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Abstract:  Modulo 2n+1 adders find great applicability in several applications including RNS 
implementations. This paper presents a new number system called Carry Save Diminished-one for 
modulo 2n+1 addition and a novel addition algorithm for its operands. In this paper, we also present a 
novel architectures for designing modulo 2n+1 adders, based on parallel-prefix carry computation 
units. CMOS implementations reveal the superiority of the resulting adders against previously reported 
solutions in terms of implementation area and delay.   
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INTRODUCTION 
 
 The Residue Number System (RNS) is a non-
weighted number system [1] that can map large numbers 
to smaller residues, without any need for carry 
propagations [2].   Arithmetic operations like addition, 
subtraction and multiplication can be performed on 
residue digits concurrently and independently. Thus, 
using residue arithmetic, would in principle, increase 
the speed of computations [3, 4, 5]. 
 RNS has shown high efficiency in realizing  
special purpose applications such as digital filters [6, 7, 8, 

9], image processing [10], RSA cryptography [11] and 
specific applications for which only additions, 
subtractions and multiplications are used and the 
number dynamic range is specific. 

Special moduli sets have been used extensively to 
reduce the hardware complexity in the implementation 
of converters and arithmetic operations [12, 13]. Among 
which the triple moduli set { }2 1 , 2 , 2 1n n n− +  have some 
benefits [14]. Because of operand lengths of these 
moduli, the operation delay is determined by the 
modulo 2n +1 channel. Therefore, the design of efficient 
modulo 2n +1 adders is critical [15]. Modulo 2n +1 
operations are used in many applications such as DSP 
algorithms [16], Fermat Number Transform for 
elimination of round off errors in convolution 
computations[17, 18, 19], cryptography[20] and in 
pseudorandom number generation[21]. Modulo 2n +1 
adders are also utilized as the last stage adder of 
modulo 2n +1 multipliers. 

In the last few years, several algorithms and 
architectures have been proposed for designing modulo 

2n+1 adders. These algorithms are based on two number 
systems :  
• To overcome the problem of (n+1)-bit wide circuits 

for the modulo 2n +1 channel, the diminished-one 
number system [17] has been proposed. In this 
system, efficient adders have been reported in [14, 22-

25]. But these adders need a special treatment for 
zero operands.  

 For this problem, a new number representation 
called “Carry Save Diminished-one” (CSD-1) is 
proposed in this paper. With this system, the addition 
with zero operand doesn’t need a special treatment, 
which reduces the adder chip area. 
• Modulo 2n +1 adders can be designed as a special 

case of general modulo m adders. The most 
efficient circuits for generalized modulo adders are 
reported in [15, 26-28]. In [15], the proposed adder is 
more efficient than the ones proposed by [26-28].  

 
 However, the corresponding structure [15] uses a 3-
operand adder which is eliminated in our method. In the 
paper, we derive a new methodology for modulo 2n +1 
adder that leads to a parallel-prefix adder architecture. 
Using implementation in a CMOS technology, we show 
that the proposed parallel-prefix design methodology 
uses considerably less chip area than that reported in [23] 
(diminished-one number system) and less chip area and 
propagation delay than the approach reported in [15] 
(normal number system). 
  

FOUNDATION 
Modulo 2n +1 Reduction Basics : Let A be a 2n bit 
word and Ah (resp. Al) the corresponding high (resp. 
low) n bit words:         
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A = Ah2n + Al.  
A mod (2n +1) = (Ah2n + Al) mod (2n +1) 

         = (Al -Ah) mod (2n +1). 
 Therefore, the reduction modulo 2n +1 is computed 
by subtracting the high n-bit word from the low n-bit 
word and then conditionally adding 2n +1 if the 
subtraction yields a negative result. 
 
Diminished-One Number System: In the diminished-
one number system, the number A  is represented by 

1A A′ = −  and the value zero is treated separately, i.e., 
it requires an additional zero indication bit. In this 
system, the ordinary addition can be implemented by an 

end-around-carry parallel-prefix adder with in out
c c=   

[17, 25]: 
S' = (S-1) = (A+B-1) mod (2n+1) 
 = [(A'+1) + (B'+1) - 1)] mod (2n+1)  
   = (A' + B' + 1) mod (2n+1)  

   = (A' + B' + outc ) mod 2n               (1) 

 
Algorithm 1: (Modulo 2n +1 addeition in diminished-1 
number system): A number in diminished-one is 
represented by n+1 bits in which the (n+1)th bit is used 
to indicate ‘0’. In [17], the modulo 2n +1 addition 
algorithm has been presented for zero and non zero 
operands:  
1) If the most significant bit of one addend is ‘1’, 

inhibit the addition and the other addend is the sum 
(Fig. 1). 

2) If the msb of both addends are ‘0’, ignore the msb, 
add the n lsb’s, complement the carry and add it to 
the n lsb’s of the sum. 

 The modulo 2n +1 adder in Fig. 1 can be designed 
in different ways. To increase the modulo addition 
speed, the delay of carry computation should be 
minimized. In many papers, parallel-prefix adders have 
been proposed for this purpose. 

 

)0,1( −nB )0,1( −nA

)0,(nA)0,(nB

)0,1(1 −nO )0,(2 nO

)0,(nS

)(1 nO

)(nA

)(nB

)(nA( ) AdderModulo n 12 +

 
Fig. 1: The general design of diminished-one modulo 

adder 

Parallel-Prefix Adders: Parallel-prefix adders are 
usually used in papers for speeding up the addition 
operation. They minimize the carry computation time. 
In the prefix technique, n inputs x0 . . . xn-2 xn-1 and an 
arbitrary associative operator are used to compute n 
outputs 

01 xxxy iii oLoo −=  for i = 0, n-1. Thus, each 

output yi depends on all inputs xj of same or lower range 
(j= i). In a binary addition, the carry propagation is a 
prefix problem.  
 Prefix structures can be represented by using a 
direct acyclic graph. The o  operator on a pair of 
( , )

i i
g p  terms is usually represented by a node and a 

carry computation unit is represented as a tree 
structured interconnection of such nodes. Several tree 
structures have been proposed in [29, 30].  
 

THE NEW  CSD-1 NUMBER S YSTEM AND ITS 

MODULO 2 1n +  ADDITION ALGORITHM 
 
CSD-1 Number System: In the proposed method, we 
try to improve the performance of modulo 2n +1 
arithmetic units by using a carry save coding. Table 1 
shows the new representation of numbers. 
  
Table 1: The CSD-1 coding for modulo 2n +1 

Range Bit Representation 

[0 , 2n] �  . . . �� 
                         � 

 As shown in table 1, this representation is 
composed of n positions (digits), with two bits in the 
first position and n-1 bits in other ones. A number X is 
represented as below: 
X = xn-1  . . . x2 x1 x'0 
                           x?0 
 We call this system “carry save diminished-one”. If 

( )0 0X X≠ =  then ( )00 1 0x x′ ′= = . When we 
eliminate this bit from representation, the remaining 
bits are equal to diminished-one representation of X. 
Also there are two bits in the first position; therefore we 
have a carry save representation. So we call this system 
“Carry Save Diminished-one” (CSD-1).  
 The difference between CSD-1 and diminished-one 
representations is that in CSD-1, the value of 
represented number is exactly equal to its real value. In 
the diminished-one, each number X is represented 
by 1X X′ = − . As shown later, CSD-1 has an 
advantage over diminished-one that leads to a unique 
circuit for zero and non zero operands.  Therefore, the 
first step of the diminished-one addition Algorithm 1 no 
longer exists with CSD-1. Another benefit is that CSD-
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1 is extendable to any other modulo when diminished-
one is only defined for modulo 2n +1. 

 
CSD-1 Addition Algorithm: In this section, we 
present the CSD-1 addition algorithm for modulo 2n +1 
(Algorithm 2). 
 
Algorithm 2: (CSD-1 addition): This algorithm is 
decomposed into 2 steps. 
Step 1. The first step is based on the following 
theorem: 
Theorem 1: Let A and B be two CSD-1 numb ers in the 
range [0, 2n+1]. Then, 
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When nBA 21 <−+  then  
( ) 1111

2
+−+=+−+ nBABA               (3) 

 The maximal value of (3) is 2n. In CSD-1, this 
value can be represented by (n+1) bits in n positions. In 
other words, the output carry resulting from 

2
1 1nA B+ − + is 0. Thus, the term (3) is transformed 

into: 

nnn BABA
222

1111 +−+=+−+  

 Since A, B ∈[0, 2n], the second case of equation (2) 
leads to the following inequalities:  

nnnnnBA 2212221 <−−+≤−−+  
So, 

22
1 2 1 2 1 nn

n nA B A B A B+ − − = + − − = + −  

Therefore, from (2) we get: 
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Y 
 The equation (4) outlines the impact of the output 
carry of (A+B-1). In the CSD-1 number system, this 
carry is produced when the sum is  larger than 2n. The 
carry generation indicates that the sum is equal or 
greater than the modulo. Let assume Cout is the output 
carry of (A+B-1). Thus the carry of (A+B-1) will be 
generated when: 

( )'1 ' 1 2 1 2 2

2 1

n n
out

n

c A B A B

A B

= ⇔ + − ≥ + ⇔ + ≥ +

⇔ + > +
 

(5) 
 Thus, if the sum of two numbers is greater than the 
modulo, the output carry of (A+B-1) is ‘1’ and the sum 
is correct according to theorem 1: there is no need to 
increment the result.  
The output carry is zero in the following cases: 

( )
( )
( )

'0 ' 1 2 1

2 1 *
2 1

2 1 **

n
out

n
n

n

c A B

A B
A B

A B

= ⇔ + − < +

 + < +⇔ + ≤ + 
+ = +

             (6) 

 In condition (*), since A+B is less than the modulo, 
the output carry of (A+B-1) is ‘0’. According to 
equation (4), the sum should be incremented in the 
second stage. Therefore from (4), (5) and (*) we have: 
if 2 1nA B+ < +  or 2 1nA B+ > +  then:  

( ) ( ) ( )mod 2 1 1n
outS A B A B c= + + = + − +             (7) 

 But in condition (**) of equation (6), when 
2 1nA B+ = + , equation (7) leads to S =1, which is not 

true. To correct this case, we introduce step 2 of 
Algorithm 2 that will be presented later. 
In our method, (A+B-1) is computed without any extra 

hardware and only by ignoring 0a ′  in above sum. As 

mentioned earlier, if 0A ≠ then 0 1a ′ = ; thus (A+B-1) 

will be achieved by eliminating 0
a′ . If 0A = then A+B 

will be computed by removing 0
a′ . In this case, we have 

always ' 0 '
out

c =  and the sum will be incremented 

according to equation (7). But incrementing shouldn’t 
be done to obtain the correct result.  
 The first step of Algorithm 2 reveals that a two-
stage combinational circuit is required for modulo 
addition (adder and incrementer). The first stage 
computes an intermediate sum M.  

( )
( )

0

0

1 0 0

0 1

M A B if A a

M A B if A a

′= + − ≠ =

′= + = =
 

Therefore, we adjust equation (7) as below: 

( ) ( ) 0mod 2 1n
outA B M c a′+ + = + +              (8) 

M in equation (8) is achieved by addition of A and B 
excluding 0a ′ . The range of M is given by theorem 2. 

 
Theorem 2: (The range of M): M has a (n+1)-digit 
binary representation in CSD-1, i.e., M ∈ [0, 2n+1]. 
(Note that mn = Cout in this theorem.)  
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Proof: If A=0 then M=A+B=B. Since B ∈ [0, 2n] then 
the theorem is established. The situation is the same if 
B=0. 
If 0A ≠ and B ? 0 then 1M A B= + − . Since 

, 2 1, 0nA B A< + >  and B > 0 then,        
1201)12()12(10 +≤<⇔−+++<−+< nnn MBA  
(9) 

 The maximal value of M  is 2n+1 which can be 
presented by n+2 bits or n+1 digits in CSD-1 (for this 
maximal value, all bits are ‘1’).   Y 
 In the second stage, the least n posibits of M is 
incremented according to (8). 
 

Step 2 : As described before, if 2 1nA B+ ≠ + then 

theorem 1 leads to equation (8). But if 2 1nA B+ = +  
then the correct output of S=0 should be produced. In 
this case, A and B are non zero and 

1 2nM A B= + − = . 
According to theorem 2 and equation (8), if the msb of 
M, mn=0 (Cout = 0) then M should be incremented in the 
second stage. Thus the final output is  2n+1. In CSD-1, 
each numb er is in the range of [0, 2n] and can be 
represented by n digits. Therefore the output carry can 
be ignored and the output sum is “0…01” that can be 

corrected by inverting 0
s′ .  

 In the second step of Algorithm 2, we introduce 
two methods to detect zero output and to correct it. 
a) The correct output zero occurs when two inputs are 

complementary, i.e. their sum is equal to modulo 
2n+1. One method to recognize complementary 
numbers is the logical AND of the outputs of ai 
XOR bi (for any i except i = 0). A similar method 
has been mentioned in [23]. 

b) Another method is based on the following theorem. 
 
Theorem 3: (Complementary of two inputs): Two 
inputs are complementary when (and only when) the 
input and output carries of the incrementer are ‘1’. 
Proof:  
o First, we prove that if A and B are complementary 

numbers, the input and output carries of the 
incrementer are ‘1’. When A and B are 
complementary, both of them are non zero. 

Therefore, 1 (2 1) 1 2n nM A B= + − = + − = . In 

CSD-1, 2n has n digits. Thus, 0 1
out out

c c= ⇒ = . 

The input carry of the incrementer is 
1. 0

* =′= acc outin
. 

The output carry of the incrementer is equivalent to 
the output carry of the following addition: 

( ) 1211 +=+=+−+= nBABAS  

Obviously, the output carry is ‘1’. 
o Now we prove that if input and output carries of 

the incrementer are ‘1’ then A and B are 
complementary numbers. 
If * 1inc =  then

0
( . ) 1

out
c a ′ = . Therefore 1A ≠  

and 0outc = . In other words, 1M A B= + −  and 

we have: 
1 2 2 1n nM A B A B= + − ≤ ⇒ + ≤ +             (10) 

The output carry of the incrementer is ‘1’ when the 
sum is equal or more than 2n+1. That is: 
( )1 1 2 1 2 1n nA B A B+ − + ≥ + ⇒ + ≥ +            (11) 

Equations (10) and (11) are simultaneous verif ied 
when A+B = 2n+1, which shows that A and B are 
complementary.  

Y 
 Method (a) has been used in [23]. However the 
method (b) for zero detection and correction consumes 
less area than method (a). Then, we implemented 
method (b). As described earlier and according to 
example 1, 0s′ can be transformed to ‘0’ in the condition 

of zero detection.  
 

THE PROPOSEH CSD-1 PARALLEL-PREFIX 
ADDER (CSD-PP) 

 
 One way for implementing the CSD-PP adder is 
based on the adder architecture of Fig. 2. But instead of 
having a dedicated single stage for reentering the carry, 
[23] has proposed to perform carry recirculation at each 
existing prefix level. Then, there is no need for the extra 
carry increment stage. As a result, a dedicated CSD-PP 
adder architecture is derived with one less prefix level 
compared to those derived from Fig. 2 architecture. In 
the CSD-1 system, it requires several modifications. 
These modifications will be introduced by the 3 
following theorems. 
 
Theorem 4: Let assume that ( ),G P  = ( )PG,  and 

,a b
G and ,a b

P , with a > b, are respectively the group 

generate and propagate signals for the group a, a-1, a-2, 
... , b-1, b, computed by:  
 
( ) ( ) ( ) ( )bbaaaababa pgpgpgPG ,,,, 11,, oLoo −−=  
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 In our case, in which the reentering carry is given 

by the expression 0 1n
a G

−
′ , the carries 

*

i
c  of the 

addition modulo  2n+1 are equal to *

iG , where *

iG  is 

computed by the prefix equations: 
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Y 
 Theorem 5 will derive expressions leading to faster 
circuits. 
 

Theorem 5: Defining *

0 0 0p p a′= ⋅ leads to  

( ) ( ) ( ) ( )1,11,1
*
00

** ,,,, +−+−= ininiiii PGpgpgPG ooLo  
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When computing *

iG , only the last term 

includes 0p and 0a ′ . Therefore, we can 

define *

0 0 0p p a′= ⋅  and replace 0
p  by 

*

0p   
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(12) 

The final *

iP  are never used and the intermediate iP  

don’t have 0p . The above equations are thus correct.   Y 

 In several cases, the equations (12) require more 
than log2n prefix levels for their implementation. These 
equations can be transformed into equivalent ones that 
can be implemented within log2n prefix levels. The 
required transformation uses Theorem 2 of [23], as well 
as the Theorem 6 that will be introduced below. 
Theorem 2 of [23] says that, 

( ) ( ) ( ) ( )PGgpPGpg ,,,,, =o  
This implies that a carry equal to the generate term 
which is expressed by a prefix equation of the form 
( ) ( ), ,g p G Po  is also equal to the generate term of an 

equation of the form ( ) ( ), , ,p g G P . 

The above formula is true when g p p⋅ = .  

The following theorem is also required to derive the 
term that has the form ( ) ( ) ( )PGgpPGpg ,,),(,, 0

*
0

*
00 =o  

in prefix notation: 
 
Theorem 6: If ( ) ( ) ( )*

0 0, , ,x xG P g p G P= o  and  

*
0 0( , ) ( , ),( , )y yG P p g G P=  then x yG G= . 

Proof: First, we proof the following expression: 

( )
( ) *

0000000000

000000
*
00

*
00 )(

pabbaaabba

abbabapgpg

=′′′+′′′=′′+′′′+′′′=

′′′+′′′+′′′′=+=⋅            (13) 

Using this formula, we get: 
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00
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GpgGpgGpg

⋅+=⋅+⋅=
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Y 
 The carry equations resulting from theorem 2 of [23] 
and theorem 6 can be implemented by a prefix structure 
that has log2 n levels. As mentioned earlier, we use the 
modifications introduced by theorems 4 to 6. Our 
proposed adder is similar to [23] modulo adder 
architecture but its first cells of preprocessing and post 
processing stages are designed differently.  

In the CSD-1 number system, if 
0

0x ′ =  then
0

0x′′ = .  

This is a special property of CSD-1. Using this property 
to simplify truth tables of these two cells  leads to the 
following equations: 

( )000000000
*

0 babbbabbas ′′⊕′′′=′′′′′+′′′′′=′′  

000000
*
0 babaapp ′′′+′′′=′⋅=  

000 bag ′′′′=  
* * * * *

0 0 0 0in ins s c s s c′′ ′′ ′ ′′= +  
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Theorem 3 is used for the detection and generation of a 
correct zero. The term r indicates the condition of 
theorem 3: 

1.1 01
*

1 =′→= −− aGc n
 

 
1.1 1

*
21

* =+→= −−− nnnout gchc  

( )( )1
*

2101
**

1 .... −−−−− +′== nnnnout gchaGccr  

 
RESULTS AND COMPARISONS 

 
 In this section, we compare the proposed CSD-PP 
adder to those proposed in [15] and [23]. As previously 
mentioned, the architecture proposed in [23] outperforms 
those presented in [24] and [25], and the architecture 
proposed in [15] outperforms those presented in [26-28] in 
terms of implementation area and execution delay. 
Thus, the architecture of [23] is the best diminished-one 
architecture, and the architecture of [15] is the best 
architecture using normal binary representation.  
All architectures were described in HSPICE and 
mapped to the 0.18 implementation technology (0.18 
µm, Vdd=1.8 v). We use VLSI implementations and a 
simple model to compare the proposed adder 
architectures to those proposed in [15] and [23]. We use 
the notation PPREF for the diminished-one modulo 
28+1 adder proposed in [23] and TPP for the normal 
binary one in [15]. The CSD-PP implementation for the 
modulo 2n+1 adder is given in Fig. 2.  
 
Analytical Comparisons and Results: First, we use 
the analytical model used in [15] and [23], under the 
notation “unit-gate model”. This model assumes that 
each gate, except the exclusive-OR gate, counts as one 
elementary gate for both area and delay. An exclusive-
OR gate counts for two elementary gates for both area 
and delay. According this model, the latencies of the 
modulo 2n and modulo 2n -1 adders are equal to 2*log2n 
+ 3. The PPREF modulo adder has an execution latency 
of 2*log2n + 3. 
 However, according to Fig. 1, the overall delay of 
PPREF is the modulo adder latency plus the multiplexer 
delay. The multiplexer is a 2-level circuit in unit -gate  
 

model. The overall delay is 2*log2n + 5. The TPP adder 
has a latency equal to 2*log2n + 6 and the proposed 
CSD-PP adder has a latency equal to 2*log2n + 4. The 
CSD-PP architecture is faster than PPREF and TPP. 
Therefore, the CSD-PP adder offers the fastest designs 
reported in the open literature. The CSD-PP adder has 
also the same prefix levels as the PPREF adder, without 
requiring any circuits for treating zero operands as 
shown in Fig. 1, which reduce both the execution time 
and the implementation area. Therefore, the proposed 
CSD-PP adders are more efficient than the fastest 
modulo 2n+1 adder which handle operands in 
diminished-one representation. The normal binary 
system can be easily converted to the normal binary 
RNS. The representation of odd numbers in CSD-PP 
adders is the same as in TPP adders. 
 According to the unit-gate model, the hardware 
overheads of the fastest reported modulo 2n and modulo 
2n -1 adders are respectively equal to 1.5  n * log2 n + 5n  
and 3 n * log2 n + 5n. The PPREF modulo adder has an 
area of 4.5 n  * log2 n +0 .5n  + 6. However, according to 
Fig. 1, the final area of PPREF includes the modulo 
adder area and the area of circuit for the treatment of 
zero operands. The zero operand circuit area is 2n+5. 
Thus, the final area is 4.5 n * log2 n +2 .5n + 11. The 
area of the TPP adder is equal to 4.5 n * log2 n +3 .5n + 
13 and the proposed CSD-PP adder area is equal to 4.5  
n * log2 n + 0 .5n + 15.  
 
Real Comparisons and Results: For evaluating the 
speed, area and power consumption efficiencies of each 
architecture, every adder is implemented by CMOS 
technology. The obtained results are listed in Table 2. 
As we can see proposed architecture leads to far faster 
implementations than that of [15] and [23]. This is due to 
the fact that the architecture of [15] requires a delay of 
one CSA unit and the design of PPREF in [23] uses some 
multiplexers to treat zero operands. The proposed 
architecture, on the other hand, relies on a 2-operand 
addition (in adverse of TPP that adds two inputs and 2n-
1) and requires unique circuit for zero and non zero 
operands based on CSD-1 number system. 
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Fig. 2:  Proposed modulo 2n+1 parallel-prefix carry save diminished-one adder 
 
Table 2: Real Comparison Results 

Adder Architecture Transistor 
Count 

Average Power 
Consumption (µW)  

Delay (ps) Power–Delay 
Product (fJ) 

PPREF [23] 1036 293.56 434.44 127.54 
TPP [15] 844 278.64 562.74 156.80 
CSD-PP 838 214.51 235.59 50.53 
     
Improvement 
CSD-PP vs. PREF > 19% < 27% > 45% > 60% 

Improvement 
CSD-PP vs. TPP > 0.7% > 23% > 58% > 67% 

 
 Finally, we study power consumption of compared 
architectures. The simulation results are shown in Table 
2. It is obvious that the proposed CSD-PP adder has the 
lowest consumption of all. It improves TPP and PPREF 
power consumptions above 23% and 26% respectively. 
 

CONCLUSIONS 
 
 In this paper, a new number system has been 
presented.  This paper also presents a new architecture 
for modulo 2n+1 adders that uses parallel-perfix carry 
computation units based on mentioned number system.  
The proposed architecture has  better performance than 

the conventional modulo 2n+1 adders. The main points 
of the paper are summarized below: 
1. The special treatment required for zero operands in 

the diminished-one number system  has been 
removed. 

2. The proposed architecture removes the 3-operand 
adder issue in the fastest modulo 2n+1 adders with 
the normal binary system. 

3. The proposed architecture leads to the fastest 
reported modulo 2n+1 adders, with execution 
latencies close to the execution latency of the 
fastest modulo 2n and modulo 2n+1 adders, which 
means that the proposed architecture is suitable for 
RNS applications. 
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