
American Journal of Applied Sciences 5 (12): 1758-1763, 2008
ISSN 1546-9239
© 2008 Science Publications

Corresponding Author: Mahnaz Kadkhoda, Department of Computer Engineering, University of Birjand, Birjand, Iran
1758

Simulation of Parallel Logical Operations with Biomolecular Computing

1Mahnaz Kadkhoda and 2Ali A. Pouyan

1Department of Computer Engineering, University of Birjand, Birjand, Iran
2School of IT and Computer Engineering, Shahrood University of Technology,

Shahrood, Iran

Abstract: Biomolecular computing is the computational method that uses the potential of DNA as a
parallel computing device. DNA computing can be used to solve NP-complete problems. An
appropriate application of DNA computation is large-scale evaluation of parallel computation models
such as Boolean Circuits. In this study, we present a molecular-based algorithm for evaluation of
Nand-based Boolean Circuits. The contribution of this paper is that the proposed algorithm has been
implemented using only three molecular operations and the number of passes in each level is decreased
to less than half of previously addressed in the literature. Thus, the proposed algorithm is much easier
to implement in the laboratory.

Key words: DNA computing, simulation, Boolean circuit, parallel computation, modeling, complexity

INTRODUCTION

 Molecular computing was emerged in 1994 by
original paper of Adleman[8]. He proposed an algorithm
for solving Hamiltonian Path Problem using molecular
operations. Adleman's experiment ushered in a new
computational paradigm for several reasons. First it
showed that it is indeed possible to orchestrate
individual molecules to perform computational tasks.
Second, it showed the enormous potential of DNA
molecules for solving problems beyond the reach of
conventional computers that have been or may be
developed in the future based on solid-state electronics.
 Since Adleman’s pioneering experiment, several
authors attempted to present efficient DNA algorithms
to solve hard problems[18] and simulating conventional
computing models such as Turing machines[15], Finite
state automata[19], splicing system[3].
 Lipton[16] presented on early proposal for Boolean
Circuit evaluation as a solution to SAT (Boolean
formula satisfiability). Lipton and Adleman used
exhaustive search to implement their algorithm. In
exhaustive search, all the possible solutions are encoded
by strands. Then the solution can be obtained from the
exponentially sized initial set, by applying DNA
operations. This approach is possible because of the
inherent criteria of DNA strands as computing
devices[12].
 These criteria lie, on the one hand, in the potential
of massive parallelism, which results in a greater
number of computations per second in the sense that

billions (or trillions) of DNA strands can be processed
concurrently. On the other hand, it is because of large
memory size that DNA molecules can provide for the
entire computation processes. Nevertheless,
Hartmanis[6] shows that, although laboratory
computations should work for the small problem sizes,
the experiments do not realistically work for even
modest problem size because of the vast amount of
DNA molecules required for initialization. For
example, Hartmanis shows that a mass of DNA greater
than that of the earth would be required to solve a 200-
city instance of the Hamiltonian path problem. In both
Adleman's APP and Lipton’s SAT algorithms; the total
volume of DNA present in a test tube at any time of the
computation grows exponentially as a function of input
size. As a result, their algorithms can handle instance
size of up to 70 which are within the reach of silicon-
based computers. Therefore it is urgent to find
applications where DNA computers outperform silicon-
based computers.
 In spite of all efforts has been done to propose
algorithms with low rate of volume[1,9], It is realized
that NP-Complete problems may not be best suited for
DNA computing. But other classes of problems are
identified in which DNA based computation has real
advantages. The best subject could be the evaluation of
parallel computing models and Boolean circuits appears
to be one of such problems.
 Boolean circuits embody the notion of massively
parallel signal processing and are frequently
encountered in many parallel algorithms. Many

Am. J. Applied Sci., 5 (12): 1758-1763, 2008

 1759

important problems such as sorting, integer arithmetic
and matrix multiplication are known to be computable
by small size Boolean circuits much faster than by
ordinary sequential electronic computers[10]. The
implementation of Boolean circuits would allow
importing to the world of molecules the vast progress
that has been made on information processing in
electronic computers. A successful implementation of
Boolean Circuits would lead to the construction of
ordinary computers in bio-molecular, particularly the
construction of parallel computers.
 There are numbers of issues to be considered when
simulating Boolean circuits. The first one is the choice
of a computational basis. The standards basis consists
of the and OR and negation. Another basis is the
NAND gate. The second issue is feasibility of the
methods and the third issue is the speed of the
simulation.
 Ogihara and Ray[10] suggested a DNA algorithm
for implementing AND-OR basis Boolean Circuits that
runs in time proportional to the size of the circuit. Their
proposed algorithm works without exhaustive search.
Amos et al.[13] described the first DNA based simulation
of NAND Boolean circuits and improved the
implementation to have run time that is proportional to
the depth of the circuit. Ahrabian and Nowzari[4]
proposed another algorithm for NAND circuits. They
claimed that their algorithm is easier and the number of
operation used is less than before. But they used error-
prone techniques such as PCR (Polymerase Chain
Reaction).
 Since then, all simulation models of Boolean
Circuits has been constructed by OR and AND
gates[12,11,5].
 Since it is well-known that the NAND functions
provide a complete basis by itself and any Boolean
functions can be implemented only by NAND
gates[17,14], we restrict our model to the simulation of
NAND Boolean circuits.
 The contribution of this research is that the
proposed approach is much easier for implementing in
the laboratory, because the number of DNA operation
used is much less than other models reported in the
literature. We use only three operations: Annealing,
Ligation and Denaturing gelelectropherese.
Furthermore, the number of passes in each level is
decreased to three passes that is less than half of
previously reported ones. Therefore, the proposed
algorithm is much faster in comparison with algorithms
before proposed. Also, in this simulation, Amplify
operation is not used because it is one of the most error-
prone operations.

THE PRIMITIVE OPERATIONS
IN DNA COMPUTATIONS

 DNA is a linear polymer of four repeating units
(bases) A, G, C and T that may occur in any order. Two
linear chains can associate with each other to form
partial or complete duplex only when two conditions
are fulfilled: first the two linear chains must have
complementary base sequences, where A is
complementary to T and C to G. second, strands must
have opposite chemical polarities (5′->3′ and 3′->5′).
Thus, for making a duplex structure the two strands are
antiparallel and complementary. When the two strands
of DNA form a partial duplex and at least one of the
two strands has a recessed 3′-end, then that end can
grow to extend the duplex structure by laying down
new portion of complementary antiparallel chain using
the longer chain as a template. This is primer extension.
Extension stops when it reaches the end of the template,
under the condition that there is sufficient supply of
monomeric precursors of A, T, G and C in the solution.
This is also the basis of self-propagation of DNA. The
process of making a duplex molecule from two
complementary antiparallel single strands of DNA is
Annealing (or Hybridization, or Renaturation).
 The reverse process in which a duplex is converted
into two single strands is Denaturation. Denaturation is
conveniently accomplished by heating while cooling
under appropriate conditions causes annealing. The
melting temperature of a duplex of a particular
sequence is the temperature in which fifty percent of
the DNA molecules in a given mixture denature. This
temperature is a function of DNA length and base
sequence. When two DNA strands of the same polarity
are annealed to a template strand such that the two
shorter strands are adjacent to each other with no gap,
then it is possible to connect the two shorter strands
(Ligation) to produce one longer strand. The reverse of
this process, in which a duplex DNA is converted to at
least two shorter duplex molecules is “Restriction”. All
the above processes are accomplished by enzymes that
have either evolved naturally or can be designed tailor-
made[12].

NAND-BASED BOOLEAN CIRCUIT

 In this study the simulation model has been
proposed based on a Boolean circuit with the following
specification[4]: An n-input, m-input Boolean circuit is
modeled as a directed cyclic graph, S(V, E), in which
the set of vertices V is formed from three disjoint sets:
In, the inputs of the circuit which there are exactly n; G,
the internal gates and Om, the outputs which there are

Am. J. Applied Sci., 5 (12): 1758-1763, 2008

 1760

exactly m. Each input vertex of In has in-degree 0 and
are associated with a single Boolean variable xi from a
given Boolean function. Each internal gate and output
gate has in-degree 2 and is associated with the Boolean
operation NAND. The internal gates will also have out-
degree 1. The m distinguished output gates Om are
conventionally regarded as having out-degree = 0.
 A Boolean circuit contains k levels (0…k-1). The
input gates are appeared in the first level (level zero)
and the output gates appear in the last level (level k-1),
all the intermediate gates are presented in between the
first and the last level (levels 1...k-2). The input s of
each intermediate and output gates are supported by the
outputs of the gates in the previous level. An
assignment of Boolean variables from <0, 1> to the
input In ultimately induces Boolean values at the output
gates Om.
 The n-input, m-output Boolean circuit C is said to
compute an n-input, m-output Boolean function f,
f (In): <0,1>n � <0,1>m, on other words, for any input
we have :
 f (i) (In): <0,1>n � <0,1> : 1� i �m if �� ∈<0,1>n
and � 1 � i �m Oi (�) =f (i) (�).
 There are two criteria for Boolean circuits that are
considered for standard complexity measures: the size
of the circuit and the depth of the circuit. The size of
the circuit C, denoted by size(C), is the number of gates
in C and the depth of C, denoted by depth (C) is the
length of the longest directed path in it.

IMPLEMENTING IN LABORATORY

 Molecular computation consists of two phases[2]:
generating volumes and computation step. In the first
stage, the needed strand is generated in tubes and in the
next pass, DNA operations is applied on tubes to get
result. Therefore our simulation consists of two phases
too:

• Initial Pass
• Level implementation

 In this simulation, we try to present an easier and
faster algorithm. In this method, we focus on inputs
with value zero and encode them. Output of gates with
value zero in each level is passed to next level as inputs.
 In the following we describe each phase in more
detail.

Initial pass: For initialization, we consider a tube Ti for
each level i, 0�i� depth (C). In this method, in
spite of previous ones, we encode the inputs with value
0. Therefore we consider a tube T0, consisting unique

strands of length l, each of which corresponds to only
those having value 0. Then, for each level 1�k<
depth(C), we create a tube Tk containing unique strands
corresponds to each gate in that level. We denote the jth
gate at level k by gjk . If gate gik takes its input from
gates m

k 1g − , n
k 1g − and x, y and z be corresponding strands

to gates m
k 1g − , n

k 1g − and gik, respectively. Suppose that
x, y, z be the complement string of x, y, z. Then, For
each gate gik we consider two strings: a string of length
l and a linked-string of length 3l that is in the form of
x z y .

Level implementation: In this path, for each level k,
1≤ k ≤ depth(C), we pour tube Tk-1 into tube Tk. After
decreasing the temperature, the strands are annealed.
This process is showed for one gate in Fig. 1. Then we
prepare the condition for melting. After that, we
separate all strands of length l representing gates with
output 0. This subset forms the input to tube Tk+1.
 The Molecular algorithm for Evaluation of
Boolean Circuit C (MEBC) proceeds as follows for
each level 1≤ k ≤ depth(C):

• Pour the contents of tube Tk-1 into tube Tk. By

decreasing temperature, the strands are annealed
• Add ligase enzyme to Tk in order to seal any nicks
• Denature the strands and run Tk through a gel,

retaining only those strands of length l. Retrieve
the product and place it in an (empty) tube TK.
This tube forms the input to Tk+1. Now, we can
proceed the simulation of level k+1

 Eventually, after repeating the above stages for all
levels, if Tdepth(C); the tube in the last level, does not
contain any strand with length l, it can be considered
that the final output for the circuits is one; otherwise is
zero.

Fig. 1: Simulation of NAND gate

Am. J. Applied Sci., 5 (12): 1758-1763, 2008

 1761

COMPUTER BASED SIMULATION

 We illustrate with a small circuit how the
simulation works. Consider the circuit in Fig. 2. x1, x2,
x3 and x4 are inputs and p, q and r are gates. We
consider the following strands for input variables:

µ1: 5′ -GATTACGAAC- 3′
µ2: 5′ -CTACCCTGCT- 3′
µ3: 5′ -TGCATCTTGG- 3′
µ4: 5′ -GCCTACGTCA- 3′

The gates p, q and r are also represented by

µP: 5′ -ATCGGCTAAG- 3′
µq: 5′ -CTGTCGAATG- 3′
µr: 5′ -TTAGCGGTAC- 3′

 We evaluate the circuit with inputs: x1 = 1, x2 = 0,
x3 = 1 and x4 = 1. Therefore the tube T0 contains µ2
and T1 contains µp, µq and linked-strands of them.
Now, the tube T0 is poured into T1. After hybridization
and ligation, T1 contains:

Fig. 2: Simulation of NAND gate

 The temperature is increased, then the strands are
melted. We have:

and

 We eliminate all the strands with length more than
l. Therefore, the tube T1 containing the strand µq forms
the input to next level. Now, T1 is poured into T2. The
strands are annealed. After Ligation, T2 contains:

 After melting the strands would be as follow:

 We remove all the strands with length more than l.
finally, after doing above stages since T2 is not
contained any strands with length l, we can induce that
the final output of circuit is one.

ALGORITHM ANALYSIS

 At first, we analyze the proposed algorithm in
terms of feasibility of its molecular operations. In this
model, we use standard molecular operations that are
used by Ogihara and Ray[10] and Amos and E.
Dunne[13].
 There are two standards (criterion) to measure the
efficient of molecular algorithms: time complexity,

Am. J. Applied Sci., 5 (12): 1758-1763, 2008

 1762

which is proportional to the number of molecular
operations on test tubes and space or volume
complexity, which is the maximum number of strings in
all test tubes at any time. The time and volume
complexity for the proposed algorithm are given by the
following theorem:

Theorem: Algorithm MEBC for NAND_based
Boolean circuits of size S and depth D is performed in
O(D) with volume complexity O(S).

Proof: In this algorithm we use only three standard
molecular operations in each level: Annealing, Legation
and Denaturing gelelectropherese. Therefore, for
evaluating a NAND Boolean circuit of size S and depth
D, 3D computation steps is needed. Then the time
complexity of this algorithm is O(D). On the other
hand, the number of strands used in this simulation are
bounded by O(S).
 Based on Gilbert-Varshamov theorem[7], One can
show that there is a set of 1.6×1012 distinct 40 base
oligonucleotide sequences such that:

• For any two sequences A and B, A disagrees with

B and its complement at 10 positions.
• No sequences contain the pattern that is cleaved by

the Restriction enzyme.

 Thus, we can handle at least one trillion wires by
encoding the gates as 40 base oligonucleotide
sequences. On the other hand, one trillion wires are
beyond the reach of digital computers[12].

CONCLUSION

 In this research, we described an abstract model for
the simulation of NAND-based Boolean circuits using
DNA. This model is implemented in linear order of
time and volume complexity and can be considered as a
“killer” application in DNA computing.
 The novel of our method is that we only use three
standard bio-molecular operations. In addition, there are
three passes in each level, in contrast to previous
simulation which have five or seven passes. Also, the
proposed implementation of our model avoids using the
error-prone techniques, such as PCR. Thus, it
considerably reduces the degree of physical
manipulation of tubes of DNA.
 This minimizes potential problems such as strand
shear and material loss due to strands sticking to the
surface of the tubes. Despite of existing algorithms, We
have implemented the proposed algorithm without
using restriction operation.

 Furthermore, our simulation method is much faster
and easier to implement in laboratory. In this research,
we consider that the fan-out of each gate and the
number of output gates, is one. In the future work, we
will present a DNA-based algorithm for evaluating
circuits with fan-out greater than one.
 But, we have not yet attempted to physically
realize our model in laboratory. We acknowledge the
substantial practical difficulties in implementing the
model for even small circuits and we emphasize that
much more work is needed to be done on establishing
the error-resistance of basic operations.

REFERENCES

1. Baum, E. and D. Boneh, 1999. Running Dynamic

Programming Algorithms on a DNA Computer. In:
DNA Based Computers II, Landweber, L. and
E. Baum (Eds.). Amer. Math. Soc. DIMACS
Series, 44: 77-80.

2. Bach, E., A. Glaser, C. Tanguay, 1996. DNA
models and algorithms for np-complete problems.
In: Proceedings of the 11 Annual Conference on
Structure in Complexity Theory, pp: 290-299.

3. Paun, G., G. Rozenberg and A. Salomaa, 1998.
DNA Computing: New Computing Paradigms,
Springer-Verlag, New York.

4. Ahrabian, H. and A. Nowzari-Dalini, 2004. DNA
simulation of nand boolean circuits. Adv.
Modeling Optimizat., 6: 33-39.

5. Ahrabian, H., M. Ganjtabesh and A. Nowzari-
Dalini Abbas, 2005. DNA algorithms for an
unbounded fan-in Boolean Circuit. Bio. Syst.,
82: 52-60.

6. Hartmanis, J., 1995. On the weight of computation.
Bull. Eur. Assoc. Theor. Comput. Sci.,
55: 136-138.

7. Van Lint, J., 1991. Introduction to Coding Theory.
Springer, Verlag, New York.

8. Adleman, L., 1994. Molecular computation of
solutions to combinatorial problems. Science,
266: 1021-1024.

9. Adleman, L., P. Rothemund, S. Roweis and
E. Winfree. On applying molecular computation to
the Data.

10. Encryption Standard. In: DNA Based Computers
II, Landweber, L. and E. Baum (Eds.). Amer.
Math. Soc. DIMACS Series, 44: 31-44.

11. Ogihara, M. and A. Ray, 1999. Simulating
Boolean circuit on DNA computers. Algorithmica,
2: 239-250.

Am. J. Applied Sci., 5 (12): 1758-1763, 2008

 1763

12. Kadkhoda, M. and Ali A. Pouyan, 2006. A linear
Order Complexity Algorithm for evaluating
bounded fan-in circuits using molecular
computing. WSEAS Transact. Comput.,
5: 2793-2798.

13. Ogihara, M. and A. Ray, 1999. Executing parallel
logical with DNA. In: Proceeding Cong.
Evolutionary Computation, IEEE, pp: 972-979.

14. Amos, M. and P. Dunne, 1997. DNA Simulation of
Boolean Circuits, Technical Report CTAG-97009,
Department of Computer Science, University of
Liverpool.

15. Paul E. Dune, 1988. The Complexity of Boolean
Networks, Acodemic Press.

16. Rothemund, P., 1996. A DNA and restriction
enzyme implementation of Turing machines. In:
DNA Base Computers, American Mathematical
Society, Providence, 27: 75-119.

17. Lipton, R., 1995. DNA solutions of hard
computational problems. Science, 268: 542-545.

18. Thomas Head 1987. Formal language theory and
DNA: An analysis of the generative capacity of
specifif recombinant behaviors. Bull. Math. Biol.,
49: 737-752.

19. Chang, W. and M. Guo, 2003. Solving the set
cover problem and the problem of exact cover by
3-sat in the adleman-lipton model. Biosystems,
72: 263-275.

20. Gao, Y., M. Garzon, R. Murphy, J. Rose, R.
Deaton, D. Franceschetti and S. Stevens, 1999.
DNA implementation of nondeterminism, In: DNA
Based Computers III, American Mathematical
Society, Providence, 48: 137-148.

