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Abstract: A fault detection and isolation (FDI) scheme for dynamic system proposed. This study deals 
with the design of discrete-time linear system using delta operator approach and the hybrid least 
squares (HLS) algorithm. A third residual generation based on statistical local approach and the 
derivative of the normalized residual on a small temporal window investigated. This new technique 
meets the desired FDI performance specifications by increasing the faults magnitude and decreasing 
the noise effects. Some simulation results were provided to evaluate the design. 
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INTRODUCTION 

 

The increasing complexity of modern automated 

processes and the increasing demands for quality, 

reliability, availability, safety and cost efficiency 

require better safety management and supervision. 

Generally, the function of a supervisory control system 

is to detect and isolate faults in the system. The design 

of many modern fault detection and diagnosis system is 

based on the mathematical model of the plants. The 

model-based technique is where the actual behavior of 

the system is compared with the nominal fault free 

model that is driven by the same input. The result of 

this comparison leads to class of signal called residual. 

If the residual is not zero, then the system has faults, 

otherwise the system is normal. 

In general, fault detection and diagnosis is a board 

and active area of research. There are a large volume of 

papers that deal with this subject, see, e.g.,
[1]
 and 

references therein. In many applications the problem of 

FDI is a crucial issue that has been theoretically and 

experimentally investigated with different types of 

approaches
[2]
. 

A novel residual generation method is proposed in 

this paper, whereas the residual generation based on the 

derivation of the normalized residual in a small 

temporal window is developed. The proposed residual 

offers favorable FDI properties, in which decreasing the 

noise effects and increasing the faults magnitude, 

therefore the FDI are improved especially in the case of 

the small change in the physical parameters of the 

system. 

The purpose of the paper is to describe and analyze 

the FDI algorithm, based on the HLS parameter 

estimation technique using delta operator and the 

statistical local approach. The delta operator, which 

proved to be a convenient tool for examining the 

asymptotic behavior of discrete-time models of 

continuous-time systems as the sampling period 

converges to zero offers several advantages as 

compared to the common forward shift q  operator 

often leading to ill-conditioned processes
[3]
. It has been 

observed that for sufficiently small sampling periods 

the δ  operator algorithms not only are much less 

sensitive to arithmetic round-off errors than their 

counterparts q -domain algorithms, but also ensure that 

the delta representation of a discrete-time system will 

converge to the corresponding continuous-time system 

as the sampling period tends to zero
[4]
. The main 

advantage of the statistical local approach is its ability 

in assessing the level of significance of discrepancies 

with respect to uncertainties. This approach has a wide 

scope of interest, since it can encompass all the types of 

FDI problems, for sensors, actuators and components 

faults. 
 

DELTA-DOMAIN MODELING AND STIMATION 
 

Delta model: The problem of obtaining a δ -domain 

discrete-time model for a given continuous-time system 

has been addressed by many authors
[4]
. A reliable 

algorithm for derivation of these models of continuous-
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time systems in a finite precision arithmetic can be 

found in
[3]
. 

Consider a single-input single-output linear 

continuous-time system, 

)()()()( tusBtysA ′=′                                                   (1) 

where )(tu , )(ty  denoting the continuous-time input 

and output respectively, )(sA′  and )(sB′  are 

polynomials of order n  and m , nm < , respectively, 
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Let T  be the sample period, the delta operator 

defined by [1, 11], 

T

q 1−
=δ                                                                      (3) 

can serve as an alternative, which is known as 

mediation between the differential and the shift 

operators. It has been shown that the delta operator 

offers advantages over the shift operator, in terms of 

numerical robustness
[4]
. 

Using the delta operator (3), an alternative discrete-

time representation based on the delta operator of the 

previous model (1) is given by, 

)()()()( tuBtyA δ=δ                                                     (4) 

Letting 0→T , then )()( sAA ′→δ  and )()( sBB ′→δ , 
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This implies that the delta representation converge to 

the continuous-time representation as the sampling rate 

increase. 

 

Hybrid parameter estimation: In case when the 

derivatives of )(ty , )(tu  in (4) are not available, we 

can use filtered derivatives in place of the raw 

derivatives. Since )(ty
i

δ  involves near differentiation 

of the data, incorporate a polynomial pre-filter )(δE , 
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by writing, 
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the choice of )(δE  conditions the bias, but also the 

convergence of the estimation
[4]
. 

Note that since both )(δA  and )(δB  have unity 

leading coefficients only data up to time t  is required 

on the right-side of (7), 

[ ] )()()()()()( tuBtyAEty
FF

δ+δ−δ=                         (8) 

where, 
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Now define a parameter vector for (8) as, 

[ ]T
mnn

bbaeae
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⋯⋯ −−=θ
−−

                     (10) 

where [ ]T
l

θθ=θ ⋯
1

,  ( ) 1++=θ= mn diml . Then 

the linear regression model can be written as, 

θϕ= )()( tty
T

F
                                        (11) 

where, 
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FF
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FF
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(12) 

where )(t
F

ϕ  is the regression vector. We obtain a 

linear model with regard to the parameters by a 

transformation of the original data to the filtered data, 

where an analogue relation to the equation (4).  

For know orders and delay, the problem consists of 

estimating the parameter vector θ  in the linear 

regression model (13) from the available data. In this 

paper, the HLS algorithm with forgetting factors λ  has 

been chosen, because it best fits to the problem studied 

and because it is easy to implement. Estimation of the 

parameter θ  may be found by minimizing the 

following sum of square of the equation error, 

[ ]∑
=

− θϕ−λ=θ
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)()(),(                              (13) 

However, the parameter vector 
0
θ  that satisfy 

0)(
0
=θϕ t

T

F
, is not unique. To let the estimation 

unique, a parameter constraint 1=θθ
T  may be used. 

For the recursive estimation of the parameter, the HLS 

algorithm with adaptive forgetting factors )(tλ  is used 

which is given as follows
[4, 5, 6]

, 
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where )(tε  is prediction error defined as, 

)(ˆ)()()( tttyt
T

F
θϕ−=ε                                               (15) 

and the adaptive forgetting factors )(tλ  is defined as, 

( ))0(1)1()(
0

λ−+−λλ=λ tt                                       (16) 
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The forgetting factor is used mainly to put higher 

weights on the more recent measurements so as to 

facilitate the convergence rate of the estimation of time-

varying parameters. 

 

FDI SCHEME 

 

FDI problem: The problem of fault detection consists 

in making the decision on the presence or absence of 

faults in a monitored system. When no fault is present 

in the system, the system is said in its safe mode; 

otherwise it is in a faulty mode. 

Generally speaking, faults in a dynamic system are 

often associated with malfunction of system 

components, which are reflected as changes in the 

system parameters. This situation can be modeled as 

abrupt or slowly developing parameter changes. In the 

above model representation (13), this type of faults can 

be modeled as: 


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
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≥θ∆+θ

<θ
=θ

fault  withtt     N

free fault tt                      

f

f

:

:

0
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              (17) 

where 
0
θ  (identified with data from the safe system) 

and θ∆  (same dimension as 
0
θ , but with an arbitrary 

direction and a small magnitude) represent the nominal 

system parameters and the fault-induced parameter 

changes, respectively, and 
f
t  is the fault occurrence 

time. The normalization N1  is necessary in order to 

get a non-trivial limit distribution. 

To model the process dynamics and to generate the 

residual parameter it can be assumed that the equivalent 

input-output representation of the model (13) described 

as, 

( ) θϕ−=δθ )()(,,, ttyyug
T

FFF
               (18) 

where ( )δθ ,,,

FF
yug  is a vector of differential 

polynomials in 
F

u , 
F
y  and θ . 

 

Residuals generation: In the previous studies
[7]
, the 

parametric statistical approach distinguishes between 

two residuals
[7]
: primary residual, which is a function of 

the model parameter θ  and the observations 
F

u , 
F
y , 

and normalized residual, which is the mean of the 

normalized sum of this primary residual. Our 

contribution in this study is the generation of a third 

residual based on the derivative of the normalized 

residual on a small temporal window. 

Due to the modeling uncertainty and measurement 

errors, some stochastic assumption should be 

introduced in order to take them into consideration. For 

linear systems, noises are usually assumed to be 

additive in model equations. For the sake of simplicity, 

we assume that the stochastic model of the system is, 

( )
FFF

yug η=δθ ,,,                 (19) 

where the noise 
F

η  is assumed be Gaussian. 

For a system modeled by equation (11), assume 

that the parameter θ  is locally identifiable at the 

nominal value 
0
θ . Let θ  be the actual parameter value 

for the system which generated the new data sample. 

The primary residual related to the identification of θ  

by minimizing the square of ( )δθ ,,,

FF
yug  writes as, 
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can be interpreted as an efficient score for model (18), 

(19), and is of interest for monitoring purposes. This is 

because changes in θ  are reflected by changes in the 

mean value of ( )δθ ,,,

FF
yuR . 

For N -size data sample, the cumulative sum of 

quantities (20), )(θ
N
r , is given by

[1, 8]
, 
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Technical arguments for the N  factor can be found 

in [2, 9]. Let 
θ

Ε  be the expectation when the actual 

system parameter is θ , we know that
[7]
 )(θ

N
r  is 

defined as a normalized residual if, 
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In this paper, we propose a third residual 

generation )(θ
N

D  based on the derivative of the 

normalized residual )(θ
N
r , which is estimated on the 

same temporal window N , 

[ ])()( θ=θ
NN
r

dt

d
D                            (23) 

Using the delta operator (section 2), the residual )(θ
N

D  

can be expressed as, 
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note that, the use of derivative of the means values on a 

small temporal window allows the filtering of noises, 

and at the same time, allows a fast resolution of all 

changes in residuals
[10]

. It is precisely this quantity 
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)(θ
N

D  that is subsequently evaluated in order to 

perform FDI. Under some conditions, the residual 

)(θ
N

D  is asymptotically Gaussian distributed, and 

reflects a small fault by a change in its mean vector.  
To decide whether 

0
θ=θ  holds true or not, or 

equivalently whether the residual )(θ
N

D  is 
significantly different from zero, requires the 
knowledge of the probability distribution of )(

0
θ

N
D , 

which unfortunately is generally unknown. One manner 
to circumvent this difficulty is to assume close 
hypotheses, 
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where vector θ∆  is unknown but fixed. Note that for 

large N , hypothesis 
1

H  corresponds to small 

deviations in θ . 

Let ( )T

NN
N

DD
θ
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0

 be the residual covariance 

matrix. Matrix Σ  captures the uncertainty in 
N

D  due to 

estimation errors: indeed the covariance matrix of the 

error in estimating 
0

θ  is this )(
0

θΣ as well
[7]
. 

Provided that )(
0

θΣ  is positive definite, the 

residual 
N

D  in (23) is asymptotically Gaussian 

distributed with the same covariance matrix )(
0

θΣ  

under both 
0

H  and 
1

H . According to
[7]
, the residual 

)(θ
N

D  have the following properties, 
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where )(
0
θM  is the Jacobean matrix containing the 

sensitivities of the residual with respect to the model 

parameters, 
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As seen in (26), a deviation θ∆  in the system 

parameter θ  is reflected into a change in the mean 

value of residual 
N

D , which switches from zero to 

θ∆θ )(
0

M  in case of small damage. Note that matrices 

)(
0
θM  and )(

0
θΣ  depend on neither the sample size 

N  nor the fault vector θ∆  in hypothesis 
1

H . Thus 

they can be estimated prior to testing, using data on the 

safe system (exactly as the reference parameter 
0

θ ). 

Fault detection and detectability: For deciding 

between 0=θ∆  and 0≠θ∆ , the decision can be taken 

based on the optimum test statistics τ , referred as the 

global test, is based on the generalized log-likelihood 

ratio. It can be shown
[1, 7]

 that the GLR test of 
1

H  

against 
0

H  can be written as, 

( )
N

TTT

N
DMMMMD

1111 −
−

−−

ΣΣΣ=τ                (28) 

which should be compared to a threshold. If the 

incidence matrix M  is an invertible matrix, then the 

global test τ  can be reduces to, 

N

T

N
DD

1−

Σ=τ            (29) 

is asymptotically 2

χ -distributed, with a number of 

degrees of freedom equal to the dimension of θ . The 

limiting 2

χ -distribution is central under 
0

H , and has 

the non-centrality parameter under 
1

H  equal to, 

θ∆Σθ∆=γ −

MM
TT 1                                               (30) 

it is known
[6]
 that the detection power of τ  (the 

probability of successful detection for given probability 

of false alarm) is an increasing function of γ . 

In (28), the dependence on 
0

θ  has been removed 

for simplicity. The only term which should be 

computed after data collection is residual 
N

D  in (24). 

The statistical properties of τ  provide a theoretical 

guideline for the choice of a threshold 
ε

λ  found from a 

2

χ -table, where ε  is the false alarm rate specified by 

the users. If τ  is found to be larger than the threshold 

value, then a change in parameter is detected. 

Therefore, the fault detection decision is performed by 

the rule, 





λ>τ

λ≤τ

ε

ε

1

0

,

,

H under  

H under  
                                (31) 

Denoting the parameter changes as 

[ ]T
l

θ∆θ∆ ⋯
1

, in case that only 
i

θ∆  is no-zero and 

all the other )( ij
j

≠θ∆  are zero, the sufficient 

condition for detectability of the fault can be derived as, 

ii
α≥θ∆                         (32) 

where,

ii

i

F

ε
λ

=α                                 (33) 

and 
ii

F  indicates the ),( ii  element of the Fisher 

information matrix, 

MMF
T 1−

Σ=                              (34) 

which indicates that the magnitude of fault should be 

large enough to guarantee detectability. 
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Fault isolation and isolatability: The problem of fault 

isolation poses a bigger challenge than fault detection. 

The fault isolation is performed only after the 

deliverance of a fault detection alarm. Once a change is 

detected from the model parameter, it may be necessary 

to isolate which or which set parameters have changed. 

The statistical approach to residual evaluation requires 

the knowledge of the statistical properties of the 

residuals. For this purpose, divide θ  into, 


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θ

θ
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=+ . 

Make the corresponding partition of M , 

[ ]
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which corresponds to the partition of θ , i.e. the column 

dimension of 
a

M  is the same as the row dimension of 

a
θ  and the column dimension of 

b
M  is the same as the 

row dimension of 
b

θ , so that 
bbaa

MMM θ+θ=θ . 

The problem now is to detect changes in 
a
θ , where 

the sizes 
a
l  and 

b
l  of the components are assumed to 

be fixed and known. The problem of fault isolation can 

be formulated as the following hypotheses test, 

0a
H :( 0=θ∆

a
, 0=θ∆

b
),

1a
H :( 0≠θ∆

a
, 0=θ∆

b
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The sensitivity test 
a
τ
~  for monitoring 

a
θ∆  is a 

generalized log-likelihood ratio test defined as, 
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T
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rFr
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N

T
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Σ=                                 (38) 

 is the partial score in 
a
θ  and 

a

T
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MMF

1−

Σ=  is the 

covariance matrix of 
N

D . Under both hypothesis (
0a

H  

and 
1a

H ), 
a
τ
~  is a 2

χ -test with 
a
l  degrees of freedom. 

This distribution is a central 2

χ  under the 
0a

H  

hypothesis, and a non-central 2

χ  under the 
1a

H  

hypothesis with non-centrality parameter, 

aaa

T

aa
F θ∆θ∆=γ~                           (39) 

The statistical properties of 
a
τ
~  provide a 

theoretical guideline for the choice of a threshold based 

on the 2

χ -table and desired false isolation probability 

ρ . Let 
ρ

λ  be the chosen threshold, the sensitivity test 

based isolation of a particular fault (e.g. 
a

θ∆ ) can be 

made according to the following comparison, 


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In some practice cases, we need to isolate the 

change in every individual parameter, which can be 

called complete isolation, in other cases; we just need to 

isolate the changes in some particular parameter 

subsets, which can be called partial isolation. In 

complete isolation cases, the test should be attribute on 

every individual parameter, or in other word, 
a

θ∆  is 

considered as a particular parameter. On other hand, in 

partial isolation cases, 
a

θ∆  is considered as a vector, 

which indicates a particular subset of parameters. 

For the min-max test, the parameters in 
b

θ  are 

considered as nuisance and are statistically rejected. Let 

the Fisher information matrix according to, 
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according to the parameter partition, plays a key role in 

statistical detection. Its importance as an information 

measure is a central issue in the derivation of the 

criteria proposed in this paper. 

Letting 
ia

θ∆=θ∆ , ),,1(
a
l  i ⋯= , a necessary 

condition for complete isolatability is that the incidence 

matrix M has full column rank, and a sufficient 

condition for complete isolatability of the fault 0≠θ∆
i

 

can be derived as, 

ii
β≥θ∆                     (42) 

where, 

),( iiF
a

i

σ
λ

=β                 (43) 

and ),( iiF
a

 indicates the ),( ii  element of the 

covariance matrix 
babbabaaa

FFFFF
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−= of 
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rFFr
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−=τ  where 
N

T

bb
DMr

1~ −

Σ=  is the partial 

score in 
b
θ . 

In the case when θ∆=θ∆
a

 (fault in all 

parameters), the sensitivity test 
a
τ
~  can be derived as, 

N

TT

Na
DMMFD

111~ −−−

ΣΣ=τ      (44) 

and the sufficient condition for complete isolatability of 

the faults 0≠θ∆
i

 is expressed as, 

),( iiF
i

σ
λ

≥θ∆                      (45) 

MAGLEV SYSTEM 
 
Process description: In this section, a design example 
will be presented to illustrate the design procedure of 
the proposed FDI methods. We introduced a MAGLEV 
system [11] to illustrate the validity of the proposed 
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algorithm. The electromagnet-track configuration is 
illustrated on Fig.1.  

At the equilibrium point ),(
00
zi , to derive the 

model of the open-loop system, the parameters of the 
magnet at the equilibrium point need to be calculated. 
In addition, if the disturbance force is assumed to be 
zero, the open-loop transfer function of the MAGLEV 
system is given by, 

( )
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where )(tz  the air-gap, )(tv  the instantaneous voltage, 

m the suspended mass, R the total resistance of the 

circuit, L  the inductance of the magnet winding, 

RLT
m
=  the magnet winding electrical time constant, 

i
k  the slope of the force-current characteristics, and 

z
k  

the slope of the force-distance characteristics. 
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Fig.1:  Experimental electromagnetic suspension system 

 

The open-loop transfer function (46) indicates that 

the lag due to the magnet winding electrical time 

constant, 
m

T , may be separated from the suspension 

dynamics. If the power amplifier has a wide enough 

bandwidth, 1<<
m
T , then an approximate form of open-

loop characteristic equation is, 

( ) 01

2

2 =







−++
m

k
s

mR

k
ssT

zi

m
   (47) 

Finally, the open-loop transfer function of the 

MAGLEV system is expressed as, 

( )
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
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mLk
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m
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2

2

0

1)(

)(            (48) 

We can represent the MAGLEV system by the 

following input-output model, 

)()(
)()(

10012

2

tvbtza
dt

tdz
a

dt

tdz
=++       (49) 

where, 

)()(
1)(

1

1
tvtv

Tdt

tdv

m

=+                        (50) 

and, 
mR

k
a

i

2

1
= ,

m

k
a

z

−=
0

,
mL

k
b

i

−=
0

  (51) 

Hence, the incidence matrix is depicted in the following 

table, 
 

Table 1: Incidence matrix 

 R  L  
z
k  

i
k  

1
a  1 0 0 1 

0
a  0 0 1 0 

0
b  0 1 0 1 

Due to the nonlinear force-distance and force-

current characteristics, MAGLEV system is unstable in 

open-loop feedback of at least position through a lead-

lag compensator is needed to obtain stability, though 

feedback of vertical acceleration is commonly 

incorporated to gain adequate control over suspension 

characteristics [11]. Therefore, the open-loop poles in 

(48) suggest that at least one zero is needed if the 

system is to be stabilized by using the classical 

compensation techniques. The control law derived by 

the compensator may be expressed as, 

2

2

)(
)()(

dt

tzd
ktcktv

ap
+=     (52) 

where 
p
k , 

a
k  are the appropriate feedback gains, and 

)(tc  is the clearance measured with respect to the 

instantaneous guide-way height )(th , Fig.2. 

Fixed / Absolute reference 

Position sensor 

∫  ∫  

Guide-way profile 

Accelerometer 

)(th  

)(tc  )(tz  )(tzɺ  )(tzɺɺ  

)(tz  
)(tc  

 

 
Fig.2: System configuration with an absolute reference 

MAGLEV delta model: Using the delta operator 

(section 2), a discrete-time representation of the 

previous model (49) is given by, 

[ ] )()()()()()(
1

tvBtzAEtz
FF

δ+δ−δ=   (53) 

where, 

001

2 )(,)( bB   aaA =δ+δ+δ=δ                    (54) 

and, 
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We can have the model in the following form, 

θϕ= )()( ttz
T

F
                                                (56) 

where, 

[ ])()()()(
1

tvtztzt
FFF

T

F
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and, 

[ ]Tbaeae
00011
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The regression vector )(t
F

ϕ  can be generated by, 
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where, 

[ ] [ ])()(,)()()(
1

tvt   tztzt
F

T

uFF

T

y
=ϕδ=ϕ      (60) 

 

 

RESULTS AND DISCUSSIONS 

 

MAGLEV Model simulations: At the equilibrium 

point )5.1,2( mm A , the nominal values of the MAGLEV 

physical parameters are presented in table 2.  
 
 
Table 2:  Physical parameters for the MAGLEV system 

m , (kg) L , (mH) R , (Ω) 
z
k , (N/m) 

i
k , (N/A) 

3 33 7 58000 44 

Therefore, the nominal values of the model parameters 

are, 

2.92
1
=a , 19333

0
−=a , 45.0

0
−=b  

A set of training data with a sampling rate ms T 10=  

(20s correspond to 2000=N  sample points) is first 

simulated when no fault occurs in the process. The 

nominal parameters of (58) are estimated by applying 

the HLS algorithm with forgetting factor (14) to the 

training data, where, 

8797.91ˆ
1
=a , 19238ˆ

0
−=a , 4423.0ˆ

0
−=b  

A noise signal with standard deviation 

94.0=σ corrupted output signal )(tz  simulated with 

the nominal parameter 
0
θ  is depicted in Fig.3. 
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Fig.3: No-filtered output simulated with the nominal 

parameters 

In order to let the reader appreciate the small 

parameter changes considered in our simulations, the 

low-pass filters can be applied to )(tz  to reduce noise 

and the effects of un-modeled dynamics. Many low-

pass filtering techniques are available in the literature. 

Simple second-order Butterworth filters with cut-off 

frequencies at 0.1Hz have been used here to process the 

output, Fig.4. 
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Fig.4:  Filtered output simulated with the nominal 

parameters 

 

MAGLEV faults simulated: Six cases are considered 

in the simulation: 

1. Change in a single parameter: 

• Case 1: Fault 
1

F , 1% increase of 
1
a : 922.0

1
=∆a  

• Case 2: Fault 
2

F , 3% decrease of 
0

a : 580
0
=∆a  

• Case 3: Fault 
3

F , 1% decrease of 
0
b : 

0045.0
0
=∆b  

2. Change in a pair of parameters: 

• Case 4: Fault 
4

F , 1% increase of 
1
a  and 3% 

decrease of 
0

a  

• Case 5: Fault 
5

F , 3% decrease of 
0

a  and 1% 

decrease of 
0
b  

3. Change in a three parameters: 

• Case 6: Fault 
6

F , 1% increase of 
1
a , 3% decrease 

of 
0

a  and 1% decrease of 
0
b  

The considered model parameters values for the above 

cases are summarized in table 3. 
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Table 3: Considered parameters values 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

1
a  93.12 92.20 92.20 93.12 92.20 93.12 

0
a  -19333 -19913 -19333 -19913 -19913 

-

19913 

0
b  -0.45 -0.45 -0.4545 -0.45 -0.4545 

-

0.4545 

 

The question is: Can we detect any one of the possible 

faults with a small magnitude subject to measurement 

noises? Can we isolate the source of the faults? 

 

Fault detection test: The global test (28) is applied to 

data simulated with the nominal model 
0
θ , and to data 

simulated with modified parameters θ . For each 

simulation, the sample size is 2000=N . According to 

the 2

χ -table, applying the threshold 34.11=λ
ε

 

(degrees of freedom, 3=l ) to this test corresponds, in 

theory, to the false alarm probability of 01.0=ε . The 

results are summarized in tables 4-6. 
 

Table 4: Fault detection test, 1.0=σ , 2000=N  

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

τ  55.55 53.45 41.74 50.18 21.49 22.51 

γ  9.25 1.63 8.66 1.63 1.41 1.41 

 

Table 5: Fault detection test, 4.0=σ , 2000=N  

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

τ  24.52 41.81 25.78 29.65 13.26 14.11 

γ  2.49 2.07 8.02 1.07 1.23 1.13 

 

Table 6: Fault detection test, 4.0=σ , 3000=N  

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

τ  44.53 51.84 35.73 49.74 17.39 21.14 

γ  7.39 2.13 8.62 2.07 1.83 1.83 

 

Comments: It is observed from the above tables 4-5 

that when fault occurs, the test τ  is greater than
ε

λ . For 

example in case 1, the test τ  is equal to 55.55 and 

24.52 for 1.0=σ  and 4.0=σ , respectively (Tables 4, 

5). Both tests are greater than the threshold 34.11=λ
ε

, 

then the fault 
1

F  is detected, but the global test 

when 4.0=σ  is less than the global test when 1.0=σ , 

due to the noise effect. From the same noise standard 

deviation of 4.0=σ , the fault detection performance 

are improved by increasing the sample size from 2000 

to 3000, in which the test τ  is equal to 44.53 and 24.52 

when 3000=N  and 2000=N  respectively (Tables 5, 

6).  For the same procedure, all faults 
2

F , 
3

F , 
4

F , 
5

F , 

and 
6

F  are detected. 

Fault detectability test: The sufficient conditions for 

fault detectability (32-33) results are shown in the 

following tables 7-9, which correspond to the standard 

deviation of measurement noise equal to 0.1, and 0.4, 

respectively. 
 

Table 7: Fault detectability test, 1.0=σ , 2000=N  

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

1
α  0.24 53.84 78.24 0.40 25.65 0.26 

2
α  962.9 275.5 802.6 267.9 355.1 382.8 

3
α  0.49 0.43 0.0033 0.41 0.0029 0.0021 

 

Table 8: Fault detectability test, 4.0=σ , 2000=N  

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

1
α  0.74 17.02 23.59 0.67 16.91 0.32 

2
α  666.3 428.9 659.1 415.8 211.9 427.3 

3
α  0.24 0.19 0.0042 0.17 0.0041 0.0043 

 

Table 9: Fault detectability test, 4.0=σ , 3000=N  

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

1
α  0.52 47.23 63.51 0.46 21.69 0.27 

2
α  817.2 343.2 745.9 395.7 321.8 370.2 

3
α  0.35 0.32 0.0035 0.36 0.0031 0.0029 

 

Comments: From the tables 7-8, we note that the 

sufficient condition for fault detectability is satisfied. 

For example, in case 1, we have ( 24.0
1
=α , 

9.962
2
=α , 49.0

3
=α ) and ( 74.0

1
=α , 3.666

2
=α , 

24.0
3
=α ) for 1.0=σ  and 4.0=σ , respectively, 

where 922.0
1
=θ∆ , 0

2
=θ∆  and 0

3
=θ∆ , we note 

that 
11

α>θ∆ , 
22

α<θ∆  and 
33

α<θ∆  then the 

fault detectability test for the model parameter 
1
a  is 

satisfied. Therefore, for all cases, the fault detectability 

test is satisfied, but the result is near perfect when the 

noise standard deviation increases. From the same noise 

standard deviation of 4.0=σ , the fault detectability 

performance are improved by increasing the sample 

size from 2000 to 3000, in which in the case 1, 

( 74.0
1
=α , 3.666

2
=α , 24.0

3
=α ) and ( 52.0

1
=α , 

2.817
2
=α , 35.0

3
=α ) when 2000=N  and 

3000=N , respectively (Tables 8, 9). 

 

Fault isolation test: After the deliverance of a fault 

detection alarm, the test (37-38) is applied to isolate this 

fault. According to the 2

χ -table, applying the threshold 

63.6=λ
υ

, 21.9=λ
ρ

, and 34.11=λ
ρ

 ( 1=
a
l , 2=

a
l , 



Am. J. Applied Sci., 4 (12): 977-986, 2007 

 

 985 

3=
a
l  respectively), corresponds, in theory, to the false 

alarm probability of 01.0=ρ . The results are 

summarized in tables 10-11. 

Comments: From the tables 10-11, we conclude that 

all faults detected are isolated. 

• Case 1:  The test 
a
τ~  is equal to 12.51 and 8.56 for 

1.0=σ  and 4.0=σ , respectively, it is clear that 

a
τ
~  is greater then the threshold ( 63.6=λ

υ
), then 

the fault in the model parameter 
1
a  is isolated but 

near perfect when the noise standard deviation 

increase. According to the incidence matrix, table 

1, we can conclude that the fault in the physical 

parameter R  is isolated. 
 

Table 10: Fault isolation test, 1.0=σ , 2000=N  

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

a
τ
~

 12.51 10.84 11.72 17.08 14.94 22.51 

a
γ
~

 4.72 2.70 3.23 4.33 3.63 2.63 

 

Table 11: Fault isolation test, 4.0=σ , 2000=N  

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

a
τ
~

 8.56 7.16 7.28 11.18 10.32 14.11 

a
γ
~

 3.66 1.01 1.93 2.02 1.53 1.16 

 

For the same procedure, all faults are isolated, where: 

• Case 2: The fault in the model parameter 
0

a  is 

isolated, and according to the incidence matrix, the 

fault in the physical parameter 
w
k  is isolated. 

• Case 3: The fault in the model parameter 
0

b  is 

isolated, and according to the incidence matrix, the 

faults in the physical parameters  L  and 
z

k  are 

isolated. 

• Case 4: The fault in the model parameters 
1

a  and 

0
a  are isolated, and according to the incidence 

matrix, the faults in the physical parameters R , 
z

k  

and 
i

k  are isolated. 

• Case 5: The fault in the model parameter 
0

a  and 

0
b  are isolated, and according to the incidence 

matrix, the faults in the physical parameters L ,  

z
k  and 

z
k  are isolated. 

• Case 6: The fault in the model parameter 
1

a , 
0

a  

and 
0

b  are isolated, and according to the incidence 

matrix the faults in all physical parameters are 

isolated. 
 
Fault isolatability test: The sufficient conditions for 

fault isolatability (42-43) results are shown in the 

following tables 12-13. 
 

Table 12: Fault isolatability test, 1.0=σ , 2000=N  

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

1
β  0.21 – – 0.23 – 0.26 

2
β  – 100.8 – 154.5 228.8 382.8 

3
β  – – 0.0024 – 0.0037 0.0021 

 

Table 13: Fault isolatability test, 4.0=σ , 2000=N  

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

1
β  0.64 – – 0.52 – 0.32 

2
β  – 265.5 – 353.1 421.8 427.3 

3
β  – – 0.0038 – 0.0041 0.0043 

 

Comments: The sufficient condition for fault 
isolatability 

i
θ∆  is satisfied. For example, in case 1, 

21.0
1
=β  for 1.0=σ  and 64.0

1
=β  for 4.0=σ , 

where 922.0
1
=θ∆ , we note that 

11
β>θ∆  for both 

tests, then the condition test for fault isolatability for the 
model parameter 

1
a  is satisfied. Therefore, the 

condition test for fault isolatability for the physical 
parameter R  is satisfied. 
 

CONCLUSION 

 
A new FDI approach has been proposed. The 

combination between delta operator and statistical local 
approach offers advantages to generate and develop a 
new residual. This FDI technique has been developed 
for on-line abrupt change in physical parameters 
system. The results clearly show that the residual 
generation and evaluation method proposed in this 
study, offers a great potential for detection and 
diagnosis of physical parameters fault. The perspectives 
of this work are situated in the combination with other 
FDI techniques and the application on nonlinear 
systems. 
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