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Abstract: In this research, a new method based on Singular Value Decomposition (SVD) is proposed 
to solve the problem of optimal placement of meters for static estimation of harmonic sources in a 
power system. Also, the Binary Genetic Algorithm (BGA) is used to solve the problem of 
optimization. IEEE 14-bus test system is provided to validate the measurement placement algorithm. It 
has been observed that the quality of estimation is improved and the Number of Observable Variable 
(NOV) is increased. Moreover, the BGA-based meter placement strategy yields the same solution as 
obtained from the complete enumeration technique but in shorter time. 
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INTRODUCTION 
 
 Harmonic distortion has experienced a continuous 
increase in power systems owing to the growing use of 
nonlinear loads. Many studies have shown that 
harmonics may cause serious effects on power systems, 
communication systems and various apparatus[1]. As a 
result, there is a growing concern to limit the amount of 
harmonics in the system and out of this concern, 
harmonic standards have been formulated[2]. To 
effectively evaluate and diminish the harmonic 
distortion in power systems, the locations and 
magnitudes of harmonic sources have to be identified. 
This problem of determination of locations and 
magnitudes of the harmonic sources is generally termed 
as “reverse harmonic power flow problem[3] and to 
solve it, appropriate locations of the harmonic meters 
are very important[7]. The number of harmonic 
instruments available is always limited due to cost and 
the quality of the estimates is a function of the number 
and location of the measurement points[7]. Therefore, a 
systematic procedure is needed to design the optimal 
measurement placement. 
 A measurement placement algorithm for harmonic 
component identification is presented in[4], based on 
minimum variance criteria. The optimal procedure in[4] 
needs load and generation data at each harmonic order 
for all busbars, which is usually not available. In[5] a 
symbolic method for observability analysis is 
presented. This method identifies redundant 
measurements thus giving the minimum number of 
measurements that are needed to perform HSE. It 

should be noted that this method cannot detect cases 
when there are two dependent measurement equations 
because the actual values are lost. Also In[6] a technique 
based on the minimum Condition Number (CN) of the 
measurement matrix has been proposed for designing 
the harmonic instruments points. As shown in this 
research, minimizing the CN of the measurement 
matrix  doesn’t   necessarily lead to the better 
estimation quality.   Thus,   an    alternative criteria for 
deciding the optimal  measuring locations is still 
needed. 
 The optimization technique used to solve the 
problem is also an important issue which needs to be 
determined with care. Farach and Grady[4] have 
developed a Sequential Procedure (SP) for this object. 
In this method, for an N-bus system with P meters, only 
P(2N+1-P)/2 combinations of meter placement need to 
be checked. Moreover, the SP yields only a good 
approximate solution and the best solution can only be 
obtained by Complete Enumeration (CE) of all the 
combinations of meter placements[7]. But CE technique 
for finding optimal meter placement is too exhaustive 
even for a moderate size of power system and hence 
cannot be implemented practically[7]. Thus an 
alternative method for deciding the optimal measuring 
locations, which gives the same locations as that 
obtained by the CE technique, is still needed. In[7] a 
genetic algorithm-based method has been proposed to 
solve the problem of optimal meter placement. It is 
worth noting that line measurements have not been used 
in[7] and the optimization problem has been solved with 
Continuous Genetic Algorithm (CGA). 
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 To address the above mentioned needs, in present 
research, a genetic algorithm-based method has been 
proposed to solve the problem of optimal meter 
placement for HSE. For fitness evaluation of the GA 
strings, a new criteria based on SVD has been presented 
in this work. It has been found that using the obtained 
combination of meters from the proposed criteria, the 
quality of the estimation is improved and, also GA-
based technique gives the same results as that obtained 
by the CE technique and is better than the sequential 
technique. 
 

HARMONIC STATE ESTIMATION 
 
 Harmonic state estimation technique uses few 
synchronized harmonic measurement data as input to 
find the complete harmonic information for the whole 
network[8-10]. A framework of HSE can be found in[11].  
 A general mathematical model which relates the 
measurement vector Z to the state variable vector X 
which is to be estimated can be formulated as follows: 
 
   Z(h) H(h)X(h) E(h)= +  (1) 
 
where, Z(h) is a measurements vector, H(h) is a 
measurement matrix, X(h) is a state vector to be 
estimated, E(h) is the measurement noise at hth 
harmonic order. 
 The measurement matrix can be considered as the 
matrix whose elements relate the measurement vector 
to the state variable vector. As a result, the proposed 
algorithm considers only one harmonic order of at a 
time and the variable of hth harmonic order in the 
previous equation will be left. 
 Various methods are possible, the most widely 
used is the Weighted Least Square (WLS). The WLS 
estimate is, therefore, the vector X  that minimizes the 
weighted   sum   of   the   squares   of   the    residuals 
(R = Z-HX) between the actual measurements and 
estimates levels, i.e., 
 
 T 1Minimise J(X) (Z HX) R (Z HX)−= − −  (2) 
 
where, R−1 is the inverse of the covariance matrix. 
 Matrix R is diagonal and contains the covariances 
of the measurements (if they are known). This permits 
applying higher weighting to measurements that are 
known to be more accurate. R is replaced by the 
identity matrix if the same instrumentation is used to 
obtain them[14]. 
 The solution to (1) in the WLS sense is obtained by 
solving the following equation: 

   T 1 T 1(H R H)X (H R )Z− −=  (3) 
 
 The measurement equation can be linear by 
choosing the phasor busbar voltages as state variables 
and measuring phasor busbar voltages, phasor line and 
injection currents[14]. It is important to emphasize that 
the estimation algorithm for this case is direct (not 
iterative). 
 Equation 1 is usually under-determined system 
because of limitation of harmonic instruments and 
different ownership of different parts of the system. 
This results in (HT R−1H) being singular and a result can 
not be obtained with normal equation approach[11]. 
Furthermore, even in completely or ever-determined 
system, the normal equations may be very singular or 
ill-conditioned. Although several methods have been 
suggested to solve such ill-conditioned problem, 
e.g.,[12,13], observability analysis is still needed prior to 
estimation. 
 

SINGULAR VALUE 
DECOMPOSITION (SVD) 

 
Principles of the SVD: To solve the HSE problem 
when only observable islands exist, SVD needs to be 
applied, since standard techniques for solving such 
equations will fail[11]. In addition using SVD removes 
the need for observability[5]. 
The matrix H (m×n) of (1) can be replaced using the 
SVD by product of three matrices, i.e., 
 
    H = UWWT (4) 
 
where, W is a diagonal matrix (n×n) with positive or 
zero elements, which are the singular values of H. U is 
a column orthogonal (m×n) matrix and VT is the 
transpose of an (n×n) orthogonal matrix. 
 SVD constructs special orthonormal bases for the 
null space and range of a matrix. It can be shown that U 
is eigenvector matrix of HHT and V is the eigenvector 
matrix of HTH. Moreover, WWT is a diagonal matrix of 
eigenvalues. The column of U, corresponding to the 
nonzero singular values are an orthonormal set of basis 
vectors that span over the range of H . The column of 
V, corresponding to the zero singular values are an 
orthonormal set of basis vectors that span over the null 
space[6]. 
 The solution process for measurement systems 
using SVD can be found in[11]. Equation (1) is solved in 
the WLS sense for over-determined measurement 
system as: 



Am. J. Applied Sci., 5 (11): 1499-1505, 2008 
 

 1501 

    T 1 TX (H H) H Z−=  (5) 
 
 Substitute SVD of gain matrix into (5), it yields: 
 

T T T 1 T T 1 TX (VW U UWV ) VW U Z VW U Z− −= =  (6) 

 
 Also for completely determined and 
underdetermined systems, the Eq. 6 is valid.  
 
Detection unobservable region using SVD: In 
singular measurement systems, while most traditional 
techniques fail, SVD is able to provide a particular 
solution and a null space vector for each singularity. In 
such cases, there is no unique solution but an infinite 
number of solutions. The infinite solutions of such 
system are expressed as[5]: 
 

   
n rank(H)

P i ni
i 1

[x] [x ] k [x ]
−

=

= + �  (7) 

 
where, [xP] is the particular solution, ki is a constant and 
[xni] is the null space vector. 
 The null space vectors can be multiplied by any 
constant and added to the particular solution to give 
another valid solution to the set of equations, thereby 
specifying the infinite number of solutions. Variables 
corresponding to zeros in all the null space vectors will 
not be changed by this process and, hence, are 
completely specified by the particular solution. These 
variables correspond to estimates of quantities in the 
observable islands. The variables corresponding to 
nonzero elements in the null space vectors are in the 
unobservable regions as they cannot be uniquely 
determined[5]. 
 

OPTIMAL HARMONIC METER 
PLACEMENT 

 
 However, the number of measuring devices 
available is limited due to cost and the quality of 
estimates is a function of the number and locations of 
the measurements. A proper methodology is needed for 
selecting optimal sites for the measuring devices. In this 
section a new criteria is proposed for optimal harmonic 
meter placement. Since the proposed method is based 
on the SVD and minimum condition number of the 
measurement matrix, the minimum condition number 
criteria is first expressed for the sake of clarity followed 
by the proposed criteria. 

Minimum condition number criteria: In solving 
linear equations, condition number relates the results 
variations (x) to the data variations (D): 
 

   
D Dx x

CN
x D

−−
=  (8) 

 
 Based on the above definition, CN shows 
sensitivity of mathematical equation to the variations of 
data. For example consider the system Ax = b with 
following matrixes: 
 

0.78 0.563 0.217
A , b

0.913 0.659 0.254
� � � �

= =� � � �
� � � �

 

 
 True answer of this equation is: 
 

1
x

1
� �

= � �−� �
 

 
  If there are some errors in the equation data (A) as:  
 

0.001 0.001
E

0.002 0.001
� �

= � �− −� �
 

 
 Then after solving the equation (A+E)x = b, the 
answer will be: 
 

5
7.3085

−� �
� �−� �

 

 
 This shows that a small variation of data leads to 
great variations of response. Now the CN of matrix (A) 
is calculated: 
 

2 2

2 2

0.0018, 6.1562,

6.1562
CN 3420.1

0.0018

∆ ∆
≈ ≈

= =

A x
A x  

 
 It’s observed that the CN of matrix (A) is too large. 
 As shown in[3] the CN of a matrix is the ratio of the 
largest (in magnitude) to the smallest singular value. A 
matrix is singular if its condition number is infinite and 
it would be considered ill-conditioned if its condition 
number is too large. 
 Based on this criteria, combination that the CN of 
its measurement matrix is a minimum is selected as 
optimal combination for available meters. 
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Proposed criteria: As stated in section III, if all the 
null space vectors have zero entries in a particular 
position, the corresponding state variable will be 
observable as any linear combination of null space 
vectors will not alter its value and can be estimated 
without any error. Based on this subject, a new 
algorithm is proposed for placing available meters: 
 
Step 1: First, combination is searched for meters with 
entire nonzero singular value elements. If various 
combinations are found with this property, combination 
with the least CN of measurement matrix is selected. 
Otherwise, the next step is used. 
 
Step 2: If combination for measurements with entire 
nonzero singular value elements not found, 
combination that null space vectors of its measurement 
matrix have more zero entries is selected. In fact in this 
method more variables are estimated without error (the 
Number of Observable Variables (NOV) will be 
increased). 
 
Step 3: If several combinations are found with the same 
NOV, combination with the least CN of measurement 
matrix is selected. 
 However, to improve the quality of state 
estimation, virtual and pseudo measurements can be 
included in the measurement matrix. Virtual 
measurements provide the kind of information that does 
not need metering (e.g., zero harmonic current 
injections at switching substation and at nonharmonic 
source bus)[6]. 
 

BGA-BASED METE PLACEMENT 
 
 Genetic algorithm searches for an optimal solution 
using the principles of evolution and heredity. By 
simulating the survival of the fittest evolution strategy 
among chromosome (i.e., string) structures, the optimal 
string is searched by randomized information exchange. 
The major advantage of using the GA is that the 
solution obtained is globally optimal[7]. Also GA is 
capable of obtaining the global solution of a wide 
variety of functions such as differentiable or 
nondifferentiable, linear or nonlinear, continuous or 
discrete and analytical or procedural[16]. For the 
problem of optimal meter placement for static harmonic 
estimation, the global solution obtained using GA 
requires a lesser number of iterations compared to the 
CE technique and at the same time eliminates the 
disadvantage of the sequential meter placement 
technique, which gives suboptimal solution[7]. 

 The placement of measurement points is normally 
assumed to be symmetrical (e.g., either three or no 
phases measured at a location). All possible 
measurement locations for an N-bus system in this 
research include all injection currents (N locations), all 
node voltages (N locations) and all line currents (L 
locations, both sending and receiving ends). Therefore 
all possible measuring locations are equal 2N+L. The 
algorithm of the proposed BGA technique is described 
in detail as follows. 
 The BGA begins, by defining the optimization 
variables and population size in each generation. The 
size of each string is considered to be a row vector with 
‘2N+L’ elements, which have been combined zero and 
one values. In each string elements one and zero imply 
existing and not existing measurement device in related 
location respectively. Each string is actually denoting 
some combination of the meter locations and the 
number of each chromosome’s ones is equal to the 
number of available harmonic meters (m). Hence, each 
element of each string should be initialized to represent 
a particular location, where a meter to be placed. In the 
present work, the population size (i.e., the number of 
strings) has been taken to be 10. 
 The proposed criteria is to find combination for 
meters so that the number of observable variables 
(NOV) is maximized and the CN of measurement 
matrix is minimized (approach to one). Therefore the 
cost function is selected as below: 
 

  1
Cost Function CN k

NOV
= +  (9) 

 
where, coefficient k is selected so that the influence of 
CN and NOV be reasonable in the cost function. 
 To produce the new generation, the amount of Xrate, 
the percent of chromosomes that are survived and 
directly transferred to the next generation, has been 
selected equal to 50%. For the selection of parents’ 
chromosomes, the tournament selection method is used. 
The best chromosome (the first) becomes a parent and 
the other parent is selected from the remaining of the 
50% of the first chromosomes. This operation is 
repeated until all of the needed offspring are produced. 
 In this step, the next generation of GA is created as 
described below. The two strings, whose fitness values 
are the lowest and the second lowest respectively, are 
directly copied to the next generation. Then, by 
performing crossover another strings for the next 
generation are created as following. Two numbers are 
randomly created between the first and last bits of the 
parents’ chromosomes that are termed as “crossover 
points”. The bits between these two numbers are 
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exchanged between offspring cruciformly and the bits 
that are outside of crossover points are directly 
transferred to the related offspring. The number of each 
chromosome’s ones is equal to the number of available 
harmonic meters. Therefore the number of offspring’ 
ones is checked and if it is less than ‘m’, chromosome’s 
zeros is randomly selected and converted to one; if it is 
more than ‘m’, chromosome’s ones is randomly 
selected and converted to zero. 
 If the best string does not change for two 
successive generations, then the mutation operator is 
applied to it. Over the first chromosome, which has the 
least amount of costs, mutation won’t be done and is 
directly transferred to the next generation. After 
selecting the location of bits which mutation is done; if 
these bits are zero converted to one and if they are one 
converted to zero. However, it’s noted that in this work 
the amount of µ, the percent of population bits that 
mutation is done over them, is selected equal to 20%. 
 After mating, mutation and ranking, the population 
is used as the starting population for the next 
generation. The number of generations that evolve 
depends on whether an acceptable solution is reached or 
a set number of iterations is exceeded. After a while all 
the chromosomes and associated costs would become 
the same if it were not for mutations, at this point the 
algorithm should be stopped[16]. 
 Figure 1 shows the flowchart of optimal 
measurement placement algorithm. 
 

TEST SYSTEM AND SIMULATION RESULTS 
 
 In this section IEEE 14-bus test system is used to 
test the proposed measurement placement algorithm. A 
schematic of this test system is shown in Fig. 2 and its 
total data are provided from[15]. There are 14 busbars, 
35 branches and 41 lines. The equivalent � model is 
used to represent each transmission line. The system 
consists of 10 loads connected at busbars 3-5 and 8-14 
that contains two harmonic sources. One is a twelve-
pulse HVDC terminal at bus 3 and the other is a SVC at 
bus 8. Because the system has balanced bus loads and 
the transmission lines are transposed, a balanced 
harmonic analysis is generally sufficient for 
determining harmonic distortion levels in this case[15]. 
There are 69 possible measurement locations (m), given 
that there are 14 injections current measurements, 14 
busbars voltage measurements and 41 lines current 
measurements (both sending and receiving ends).  
 In order to obtain a unique solution for harmonic 
state estimation, the minimum required numbers of 
harmonic instruments has to be equal to the number of 
state  variables.  As  a  result,   the  optimal  number   of 

Determine GA parameters
and produce first population

No

Yes

Input system data  and no
of harmonic meters

Selection

Calculate cost for each
chromosome and ranking

Start

Convergence?

Mutation

Mating

Calculate  cost for each
chromosome

End
 

 
Fig. 1: Flowchart of optimal measurement placement 

algorithm 
 

 
 
Fig. 2:  IEEE 14-bus test system 
 
harmonic instruments is equal to the number of state 
variables. Actually the state variable of the test system 
is 14, which using HSE algorithm can be reduced to the 
number of suspicious nodes (i.e. 10). 
 The proposed algorithm for measurement 
placement is written using MATLAB[17]. 
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Table 1: Measurement placement: without virtual measurement 
Proposed criteria CN criteria Measuring locations 
8 - Injection currents 
1, 3, 6, 7, 9-11, 13, 14 3, 8-14 Bus voltages 
- 7, 40 Line currents 
2.8 1.6 CN 
10 8 NOV 
0.05 0.08 Error (%) 

 
Table 2: Measurement placement: with virtual measurement 
Proposed criteria CN criteria Measuring locations 
8,(1,2,6,7) (1,2,6,7) Injection currents 
1, 3, 6, 7, 9-11, 13, 14 3,8-14 Bus voltages 
- 7, 40 Line currents 
39.8 23.1 CN 
14 8 NOV 
0.00 0.06 Error (%) 

 
Investigating of the proposed criteria: In this part, the 
performance of the proposed criteria in (9) is compared 
with the minimum condition number criteria. Also, the 
sequential procedure has been used for harmonic meter 
placement. 
 Furthermore the measurement placements are 
different among harmonic orders, but all of the 
measurement placements from all harmonic orders are 
sufficient to uniquely calculate all state variables for all 
harmonic orders of the system correctly.  
 The measurement placements of this system, using 
minimum condition number of the measurement matrix 
of the 5th harmonic, are node voltages at busbars 3 and 
8-14 and line currents in lines 7 and 40. 
 On the other hand, if proposed criteria in (9) at the 
5th harmonic is used, the measurement placement will 
be the node voltages at busbars 1, 3, 6, 7, 9-11, 13 and 
14 and injection current at busbar 8, resulting in the 
fully observable system. 
 Table 1 shows the results for two different 
criterions that verify the effectiveness of the proposed 
criteria. 
 Table 2 shows the results where the virtual 
measurements (harmonic current injections at 
nonharmonic source busbars) have been included. The 
numbers in parenthesis at Table 2 are the locations 
related to the virtual measurements.  
 According to Table 1 and 2, the following results 
are obtained: 
 
• Although the CN of measurement matrix that 

obtained based on the proposed criteria is more 
compared to the CN of measurement matrix of the 
minimum condition number criteria, but as the 
NOV has been increased and the square of errors 
between true and estimated fifth harmonic voltages 
has been decreased, thus these locations are more 
desirable for meters 

Table 3: Measurement Placement: Using Minimum CN Criteria 
Measuring locations CE method SP method BGA method 
Injection currents - - - 
Bus voltages 3, 8-14 3, 8-14 3, 8-14 
Line currents 6, 31 7, 40 6, 31 
NOV 9 8 9 
Error (%) 0.05 0.08 0.05 
Time (min) 235 7 19 

 
Table 4: Measurement Placement: Using the Proposed Criteria 
Measuring locations CE method Sp method BGA method 
Injection currents 6, 8 8 6, 8 
Bus voltages 1, 3, 7, 10, 11, 1, 3, 9-11, 6, 1, 3, 7, 10, 
 13, 14 7, 13, 14 11, 13, 14 
Line currents 31 - 31 
NOV 10 10 10 
Error (%) 0.035 0.05 0.035 
Time (min) 251 12 25 

 
• By using virtual measurements, the error of 

estimation is decreased. Thus to improve the 
quality of estimation, these can be included in the 
measurement matrix 

• By adding the virtual measurements to the obtained 
combination for meters based on minimum 
condition number criteria , the NOV has not been 
increased and only the error of state estimation has 
been decreased a little. Whereas by adding them to 
the obtained combination for meters based on 
proposed criteria, the system has been completely 
observable and the error of state estimation 
approaches to zero 

 
 Investigating of the proposed BGA: In this section, 
to test the effectiveness of the proposed BGA for 
optimal harmonic meter placement; simulation studies 
have been carried out in IEEE 14-bus test system. The 
results obtained by the proposed BGA have been 
compared with those obtained by both CE and 
sequential techniques. In Table 3 and 4 the results have 
been shown based on minimum CN of the measurement 
matrix and proposed criteria, respectively. It’s noted 
that in these Tables the virtual measurements have not 
been included. 
 Based on Table 3 and 4, it is observed that BGA is 
able to find out the optimal combination of meters with 
significantly less computational time compared to the 
CE technique, whereas, the sequential procedure fails to 
do so. 
 

CONCLUSIONS 
 
 In this research a new method based on SVD and 
BGA has been proposed to place meters optimally for 
estimating and identifying the unknown harmonic 
sources. The performance of the proposed criteria has 
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been compared with the minimum condition number 
criteria and performance of the proposed optimization 
technique (BGA) has been compared with those of CE 
and sequential techniques in IEEE 14-bus test system. 
Based on this study the major conclusions of this work 
are: 
 
• Minimizing the CN of the measurement matrix 

doesn’t necessarily lead to the better estimation 
quality 

• Although the CN of the obtained meters 
combination based on proposed criteria is not less 
as compared to the obtained meters combination 
based on minimum condition number criteria; but 
as the measuring residual errors has been 
minimized and also the NOV increased, these 
locations are more desirable 

• The proposed BGA-based method finds the 
optimal meter locations while the sequential 
technique can guarantee only near optimal 
solutions. Moreover, BGA is capable of finding out 
the optimum combination in significantly less 
computational time as compared to the CE 
technique 

• To improve the quality of harmonic state 
estimation, Virtual measurements can be included 
in the measurement matrix 
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