
American Journal of Applied Sciences 5 (4): 312-319, 2008
ISSN 1546-9239
© 2008 Science Publications

Corresponding Author: Somayeh Timarchi, Faculty of Electrical and Computer Engineering, Shahid Beheshti University,
Tehran, Iran, Tel: +98 21 29902286, Fax: +98 21 2417940, E-mail: s_timarchi@sbu.ac.ir

312

Low Power Modulo 2n+1 Adder Based on Carry Save Diminished-One Number System

Somayeh Timarchi, Omid Kavehei, and Keivan Navi
Department of Electrical and Computer Engineering,

Shahid Beheshti University, Tehran, Iran

Abstract: Modulo 2n+1 adders find great applicability in several applications including RNS
implementations. This paper presents a new number system called Carry Save Diminished-one for
modulo 2n+1 addition and a novel addition algorithm for its operands. In this paper, we also present a
novel architectures for designing modulo 2n+1 adders, based on parallel-prefix carry computation
units. CMOS implementations reveal the superiority of the resulting adders against previously reported
solutions in terms of implementation area and delay.

Keywords: Modulo 2n+1 addition, carry save diminished-one number system, parallel-prefix

adders, residue number system, computer arithmetic, VLSI circuits.

INTRODUCTION

 The Residue Number System (RNS) is a non-
weighted number system [1] that can map large numbers
to smaller residues, without any need for carry
propagations [2]. Arithmetic operations like addition,
subtraction and multiplication can be performed on
residue digits concurrently and independently. Thus,
using residue arithmetic, would in principle, increase
the speed of computations [3, 4, 5].
 RNS has shown high efficiency in realizing
special purpose applications such as digital filters [6, 7, 8,

9], image processing [10], RSA cryptography [11] and
specific applications for which only additions,
subtractions and multiplications are used and the
number dynamic range is specific.

Special moduli sets have been used extensively to
reduce the hardware complexity in the implementation
of converters and arithmetic operations [12, 13]. Among
which the triple moduli set { }2 1 , 2 , 2 1n n n− + have some
benefits [14]. Because of operand lengths of these
moduli, the operation delay is determined by the
modulo 2n +1 channel. Therefore, the design of efficient
modulo 2n +1 adders is critical [15]. Modulo 2n +1
operations are used in many applications such as DSP
algorithms [16], Fermat Number Transform for
elimination of round off errors in convolution
computations[17, 18, 19], cryptography[20] and in
pseudorandom number generation[21]. Modulo 2n +1
adders are also utilized as the last stage adder of
modulo 2n +1 multipliers.

In the last few years, several algorithms and
architectures have been proposed for designing modulo

2n+1 adders. These algorithms are based on two number
systems :
• To overcome the problem of (n+1)-bit wide circuits

for the modulo 2n +1 channel, the diminished-one
number system [17] has been proposed. In this
system, efficient adders have been reported in [14, 22-

25]. But these adders need a special treatment for
zero operands.

 For this problem, a new number representation
called “Carry Save Diminished-one” (CSD-1) is
proposed in this paper. With this system, the addition
with zero operand doesn’t need a special treatment,
which reduces the adder chip area.
• Modulo 2n +1 adders can be designed as a special

case of general modulo m adders. The most
efficient circuits for generalized modulo adders are
reported in [15, 26-28]. In [15], the proposed adder is
more efficient than the ones proposed by [26-28].

 However, the corresponding structure [15] uses a 3-
operand adder which is eliminated in our method. In the
paper, we derive a new methodology for modulo 2n +1
adder that leads to a parallel-prefix adder architecture.
Using implementation in a CMOS technology, we show
that the proposed parallel-prefix design methodology
uses considerably less chip area than that reported in [23]
(diminished-one number system) and less chip area and
propagation delay than the approach reported in [15]
(normal number system).

FOUNDATION
Modulo 2n +1 Reduction Basics : Let A be a 2n bit
word and Ah (resp. Al) the corresponding high (resp.
low) n bit words:

Am. J. Applied Sci., 5 (4): 312-319, 2008

 313

A = Ah2n + Al.
A mod (2n +1) = (Ah2n + Al) mod (2n +1)

 = (Al -Ah) mod (2n +1).
 Therefore, the reduction modulo 2n +1 is computed
by subtracting the high n-bit word from the low n-bit
word and then conditionally adding 2n +1 if the
subtraction yields a negative result.

Diminished-One Number System: In the diminished-
one number system, the number A is represented by

1A A′ = − and the value zero is treated separately, i.e.,
it requires an additional zero indication bit. In this
system, the ordinary addition can be implemented by an

end-around-carry parallel-prefix adder with in out
c c=

[17, 25]:
S' = (S-1) = (A+B-1) mod (2n+1)
 = [(A'+1) + (B'+1) - 1)] mod (2n+1)
 = (A' + B' + 1) mod (2n+1)

 = (A' + B' + outc) mod 2n (1)

Algorithm 1: (Modulo 2n +1 addeition in diminished-1
number system): A number in diminished-one is
represented by n+1 bits in which the (n+1)th bit is used
to indicate ‘0’. In [17], the modulo 2n +1 addition
algorithm has been presented for zero and non zero
operands:
1) If the most significant bit of one addend is ‘1’,

inhibit the addition and the other addend is the sum
(Fig. 1).

2) If the msb of both addends are ‘0’, ignore the msb,
add the n lsb’s, complement the carry and add it to
the n lsb’s of the sum.

 The modulo 2n +1 adder in Fig. 1 can be designed
in different ways. To increase the modulo addition
speed, the delay of carry computation should be
minimized. In many papers, parallel-prefix adders have
been proposed for this purpose.

)0,1(−nB)0,1(−nA

)0,(nA)0,(nB

)0,1(1 −nO)0,(2 nO

)0,(nS

)(1 nO

)(nA

)(nB

)(nA() AdderModulo n 12 +

Fig. 1: The general design of diminished-one modulo

adder

Parallel-Prefix Adders: Parallel-prefix adders are
usually used in papers for speeding up the addition
operation. They minimize the carry computation time.
In the prefix technique, n inputs x0 . . . xn-2 xn-1 and an
arbitrary associative operator are used to compute n
outputs

01 xxxy iii oLoo −= for i = 0, n-1. Thus, each

output yi depends on all inputs xj of same or lower range
(j= i). In a binary addition, the carry propagation is a
prefix problem.
 Prefix structures can be represented by using a
direct acyclic graph. The o operator on a pair of
(,)

i i
g p terms is usually represented by a node and a

carry computation unit is represented as a tree
structured interconnection of such nodes. Several tree
structures have been proposed in [29, 30].

THE NEW CSD-1 NUMBER S YSTEM AND ITS

MODULO 2 1n + ADDITION ALGORITHM

CSD-1 Number System: In the proposed method, we
try to improve the performance of modulo 2n +1
arithmetic units by using a carry save coding. Table 1
shows the new representation of numbers.

Table 1: The CSD-1 coding for modulo 2n +1

Range Bit Representation

[0 , 2n] � . . . ��
 �

 As shown in table 1, this representation is
composed of n positions (digits), with two bits in the
first position and n-1 bits in other ones. A number X is
represented as below:
X = xn-1 . . . x2 x1 x'0
 x?0
 We call this system “carry save diminished-one”. If

()0 0X X≠ = then ()00 1 0x x′ ′= = . When we
eliminate this bit from representation, the remaining
bits are equal to diminished-one representation of X.
Also there are two bits in the first position; therefore we
have a carry save representation. So we call this system
“Carry Save Diminished-one” (CSD-1).
 The difference between CSD-1 and diminished-one
representations is that in CSD-1, the value of
represented number is exactly equal to its real value. In
the diminished-one, each number X is represented
by 1X X′ = − . As shown later, CSD-1 has an
advantage over diminished-one that leads to a unique
circuit for zero and non zero operands. Therefore, the
first step of the diminished-one addition Algorithm 1 no
longer exists with CSD-1. Another benefit is that CSD-

Am. J. Applied Sci., 5 (4): 312-319, 2008

 314

1 is extendable to any other modulo when diminished-
one is only defined for modulo 2n +1.

CSD-1 Addition Algorithm: In this section, we
present the CSD-1 addition algorithm for modulo 2n +1
(Algorithm 2).

Algorithm 2: (CSD-1 addition): This algorithm is
decomposed into 2 steps.
Step 1. The first step is based on the following
theorem:
Theorem 1: Let A and B be two CSD-1 numb ers in the
range [0, 2n+1]. Then,







−+

<−++−+
=+

+
otherwiseBA

BAifBA
BA

n

nn

n

n

2

22
12

1

2111

Proof:

()
()
()





−−+

<−++−+
=







+−+

+<++
=+

+

otherwiseBA

BAifBA

otherwiseBA

BAifBA
BA

n

n

n

n

n

21

2111

12

12
12

 (2)

When nBA 21 <−+ then
() 1111

2
+−+=+−+ nBABA (3)

 The maximal value of (3) is 2n. In CSD-1, this
value can be represented by (n+1) bits in n positions. In
other words, the output carry resulting from

2
1 1nA B+ − + is 0. Thus, the term (3) is transformed

into:

nnn BABA
222

1111 +−+=+−+

 Since A, B ∈[0, 2n], the second case of equation (2)
leads to the following inequalities:

nnnnnBA 2212221 <−−+≤−−+
So,

22
1 2 1 2 1 nn

n nA B A B A B+ − − = + − − = + −

Therefore, from (2) we get:







−+

<−++−+
=+

+ otherwiseBA

BAifBA
BA

n

n

n

n

2

2
12 1

2111
 (4)

Y
 The equation (4) outlines the impact of the output
carry of (A+B-1). In the CSD-1 number system, this
carry is produced when the sum is larger than 2n. The
carry generation indicates that the sum is equal or
greater than the modulo. Let assume Cout is the output
carry of (A+B-1). Thus the carry of (A+B-1) will be
generated when:

()'1 ' 1 2 1 2 2

2 1

n n
out

n

c A B A B

A B

= ⇔ + − ≥ + ⇔ + ≥ +

⇔ + > +

(5)
 Thus, if the sum of two numbers is greater than the
modulo, the output carry of (A+B-1) is ‘1’ and the sum
is correct according to theorem 1: there is no need to
increment the result.
The output carry is zero in the following cases:

()
()
()

'0 ' 1 2 1

2 1 *
2 1

2 1 **

n
out

n
n

n

c A B

A B
A B

A B

= ⇔ + − < +

 + < +⇔ + ≤ + 
+ = +

 (6)

 In condition (*), since A+B is less than the modulo,
the output carry of (A+B-1) is ‘0’. According to
equation (4), the sum should be incremented in the
second stage. Therefore from (4), (5) and (*) we have:
if 2 1nA B+ < + or 2 1nA B+ > + then:

() () ()mod 2 1 1n
outS A B A B c= + + = + − + (7)

 But in condition (**) of equation (6), when
2 1nA B+ = + , equation (7) leads to S =1, which is not

true. To correct this case, we introduce step 2 of
Algorithm 2 that will be presented later.
In our method, (A+B-1) is computed without any extra

hardware and only by ignoring 0a ′ in above sum. As

mentioned earlier, if 0A ≠ then 0 1a ′ = ; thus (A+B-1)

will be achieved by eliminating 0
a′ . If 0A = then A+B

will be computed by removing 0
a′ . In this case, we have

always ' 0 '
out

c = and the sum will be incremented

according to equation (7). But incrementing shouldn’t
be done to obtain the correct result.
 The first step of Algorithm 2 reveals that a two-
stage combinational circuit is required for modulo
addition (adder and incrementer). The first stage
computes an intermediate sum M.

()
()

0

0

1 0 0

0 1

M A B if A a

M A B if A a

′= + − ≠ =

′= + = =

Therefore, we adjust equation (7) as below:

() () 0mod 2 1n
outA B M c a′+ + = + + (8)

M in equation (8) is achieved by addition of A and B
excluding 0a ′ . The range of M is given by theorem 2.

Theorem 2: (The range of M): M has a (n+1)-digit
binary representation in CSD-1, i.e., M ∈ [0, 2n+1].
(Note that mn = Cout in this theorem.)

Am. J. Applied Sci., 5 (4): 312-319, 2008

 315

Proof: If A=0 then M=A+B=B. Since B ∈ [0, 2n] then
the theorem is established. The situation is the same if
B=0.
If 0A ≠ and B ? 0 then 1M A B= + − . Since

, 2 1, 0nA B A< + > and B > 0 then,
1201)12()12(10 +≤<⇔−+++<−+< nnn MBA
(9)

 The maximal value of M is 2n+1 which can be
presented by n+2 bits or n+1 digits in CSD-1 (for this
maximal value, all bits are ‘1’). Y
 In the second stage, the least n posibits of M is
incremented according to (8).

Step 2 : As described before, if 2 1nA B+ ≠ + then

theorem 1 leads to equation (8). But if 2 1nA B+ = +
then the correct output of S=0 should be produced. In
this case, A and B are non zero and

1 2nM A B= + − = .
According to theorem 2 and equation (8), if the msb of
M, mn=0 (Cout = 0) then M should be incremented in the
second stage. Thus the final output is 2n+1. In CSD-1,
each numb er is in the range of [0, 2n] and can be
represented by n digits. Therefore the output carry can
be ignored and the output sum is “0…01” that can be

corrected by inverting 0
s′ .

 In the second step of Algorithm 2, we introduce
two methods to detect zero output and to correct it.
a) The correct output zero occurs when two inputs are

complementary, i.e. their sum is equal to modulo
2n+1. One method to recognize complementary
numbers is the logical AND of the outputs of ai
XOR bi (for any i except i = 0). A similar method
has been mentioned in [23].

b) Another method is based on the following theorem.

Theorem 3: (Complementary of two inputs): Two
inputs are complementary when (and only when) the
input and output carries of the incrementer are ‘1’.
Proof:
o First, we prove that if A and B are complementary

numbers, the input and output carries of the
incrementer are ‘1’. When A and B are
complementary, both of them are non zero.

Therefore, 1 (2 1) 1 2n nM A B= + − = + − = . In

CSD-1, 2n has n digits. Thus, 0 1
out out

c c= ⇒ = .

The input carry of the incrementer is
1. 0

* =′= acc outin
.

The output carry of the incrementer is equivalent to
the output carry of the following addition:

() 1211 +=+=+−+= nBABAS

Obviously, the output carry is ‘1’.
o Now we prove that if input and output carries of

the incrementer are ‘1’ then A and B are
complementary numbers.
If * 1inc = then

0
(.) 1

out
c a ′ = . Therefore 1A ≠

and 0outc = . In other words, 1M A B= + − and

we have:
1 2 2 1n nM A B A B= + − ≤ ⇒ + ≤ + (10)

The output carry of the incrementer is ‘1’ when the
sum is equal or more than 2n+1. That is:
()1 1 2 1 2 1n nA B A B+ − + ≥ + ⇒ + ≥ + (11)

Equations (10) and (11) are simultaneous verif ied
when A+B = 2n+1, which shows that A and B are
complementary.

Y
 Method (a) has been used in [23]. However the
method (b) for zero detection and correction consumes
less area than method (a). Then, we implemented
method (b). As described earlier and according to
example 1, 0s′ can be transformed to ‘0’ in the condition

of zero detection.

THE PROPOSEH CSD-1 PARALLEL-PREFIX
ADDER (CSD-PP)

 One way for implementing the CSD-PP adder is
based on the adder architecture of Fig. 2. But instead of
having a dedicated single stage for reentering the carry,
[23] has proposed to perform carry recirculation at each
existing prefix level. Then, there is no need for the extra
carry increment stage. As a result, a dedicated CSD-PP
adder architecture is derived with one less prefix level
compared to those derived from Fig. 2 architecture. In
the CSD-1 system, it requires several modifications.
These modifications will be introduced by the 3
following theorems.

Theorem 4: Let assume that (),G P = ()PG, and

,a b
G and ,a b

P , with a > b, are respectively the group

generate and propagate signals for the group a, a-1, a-2,
... , b-1, b, computed by:

() () () ()bbaaaababa pgpgpgPG ,,,, 11,, oLoo −−=

Am. J. Applied Sci., 5 (4): 312-319, 2008

 316

 In our case, in which the reentering carry is given

by the expression 0 1n
a G

−
′ , the carries

*

i
c of the

addition modulo 2n+1 are equal to *

iG , where *

iG is

computed by the prefix equations:

()
()
() ()

1 1* *

0 1, 1 1, 1

, 1
,

, , 0 2

n n

i i

i i n i n i

G P i
G P

G P a G P if i n

− −

− + − +

 = −
= 

′ ⋅ ≤ ≤ − o

Proof:
() () ()

()()
()()

()
()
()
()
() ()1,101,1

1,101,1

1,101,1

101,101,1

101,101,11,1

101,11,1

101,11,1

101
**

,,

,

,

,

,

,

,

,,,

+−+−

+−+−

+−+−

−+−+−

−+−+−+−

−+−+−

−+−+−

−−

′⋅=

′⋅+=

′⋅+=

′⋅+′⋅+=

′⋅+′⋅+=

′⋅++=

′⋅⋅++=

′⋅=

ininii

ininii

iniinii

niiniinii

niiniininii

niininii

niininii

nniiii

PaGPG

PaGPG

PPaGPG

PaGGPaGPG

PaGGPaPGPG

PaGPGPG

PaGPGPG

PaGPGPG

o

o

Y
 Theorem 5 will derive expressions leading to faster
circuits.

Theorem 5: Defining *

0 0 0p p a′= ⋅ leads to

() () () ()1,11,1
*
00

** ,,,, +−+−= ininiiii PGpgpgPG ooLo

Proof:

() () () ()
()
() 












 ′⋅+++
=

′⋅=

+−−

+−−−

+−+−

1,1011

01,10111

1,101,100
**

,

,,,,

inii

iniiiii

ininiiii

Ppppp

aGppppgpg

PaGpgpgPG

L

LL

ooLo

When computing *

iG , only the last term

includes 0p and 0a ′ . Therefore, we can

define *

0 0 0p p a′= ⋅ and replace 0
p by

*

0p

() () () ()

()
() 












 +++
=

=

+−−

+−−−

+−+−

1,1
*
011

1,1
*
0111

1,11,1
*
00

**

,

,,,,

inii

iniiiii

ininiiii

Ppppp

Gppppgpg

PGpgpgPG

L

LL

ooLo

(12)

The final *

iP are never used and the intermediate iP

don’t have 0p . The above equations are thus correct. Y

 In several cases, the equations (12) require more
than log2n prefix levels for their implementation. These
equations can be transformed into equivalent ones that
can be implemented within log2n prefix levels. The
required transformation uses Theorem 2 of [23], as well
as the Theorem 6 that will be introduced below.
Theorem 2 of [23] says that,

() () () ()PGgpPGpg ,,,,, =o
This implies that a carry equal to the generate term
which is expressed by a prefix equation of the form
() (), ,g p G Po is also equal to the generate term of an

equation of the form () (), , ,p g G P .

The above formula is true when g p p⋅ = .

The following theorem is also required to derive the
term that has the form () () ()PGgpPGpg ,,),(,, 0

*
0

*
00 =o

in prefix notation:

Theorem 6: If () () ()*

0 0, , ,x xG P g p G P= o and

*
0 0(,) (,),(,)y yG P p g G P= then x yG G= .

Proof: First, we proof the following expression:

()
() *

0000000000

000000
*
00

*
00)(

pabbaaabba

abbabapgpg

=′′′+′′′=′′+′′′+′′′=

′′′+′′′+′′′′=+=⋅ (13)

Using this formula, we get:

)()(

))(()(

0
*
00

*
00

*
00

*
00

*
00

GgpGgpg

GpgGpgGpg

⋅+=⋅+⋅=

+⋅=+=+

Y
 The carry equations resulting from theorem 2 of [23]
and theorem 6 can be implemented by a prefix structure
that has log2 n levels. As mentioned earlier, we use the
modifications introduced by theorems 4 to 6. Our
proposed adder is similar to [23] modulo adder
architecture but its first cells of preprocessing and post
processing stages are designed differently.

In the CSD-1 number system, if
0

0x ′ = then
0

0x′′ = .

This is a special property of CSD-1. Using this property
to simplify truth tables of these two cells leads to the
following equations:

()000000000
*

0 babbbabbas ′′⊕′′′=′′′′′+′′′′′=′′

000000
*
0 babaapp ′′′+′′′=′⋅=

000 bag ′′′′=
* * * * *

0 0 0 0in ins s c s s c′′ ′′ ′ ′′= +

Am. J. Applied Sci., 5 (4): 312-319, 2008

 317

Theorem 3 is used for the detection and generation of a
correct zero. The term r indicates the condition of
theorem 3:

1.1 01
*

1 =′→= −− aGc n

1.1 1

*
21

* =+→= −−− nnnout gchc

()()1
*

2101
**

1 −−−−− +′== nnnnout gchaGccr

RESULTS AND COMPARISONS

 In this section, we compare the proposed CSD-PP
adder to those proposed in [15] and [23]. As previously
mentioned, the architecture proposed in [23] outperforms
those presented in [24] and [25], and the architecture
proposed in [15] outperforms those presented in [26-28] in
terms of implementation area and execution delay.
Thus, the architecture of [23] is the best diminished-one
architecture, and the architecture of [15] is the best
architecture using normal binary representation.
All architectures were described in HSPICE and
mapped to the 0.18 implementation technology (0.18
µm, Vdd=1.8 v). We use VLSI implementations and a
simple model to compare the proposed adder
architectures to those proposed in [15] and [23]. We use
the notation PPREF for the diminished-one modulo
28+1 adder proposed in [23] and TPP for the normal
binary one in [15]. The CSD-PP implementation for the
modulo 2n+1 adder is given in Fig. 2.

Analytical Comparisons and Results: First, we use
the analytical model used in [15] and [23], under the
notation “unit-gate model”. This model assumes that
each gate, except the exclusive-OR gate, counts as one
elementary gate for both area and delay. An exclusive-
OR gate counts for two elementary gates for both area
and delay. According this model, the latencies of the
modulo 2n and modulo 2n -1 adders are equal to 2*log2n
+ 3. The PPREF modulo adder has an execution latency
of 2*log2n + 3.
 However, according to Fig. 1, the overall delay of
PPREF is the modulo adder latency plus the multiplexer
delay. The multiplexer is a 2-level circuit in unit -gate

model. The overall delay is 2*log2n + 5. The TPP adder
has a latency equal to 2*log2n + 6 and the proposed
CSD-PP adder has a latency equal to 2*log2n + 4. The
CSD-PP architecture is faster than PPREF and TPP.
Therefore, the CSD-PP adder offers the fastest designs
reported in the open literature. The CSD-PP adder has
also the same prefix levels as the PPREF adder, without
requiring any circuits for treating zero operands as
shown in Fig. 1, which reduce both the execution time
and the implementation area. Therefore, the proposed
CSD-PP adders are more efficient than the fastest
modulo 2n+1 adder which handle operands in
diminished-one representation. The normal binary
system can be easily converted to the normal binary
RNS. The representation of odd numbers in CSD-PP
adders is the same as in TPP adders.
 According to the unit-gate model, the hardware
overheads of the fastest reported modulo 2n and modulo
2n -1 adders are respectively equal to 1.5 n * log2 n + 5n
and 3 n * log2 n + 5n. The PPREF modulo adder has an
area of 4.5 n * log2 n +0 .5n + 6. However, according to
Fig. 1, the final area of PPREF includes the modulo
adder area and the area of circuit for the treatment of
zero operands. The zero operand circuit area is 2n+5.
Thus, the final area is 4.5 n * log2 n +2 .5n + 11. The
area of the TPP adder is equal to 4.5 n * log2 n +3 .5n +
13 and the proposed CSD-PP adder area is equal to 4.5
n * log2 n + 0 .5n + 15.

Real Comparisons and Results: For evaluating the
speed, area and power consumption efficiencies of each
architecture, every adder is implemented by CMOS
technology. The obtained results are listed in Table 2.
As we can see proposed architecture leads to far faster
implementations than that of [15] and [23]. This is due to
the fact that the architecture of [15] requires a delay of
one CSA unit and the design of PPREF in [23] uses some
multiplexers to treat zero operands. The proposed
architecture, on the other hand, relies on a 2-operand
addition (in adverse of TPP that adds two inputs and 2n-
1) and requires unique circuit for zero and non zero
operands based on CSD-1 number system.

Am. J. Applied Sci., 5 (4): 312-319, 2008

 318

*
1−c*

0c*
1c*

5c*
6c *

2c*
3c*

4c

()*
0 0,p g()*

0 0,g p

0s′

0s ′′

*
0s′′

*
1−c

*
0s′′ 0s ′′

*
0

*
0 , ss ′′′

1s2s3s4s5s6s7s

11 ab22 ab33 ab44 ab55 ab
66 ab77 ab

0 0 0 0b b a a′′ ′ ′′ ′

0 0 0 0b b a a′′ ′ ′′ ′

Fig. 2: Proposed modulo 2n+1 parallel-prefix carry save diminished-one adder

Table 2: Real Comparison Results

Adder Architecture Transistor
Count

Average Power
Consumption (µW)

Delay (ps) Power–Delay
Product (fJ)

PPREF [23] 1036 293.56 434.44 127.54
TPP [15] 844 278.64 562.74 156.80
CSD-PP 838 214.51 235.59 50.53

Improvement
CSD-PP vs. PREF > 19% < 27% > 45% > 60%

Improvement
CSD-PP vs. TPP > 0.7% > 23% > 58% > 67%

 Finally, we study power consumption of compared
architectures. The simulation results are shown in Table
2. It is obvious that the proposed CSD-PP adder has the
lowest consumption of all. It improves TPP and PPREF
power consumptions above 23% and 26% respectively.

CONCLUSIONS

 In this paper, a new number system has been
presented. This paper also presents a new architecture
for modulo 2n+1 adders that uses parallel-perfix carry
computation units based on mentioned number system.
The proposed architecture has better performance than

the conventional modulo 2n+1 adders. The main points
of the paper are summarized below:
1. The special treatment required for zero operands in

the diminished-one number system has been
removed.

2. The proposed architecture removes the 3-operand
adder issue in the fastest modulo 2n+1 adders with
the normal binary system.

3. The proposed architecture leads to the fastest
reported modulo 2n+1 adders, with execution
latencies close to the execution latency of the
fastest modulo 2n and modulo 2n+1 adders, which
means that the proposed architecture is suitable for
RNS applications.

Am. J. Applied Sci., 5 (4): 312-319, 2008

 319

REFERENCES

1. Behrooz Parhami., 2000. Computer arithmetic:

algorithms and hardware designs, Oxford.
2. Garner, H., 1959. The residue number system, IRE

Trans. On Electronic Computer, vol. EC-8, pp.140-
147.

3. Kouretas I., and V. Paliouras, 2005. High-radix
redundant circuits for RNS modulo rn-1, rn, or rn+
1, The International Symposium on Circuits and
Systems (ISCAS '03), vol. 5.

4. Hosseinzade M., S. Timarchi and K. Navi, 2007.
Multi Level Residue Number System with Moduli
Set of)12,12,2(1 −− −nnn , 12th International CSI
Computer Conference (CSICC’2007).

5. Timarchi S., K. Navi and M. Hosseinzade, 2006.
New Design of RNS Subtractor for
modulo)12(+n , 2nd IEEE International Conference
on Information & Communication Technologies:
From Theory To Application.

6. Freking W.L. and K.K. Parhi, 1997. Low-power
FIR digital filters using residue arithmetic, 31st
Asimolar Conference on Signals, Systems and
Computers, Pacific Grove, CA, USA, vol. 1, pp.
739–43.

7. Fernandez P. G., et al., 2000. A RNS-Based
Matrix-Vector-Multiply FCT Architecture for DCT
Computation, Proc. of the 43rd IEEE Midwest
Symposium on Circuits and Systems, pp. 350-353.

8. Parhami B., 1996. A Note on Digital Filter
Implementation Using Hybrid RNS-Binary
Arithmetic, Signal Processing, vol. 51, pp. 65-67.

9. Re A. D., A. Nannareli and M. Re, 2004. A Tools
for Arithmetic Generation of RTL-Level VHDL
Description of RNS FIR Filters, IEEE Proceeding
of the Design, Automation and Test in Europe
Conference and Exhibition (DATE).

10. Bhardwaj, M. and B. Ljusanin, 1998. The
Renaissance – A Residue Number System Based
Vector Co-Processor for DSP Dominated
Embedded ASICs , Proc. Asimolar Conference on
Signals, Systems, and Computers, pp. 202-207.

11. Yen S., S. Kim, S. Lim and S. Moon, 2003. RSA
Speedup with Chinese Remainder Theorem
Immune against Hardware Fault Cryptanalysis ,
IEEE Trans. On Computers, vol. 52, no. 4, pp. 461-
472.

12. Hariri A, K. Navi, Rastegarpanah, 2007. A new
High Dynamic Range Moduli Set with Efficient
Reverse Converter, to appear in Computers &
Mathematics with Applications journal (Elsevier).

13. Sabbagh A., K. Navi, 2007. An improved Residue
to Binary converter for the RNS with Pairs of
conjugate moduli, International Conference on
Electrical engineering and Informatics.

14. Efstathiou C. et al., 2001. On the Design of
Modulo 2n-1 Adders, Proc. of the Eighth IEEE Int’l
Conference on Electronics, Circuits & Systems, pp.
517-520.

15. Efstathiou C., H. T. Vergos and D. Nikolos, 2004.
Fast Parallel-Prefix 2n+1 Adder, IEEE Trans. On
Computers, vol. 53, no. 9.

16. Taylor F., 1985. A Single Modulus ALU for Signal
Processing, IEEE Trans. on Acoustics, Speech,
Signal Processing, vol. 33, pp. 1302-1315.

17. Leibowitz L. M., 1976. A Simplified Binary
Arithmetic for the Fermat Number Transform,
IEEE Trans. on Acoustics, Speech, Signal
Processing, vol. 24, pp. 356-359.

18. Sunder S. at al., 1993. Area-Efficient Diminished-1
Multiplier for Fermat Number-Theoretic
Transform, IEE Proc. G, vol. 140, pp. 211-215.

19. Truong T. K. et al., 1986. Techniques for
Computing the Discrete Fourier Transform Using
the Quadratic Residue Fermat Number Systems,
IEEE Trans. On Computers, vol. 35, pp 1008-1012.

20. Zimmermann R. et al., 1994. A 177 Mb/s VLSI
Implementation of the International Data
Encryption Algorithm, IEEE Journal of Solid-State
Circuits, vol. 29, no. 3, pp. 303-307.

21. Lehmer D.H., 1951. Proc. of the Second
Symposium on Large-Scale Digital Calculating
Machinery (Cambridge, MA: Harvard University
Press), pp. 141-146.

22. Vergos H.T., C. Efstathiou, and D. Nikolos, 2001.
High Speed Parallel-Prefix Modulo 2n+1 Adders
for Diminished-One Operands, IEEE Proce. Of
15th IEEE Symposium on Computer Arithmetic,
pp. 211 – 217.

23. Vergos H.T., C. Efstathiou, and D. Nikolos, 2002.
Diminished-One Modulo 2n+1 Adder Design,
IEEE Trans. On Computers, vol. 51, pp. 1389-
1399.

24. Zimmermann R., 1997. Binary Adder
Architectures for Cell-Based VLSI and Their
Synthesis, PhD thesis, Swiss Federal Institute of
Technology.

25. Zimmermann R., 1999. Efficient VLSI
Implementation of Modulo (2n±1) Addition and
Multiplication, Proc. of the 14th IEEE Symposium
on Computer Arithmetic (ARITH-14), Adelaide,
Australia, pp. 158-167.

26. Bayoumi M. and Jullien G., 1987. A VLSI
Implementation of Residue Adders, IEEE Trans.
on Circuits and Systems, vol. 34, pp. 284-288.

27. Dugdale M., 1992. VLSI Implementation of
Residue Adders Based on Binary Adders, IEEE
Trans. on Circuits and Systems II, vol. 39, pp. 325-
329.

28. Hiasat A.A., 2002. High-Speed and Reduced Area
Modular Adder Structures for RNS, IEEE Trans.
on Computers, pp. 84-89.

29. Brent R.P. and H.T. Kung, 1982. A Regular Layout
for Parallel Adders, IEEE Trans. on Computers,
vol. 31, no. 3, pp. 260-264.

30. Kogge P.M. and H.S. Stone, 1973. A Parallel
Algorithm for the Efficient Solution of a General
Class of Recurrence Equations, IEEE Trans. On
Computers, vol. 22, no. 8, pp. 783-791.

