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Abstract: 2-D transient seepage beneath a dam was investigated by the finite element method. 

Governing equations were considered in coupled and uncoupled methods. At first stage, the fluid 

continuity equation for compressible porous media considered as uncoupled. Because of the 

occurrence of seepage forces, and their interaction with the fluid pore pressure, particularly in high 

compressible soils, uncoupled methods seem to be far from real conditions. Therefore force 

equilibrium equations were taken into account by coupling with the fluid continuity equation. Finite 

element formulation based on Galerkin method. Results of two mentioned methods were compared 

with steady-state seepage results. Comparing the results of coupled and uncoupled models showed that 

the time require to reach steady-state condition in coupled model considerably shorter than the 

uncoupled model. Coupled analyses shows that the effective stress due to seepage forces were smaller 

than ones calculated by the uncoupled method.  
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INTRODUCTION 

 
 Seepage problem is one of the most important 
issues in the design and construction of dams and 
hydraulic structures. Seepage forces change stress state, 
deformation and change permeability of soil elements 
which would affect the amount of the seepage rate and 
stability of structure. In routine analyses, steady-state 
conditions commonly are considered ignoring the time 
required to reach the steady-state condition. But 
actually, moving water trough soil voids is a time 
consuming procedure.  Increase of the water table 
height in a dam reservoir is gradual and time dependent, 
so transient analysis is essential to yield reliable results.  

In addition, in uncouple systems there is only one 
degree of freedom in the governing equation which is 
the hydraulic potential. So in order to determine 
deformations of the structure due to seepage forces it is 
essential to consider element equilibrium equations 
besides the fluid continuity equation. In this case a set 
of partial differential equations including the continuity 
and equilibrium equations must be solved at the same 
time.  
 Considering seepage problem in the coupled form 
is similar to the coupled consolidation problem except 
in loading which contains hydraulic potential only. In 
this research the seepage problem is investigated by two 
coupled and uncoupled methods. Biot’s coupled 
consolidation equations are adopted to investigate the 

seepage problem along with the traditional uncoupled 
transient seepage equation. Galerkin method is used to 
finite element formulation.  
 
F.E.M formulation for uncoupled system: Fluid flow 

through porous media is governed by hydrodynamic 

equations considering the interaction of the fluid in 

motion with the porous media ensuring the continuity 

of the fluid. Continuity is ensured by requiring that the 

net volume of water flowing per unit of time into or out 

of an element of soil be equal to change per unit of time 

of the volume of water in that element. Difference of 

the quantity of the water that leaves or inters to an 

element is equal to change of the element volume. 

Therefore the uncoupled fluid continuity equation in the 

transient state would be as follows
[1]
: 
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Where; vx and vy are flow velocities in horizontal and 

vertical directions respectively and, n, is the porosity.  

The above equation can be rewritten in the following 

form:  
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Where; kx and ky are permeability coefficients in 
horizontal and vertical directions, ue is the water 
pressure and mv is the compressibility coefficient of the 
soil.  

Equation 2, is a 2-dimensional consolidation P.D.E 
which can be solved by the finite element method.  

Using linear shape functions with rectangular 
elements, the final form of the Equation 2 discretized 
by the F.E.M would be as follows

[2]
: 
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And: 

∫∫= dydxNNPM
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In the above equations, Ni is the linear shape 

function. 

Using the Crank-Nicolson’s method, time integration 

of equation 3 involving linear interpolation and fixed 

time steps t∆ would yield unconditionally stable and 

converge results according to Equation 6 
[3]
: 
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After finding governing matrix equations for a single 

element, the assembled matrices for all the elements 

can be obtained and boundary conditions can be 

introduced. 

Therefore values of unknown variables can be 

calculated at time ttt ∆+=
0

 based on known 

parameters at time 
.

0
tt =   

The initial conditions at time 0=t  all are known.  

 

F.E.M formulation for coupled system: Biot 

formulated the theory of coupled solid-fluid interaction 

where the soil skeleton is treated as porous elastic solid 

and the laminar pore fluid is coupled to the solid by the 

conditions of compressibility and of continuity. Thus 

Biot’s governing equations are combination of Equation 

1 and element equilibrium equations. 

For two-dimensional equilibrium in the absence of 

body forces considering seepage forces, the gradient of 

effective stress must be augmented by the gradients of 

the fluid pressure as follows
[2]
: 
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The stress-strain relations based on generalized 

Hook’s law for plane strain condition can be written as 

follows 
[4]
: 
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Where, K and G are bulk and shear modulus 

respectively. 

Continuity equation can be obtained using 

Equations 1 and 2 where the volume change of the 

element is written in terms of displacement 

components: 
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Where ue is defined before, u and v are horizontal and 
vertical components of displacements. 

As is usual in the displacement method in solid 
mechanics, stress and strain are replaced with 
displacement components so, final coupled variables 
are the pore water pressure, and horizontal and vertical 
displacements.  

Same as the uncoupled method, using the linear 
shape functions with rectangular elements for the solid 
body and the pore fluid, the final form of the set of 
P.D.E which is combining Equations 7 and 9 
discretized by the F.E.M can be as follows

[2]
: 
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Where: KP is already defined and, r is the 

displacement vector [u,v]; and also KM and C are as 
follows:   
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In the above equations, R is the stress strain 

relationship matrix according to Equation 8. And also: 
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For integration of the Equation 10 with respect to 

time, Crank-Nicolson method is implemented, 

therefore: 
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In above equations, if 1=θ , the system will be 

absolutely stable without any oscillatory results. 

Therefore the final form of the Equation 15 in fully 

implicit type of time-integration will be as follow: 
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After finding governing matrix equations for a 

single element, the assembled matrices for total 

elements can be obtained and boundary conditions can 

be introduced. 

Solving such equations at any time, horizontal and 

vertical deformations (u,v) and the fluid pressure at 

various nodal points can be found and strain values for 

each element can be calculated. 

After calculation of primary unknowns, secondary 

unknowns such as flow fluxes, velocities and effective 

stresses would be determined.  

Calculation of the effective stress in coupled model 

would be done using the Equation (8) after calculating 

nodal displacements. In the case of the uncoupled 

method, because of the absence of displacements, 

classical formulas are used to determine seepage forces. 

Vertical and horizontal components of effective stress 

due to the seepage force would be calculated as 
[1]
: 
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In Equation 18, xc is the position in which the 

horizontal gradient of flow has its maximum value. 

Therefore horizontal seepage force in left and right 

sides of xc has equal of amount and direction. So the 

horizontal seepage force in the location of x=xc is zero. 

Location of xc in each elevation is approximately at the 

center of the dam and varies slightly. In the left side of 

xc (upstream) the horizontal component of the effective 

stress is tensile and in the other side is compressive. 

 

 

RESULTS AND DISCUSSION 

 

For both coupled and uncoupled formulations, 

separate finite element codes are developed. In order to 

compare the effect of the coupled and uncoupled 

formulations on the seepage calculations, the transient 

seepage beneath a concrete dam in investigated by both 

methods. The geometry of the finite element model and 

material properties are illustrated in Fig.1. 

Water table in reservoir rises to 30 meter gradually 

during 90 days. 

At first stage of this study, development of the flow 

net for coupled and uncoupled analysis is investigated. 

The resulted equipotential lines for coupled and 

uncoupled analysis are shown in Figures 2 and 3 

respectively. 

 

E=20mPa

ν=0.25

kx=0.01 m

day

ky=0.001 m

day

e0=0.5

h

60m 40m 60m
 

Fig.1: Finite element mesh and material properties 
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Fig.2: Water pressure distribution resulted from coupled analysis 

 

 
Fig.3: Water pressure distribution resulted from uncoupled analysis 

 

It can be seen from Fig.2 that the water pressure 
distribution achieves to steady-state condition after 600 
days approximately. Also a symmetrical flow net is 
observable. 
Equipotential lines are moving to the ground surface as 
the time passes. Increase of the water pressure in down 
stream is due to seepage forces induced in the upstream 
and this is because of the coupling effect. 

Because the seepage force in the upstream acts as a 
compressive load and compresses the soil. In the other 
hand low permeability of the soil skeleton delays the 
water pressure dissipation process in the down stream 
and increases the water pressure and also decrease 
effective stress. 

Fig.3 shows the flow net development beneath the 
dam resulted from the uncoupled model. Equipotential 
lines are moving towards down stream as the time 
passes. It can be seen in Fig.3 that after 1500 days the 

steady-state condition is not reached. Also in the case of 
uncoupled model, unlike the coupled model the flow 
net is not symmetric until the steady-state condition.  

Outlet flow rate from down stream vs. time is 

illustrated for coupled and uncoupled methods in Fig.4. 
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Fig.4: Outlet flow rate for uncoupled and coupled 

analysis 
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Fig.5: Variation of the vertical effective stress in 

downstream toe from coupled mode 

 

As mentioned previously for the water pressure 

distribution in Figures 2 and 3, it can be inferred from 

Fig.4 that the coupled analysis reaches to steady-state 

conditions faster than the uncoupled one. Final values 

of the flow rate for both cases are the same. 

In Fig.5, the variation of the effective stress in 

downstream toe due to seepage forces calculated by the 

coupled model is plotted in various times. 

Effective stress calculated by the uncoupled model 

based on Equation 17 in the downstream toe is plotted 

in Fig.6. 
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Fig.6: Variation of the vertical effective stress in 

downstream toe from uncoupled model 

 
 

Comparing Fig. 5 and Fig. 6 show that the amount 

of the effective stress calculated based on the seepage 

gradient is overestimated comparing to the coupled 

results. It’s due to effect of the horizontal effective 

stress which is omitted in Equation 17. 

Uplift pressure beneath the dam in various times, 

are plotted in Fig. 7 and Fig. 8 for coupled and 

uncoupled models respectively. 
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Fig.7: Uplift pressure distribution beneath the dam 

from coupled model 
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Fig.8: Uplift pressure distribution under dam from 

uncoupled model 

 

As shown in Figures 7 and 8, uplift pressure results 

from coupled and uncoupled models are different in 

amount and distribution in various times but they are 

equal at steady-state condition. In the coupled model 

flow net is symmetrical about center of dam but in the 

case of the uncoupled model it is not symmetrical 

except at steady-state condition.  

In Fig.9, uplift forces for both coupled and 

uncoupled analyses are shown. 
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Fig.9: Total uplift force in coupled and uncoupled 

models 

 



Am. J. Applied Sci., 4 (12): 950-956, 2007 

 

 955 

 
Fig.10: Horizontal and vertical effective stresses due to the seepage force in the coupled model 

 

 
Fig.11: Vertical and horizontal effective stress due to seepage forces form uncoupled model 

 

 
Fig.12:  Deformed mesh from coupled model 

 

Vertical and horizontal components of the effective 

stress due to seepage forces form coupled analyses at 

steady-state condition are illustrated in Fig.10. 

In Fig. 10, the negative sign refers to compressive 

stress.  

Steady-state effective stress components from 

uncoupled analysis from Equations 18 and 19 are 

shown in Fig. 11. 

Comparing Figures 10 and 11 shows that the vertical 

component of effective stress calculated using the 

coupled and uncoupled models have good 

correspondences. Values of uncoupled model based on 

Equation 18 are more than ones resulted from the 

uncoupled model which is calculated based on 

calculated displacements. The horizontal effective 

stress calculated using the Equation 19 widely different 

from one resulted from coupled model. But its 

distribution and range have a meaning full relation with 

the coupled results. 

One advantage of the coupled model is its 

capability of the calculating of the soil deformations 

due to seepage forces. It would be very important in 

nonlinear seepage analysis with variable permeability. 

Also the coupled model would be used to determine 

additional stresses induced in the dam structure due to 

its foundation deformations. In the coupled method, 

nodal displacements are primary unknowns and their 

values obtain from solutions directly. Fig.12 shows the 

deformed mesh due to seepage forces in coupled 

analyses assuming elastic behavior of soil. In this 
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figure, dashed mesh shows initial shape and the 

displacement of the mesh is magnified 20 times. The 

maximum displacement of the ground surface is about 

0.2m.  

CONCLUSION 

 

In this paper the effect of the coupled and 

uncoupled formulations on the results of the confined 

seepage trough a dam foundation is investigated. The 

transient state of seepage is due to the change of the 

water level in reservoir and also porous media 

compressibility. Compressibility of soil causes the 

problem to become as a consolidation problem. 

Therefore uncoupled model is treated as consolidation 

phenomena. Since the fluid flow produces seepage 

forces in the soil body and because of the interaction 

between the seepage forces and the pore fluid pressure, 

another model based on the Biot’s coupled 

consolidation theory is developed to investigate this 

interaction. For both cases the finite element technique 

implemented using the Galerkin method. In the coupled 

model, the effective stresses are calculated based on the 

element displacement components which are primary 

unknowns of the model unlike the uncoupled model 

where the effective stresses are calculated by the 

classical formulas of the soil mechanic based on flow 

gradients in an indirect manner. Therefore the effective 

stress calculated by the coupled model is more reliable 

comparing to the uncoupled model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of this study showed that the final 

values of the outlet flow rate calculated using the 

coupled and uncoupled methods is equal. 

 Calculated effective stress by the uncoupled model 

is grater than the coupled model. Therefore the safety 

factor of piping in down stream calculated by the 

uncoupled model is underestimated. 
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