2008

 382

Schema Inclusion Translation: Based on the
AddEntry specification in Fig. 5, the fifth column
(labelled State Change) indicate that the state of the
system will change. And in the 2nd column (labelled
Included Schema) indicate that only one state schema is
included in the operation that is ITDirectory. Based on
this two information, SNL2Z will include �ITDirectory
in AddEntry schema. In Z, the inclusion of
�ITDirectory (written in LATEX form as \Delta
ITDirection) in schema operations introduces all the
respective variables and the before-state and after-state
invariants. The following table summarizes the action
taken by SNL2Z.

Included State
Schema Name

State
Change

Action in LATEX

ITDirection yes \Delta ITDirection

Pre-condition Translation: As shown in Pre-condition
field in the specification, the predicate “ name? in staff”
has three parts, as well as the predicate “ number? in
ext ” as follows:

“name? in staff”
Component Type

Part_a1 <name?> Input
Part_a2 <in> Relation
Part_a3 <staff> State Variable

“number? in ext”

Component Type
Part_b1 <number?> Input
Part_b2 <in> Relation
Part_b3 <ext> State Variable

From the knowledge of state schema, we know that:

State Variable Basic/Function Type Name
Part_a3 Power Set PERSON

State Variable Basic/Function Type Name

Part_b3 Power Set PHONE

From the analysis, (in – relation in our library), we
obtained the following action. Also we have new
knowledge that is the introduction of two input
variables (indicated by symbol ?).

Action In LATEX

< Part_a1 > < Part_a2> < Part_a3 > name? \in staff

< Part_b1 > < Part_b2> < Part_b3 > number? \in ext

Input Translation: The 3rd column of the specification
contains input variables. However, the type of the

variables are not specified in the table. Therefore
SNL2Z will automatically associate the type of the
variables based on the predicate in the above pre-
condition.

Input Basic Type Name Action in LATEX

< Part_a1 > PERSON name? : PERSON
< Part_b1 > PHONE number? : PHONE

Post-condition Translation: Post-condition translation
is based on the column labelled State Change.
Depending on the preposition, the sentence will be
divided into two parts as follows:

“add entry to directory”
Part_1 Part_2

<add entry> <directory>

Part 1 of the sentence will be analysed and divided into
small component:

<add entry>
Part_11 Part_12
<add> <entry>

Part_2 “directory “ is identifier of the relation between
people and their internal phone number. In the light of
this function, the added entry mentioned in Part_12 is
analysed as:

<entry>

Part_12-a Part_12-b

< name?> < number?>

Action < Part_2>’ = < Part_2> < ¿ ><Part_12-a> < �

> <Part_12-b>
In LATEX directory' = directory \cup \{ name? \mapsto

number? \}

Because of the is only one predicate shows the state
changes, therefore the other state variables (in
ITDirectory schema) remain unchanged. SNL2Z
explicitly specified that as follows:

Variable Action in LATEX
staff staff’ = staff
ext ext’ = ext

Output Translation: In this case study, the output of
the operation is very simple that is success. Based on a
free type knowledge, SNL2Z knows that success is one
of a value in REPORT. Therefore SNL2Z translates it

Am. J. Applied Sci., 5 (4): 378-384, 2008

 383

by assigned the message to a newly created output
variables as follows:

msg! = success
and declare msg as a type of REPORT.

In the light of the above method, the output of the
system “translation” of the operation schemas shown in
Fig. 5 into LATEX sentences is:

\begin{schema}{AddStaff}
 \Delta ITDirectory
 name? : PERSON
 Msg! : REPORT
\where
 name? \notin staff
 staff' = staff \cup \{ name? \}
 ext' = ext
 directory' = directory
 Msg! = Success
\end{schema}

\begin{schema}{InvalidStaff}
 \Xi ITDirectory
 name? : PERSON
 Msg! : REPORT
\where
 name? \notin staff
 Msg! = InvalidStaff
\end{schema}

\begin{schema}{AlreadyExist}
 \Xi ITDirectory
 name? : PERSON
 Msg! : REPORT
\where
 name? \in staff
 Msg! = AlreadyExist
\end{schema}

\begin{schema}{AddEntry}
 \Delta ITDirectory
 name? : PERSON
 number? : PHONE
 Msg! : REPORT
\where
 name? \in staff
 number? \in ext
 name? \mapsto number? \notin directory
 directory' = directory \cup \{ name? \mapsto number? \}
 staff' = staff
 ext' = ext
 Msg! = Success
\end{schema}

\begin{schema}{AlreadyExist}
 \Xi ITDirectory
 name? : PERSON

 number? : PHONE
 Msg! : REPORT
\where
 name? \mapsto number? \in directory
 Msg! = AlreadyExist
\end{schema}

\begin{schema}{InvalidEntry}
 \Xi ITDirectory
 name? : PERSON
 number? : PHONE
 Msg! : REPORT
\where
 name? \mapsto number? \notin directory
 Msg! = InvalidEntry
\end{schema}

CONCLUSION

In this paper, we have presented a technique of
writing a structured natural language specification
(SNL) used by our SNL2Z system and the method of
translating these specifications in which the sentences
have implicitly specified parameters into an algebraic
specification. The early testing of the system by using
various examples taken from [4] and [2] shows that it is
capable to translate the input specifications into formal
LATEX sentences. We are in the process of improving
the design of the tool by extending the rules and range
of the natural language statement that is accepted by the
tool, in the way to lessen the limitations that the tool is
suffering from .

REFERENCES

1. Beum-Seuk, Lee and Barrett, R., Bryant, 2002.

Automated conversion from requirements
documentation to an object-oriented formal
specification language. In Proceedings of SAC
2002, Madrid, Spain, ACM.

2. Bottaci, L. and Jones, J., 1995. Formal
Specification Using Z A Modelling Approach,
International Thomson Publishing.

3. Bowen, J., 1996. Formal Specification and
Documentation using Z: A Case Study Approach,
International Thomson Computer Press.

4. Diller, A., 1994. Z: An Introduction to Formal
Methods, 2nd edn, John Wiley & Sons, West
Sussex, UK.

5. Fantechi, A., Gnesi, S., Ristori, G., Carenini, M.,
Vanocchi, M., and Moreschni, P., 1994. Assisting
requirement formalization by means of natural
language translation. in Formal Methods in System
Design, Vol. 4, 243-263.

Am. J. Applied Sci., 5 (4): 378-384, 2008

 384

6. Fuchs, N., and Schwitter, R., 1996. Attempto
Controlled English (ACE), Proc. CLAW 96, 1st
Int. Workshop Controlled Language Applications.

7. Holloway, C., 1997. Why Engineers Should
Consider Formal Methods, Proc. 16th Ann. Digital
Avionics Systems Conf., IEEE Press, Vol.1, 16-22.

8. Ishihara, Y., Seki, H., and Kasami, T., 1992. A
Translation Method from Natural Language
Specifications into Formal Specifications Using
Contextual Dependencies, in: Proceedings of IEEE
International Symposium on Requirements
Engineering, San Diego, IEEE Computer Society
Press, 232-239.

9. Mehandjiska D., and Palac, J., 2002. Towards
Bridging Component Specification Technologies,
International Conference on Software Engineering,
the 20th IASTED International Multi-conference
Applied Informatics (AI2002) Austria.

10. Mirian, S. and Mousavi, M., 2002. Making
Nondeterminism Explicit in Z, Proceedings of the
Iranian Computer Society Annual Conference
(CSICC'02), Tehran, Iran, February.

11. Miriyala, K. and Harandi, M., 1991. Automatic
Derivation of Formal Software Specifications from
Informal Descriptions, IEEE Transaction on
Software Engineering, Vol. 17(10), 1126 -1142.

12. Reubenstein, H. and Waters, R., 1991. The
Requirement Apprentice: Automated Assistance
for Requirements Acquisition, IEEE Transaction
on Software Engineering, Vol. 17(3), 226 -240.

13. Shukur, Z., Zin, A., and Ban, A., 2002. M2Z: A
Tool for Translating a Natural Language Software
Specification into Z. International Conference on
Formal Methods and Software Engineering,
ICFEM 2002: 406-410.

14. Spivey, J., 1992. The Z Notation: a Reference
Manual, 2nd edn, Prentice Hall International Series
in Computer Science, London.

15. Sullabi, M. and Sukur, Z., 2006. Model of CSCW
for Z Specification Document, in: Proceedings of
Business, Law, & Technology (IBT2006), Vol. (2),
Edited by Sylvia Mercado Kierkegaard, Denmark,
465-473.

16. Sullabi, M. and Sukur, Z., 2006. Web-based
Collaborative Model for Preparing Formal
Software Specifications, in: Proceedings of the
Eighth International Conference on Information
Integration and Web-based Applications &
Services (IIWAS2006), Indonesia, 433-441.

17. Vadera, S. and Meziane, F., 1994. From English to
Formal Specifications. The Computer Journal Vol.
37(9), 753-761.

18. Wilson, W., 1999. Writing Effective Natural
Language Requirements Specifications, Technical
report, Naval Research Laboratory.

