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Abstract: Scheduling is an important process widely used in manufacturing, production, management, 
computer science, and so on. Appropriate scheduling can reduce material handling costs and time. 
Finding good schedules for given sets of jobs can thus help factory supervisors effectively control job 
flows and provide solutions for job sequencing. In simple flow shop problems, each machine operation 
center includes just one machine. If at least one machine center includes more than one machine, the 
scheduling problem becomes a flexible flow-shop problem. Flexible flow shops are thus generalization 
of simple flow shops. In this paper, we propose three algorithms to solve flexible flow-shop problems 
of more than two machine centers. The first one extends Sriskandarajah and Sethi’s method by 
combining both the LPT and the search-and-prune approaches to get a nearly optimal makespan. It is 
suitable for a medium-sized number of jobs. The second one is an optimal algorithm, entirely using the 
search-and-prune technique. It can work only when the job number is small. The third one is similar to 
the first one, except that it uses Petrov’s approach (PT) to deal with job sequencing instead of search-
and-prune. It can get a polynomial time complexity, thus being more suitable for real applications than 
the other two. Experiments are also made to compare the three proposed algorithms. A trade-off can 
thus be achieved between accuracy and time complexity.  
 
Key words: scheduling, flexible flow shop, LPT scheduling, search, PT scheduling  

 
INTRODUCTION 

 
 Scheduling is an important process widely used in 
manufacturing, production, management, computer 
science, and so on. In simple flow-shop problems, each 
machine center has just one machine[1,3,4,9-11]. If at least 
one machine center has more than one machine, the 
problem is called a flexible flow-shop problem. 
Flexible flow shops are thus generalization of simple 
flow shops[2]. Scheduling jobs in flexible flow shops is 
considered an NP-hard problem[8,12].  
 The problem addressed in the paper is a special case 
of the flexible flow shop problem. We assume each 
machine center has the same number of parallel 
machines which to the best of authors’ knowledge is the 
first of its kind. This paper specifically focuses on 
minimizing the total completion time of flexible flow 
shop. Three algorithms have been developed to solve 
flexible flow-shop scheduling problems with more than 
two machine centers. The first one extends 
Sriskandarajah and Sethi’s method by combining both 

the LPT[5] and the search-and-prune approaches to get a 
nearly optimal makespan. The LPT approach is first 
used to assign jobs to each machine group (flow shop). 
The search-and-prune approach is then used to deal 
with job sequencing. The second one is an optimal 
algorithm, entirely using the search-and-prune 
technique. The third one is similar to the first one 
except that it uses Petrov’s approach (PT)[11] to deal 
with job sequencing instead of search-and-prune. 
Experimental results show that the third proposed 
algorithm can save much computational time when 
compared to the other two although its makespans may 
be a little larger. Particularly, the third one has the 
polynomial time complexity, avoiding the intractable 
problems occurring in the other two algorithms. In 
addition, the time complexities and makespans by the 
first algorithm lie between those by the other two. A 
trade-off for these three algorithms can thus be 
achieved between accuracy and time complexity. 
 In the past, Johnson first proposed an efficient 
algorithm which guaranteed optimality in a two-
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machine flow-shop problem[6]. Palmer, Petrov and 
Gupta then respectively proposed their algorithms for 
solving the flow-shop problems of more than two 
machines[4,10,11]. The three scheduling algorithms could 
process the job data in only one pass. Campbell, Dudek 
and Smith (CDS) then proposed a heuristic algorithm 
for achieving the same purpose[1]. It, however, needed 
to process the job data in multiple passes. Logendran 
and Nudtasomboon also proposed a multi-pass 
algorithm to solve it[7]. Sriskandarajah and Sethi then 
presented a heuristic algorithm based on the Johnson 
algorithm for solving flexible flow-shop problems of 
two machine centers with the same number of 
machines[12]. Many researches in this field are still in 
progress.  
 As mentioned above, flexible flow-shop problems 
are NP-hard. No algorithms can find the optimal 
solutions in polynomial time. In the past, 
Sriskandarajah and Sethi proposed a heuristic algorithm 
to solve the problem of two machine centers, and the 
completion time of the derived schedules was close to 
the optimum. In this paper, we generalize it and 
propose three algorithms to solve the flexible flow-shop 
problems of more than two machine centers. Some 
related scheduling algorithms are first introduced as 
follows. 
 The discovery of scheduling algorithms for a set of 
independent tasks with arbitrary execution time and an 
arbitrary number of processors is a classic sequencing 
problem of wide interest and application. Among the 
proposed scheduling algorithms, the LPT (Longest-
Processing-Time-first) scheduling algorithm is the 
simplest one and is widely used in many real-world 
situations.  
 Given a set of n independent tasks (T1 to Tn), each 
with arbitrary execution time (t1 to tn), and a set of m 
parallel processors or machines (P1 to Pm), the LPT 
scheduling algorithm assigns the task with the longest 
execution time (among those not yet assigned) to a free 
processor whenever this processor becomes free. For 
cases when there is a tie, an arbitrary tie-breaking rule 
can be assumed. The finishing time by the LPT 
scheduling algorithm is in general not minimal. The 
computational time spent by the LPT scheduling 
algorithm is, however, much lower than that by an 
optimal scheduling algorithm. 
 The PT algorithm[11] was proposed by Petrov to 
schedule job sequencing for a flow shop with more than 
two machines. Given a set of n flow-shop jobs, each 
having m (m>2) tasks (T11, T21, … , Tm1, T12, T22, …, T(m-

1)n, Tmn) that must be executed in the same sequence on 

m machines (P1, P2, …, Pm), the PT scheduling 
algorithm seeks a nearly minimum completion time of 
the last job. It transforms the flow shop problems with 
more than two tasks into the ones with exactly two 
tasks and uses the Johnson algorithm to solve them.  
 Sriskandarajah and Sethi[12] proposed a heuristic 
algorithm for solving the flexible flow-shop problem of 
two machine centers and the completion time of the 
derived schedules was close to the optimum. 
Sriskandarajah and Sethi decomposed the problem into 
the following three subproblems and solved each 
heuristically:  
 
Part 1: Form the machine groups, each of which 

contains a machine from each center. 
Part 2: Use the LPT method to assign jobs to each 

machine group (flow shop). 
Part 3: Deal with job sequencing and timing using the 

Johnson algorithm. 
 
 In this paper, we will extend above approaches to 
solve the flexible flow-shop problems of more than two 
machine centers. 
 
Assumptions and Notation: Assumptions and notation 
used in this paper are described in this section.  
 
Assumptions: 

1. Jobs are not preemptive 
2. Each job has m (m > 2) tasks with processing 

times, executed respectively on each of m 
machine centers. 

3. All machine centers have the same number of 
parallel machines. 

 
The Search-And-Prune Scheduling Procedure For 
Job Sequencing: The search-and-prune procedure 
proposed in this paper is used to schedule jobs 
sequencing for a flow shop with more than two 
machines. An upper bound is used to increase the 
performance of the procedure. The procedure will act as 
the third part in the first two algorithms proposed later. 
Given a set of n flow-shop jobs, each having m (m>2) 
tasks (T11, T21, …, Tm1, T12, T22, …, T(m-1)n, Tmn) that must 
be executed in the same sequence on m machines (P1, 
P2, …, Pm), scheduling seeks the minimum completion 
time of the last job. The procedure is stated as follows.  
  
The search-and-prune procedure with an upper 
bound for job sequencing: 
 
Input:  A set of n jobs, each having m (m > 2) tasks     

executed respectively on each of the given m 
machines 
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Output: A schedule with a minimum completion time of 
the last job. 

 
Step 1: Set the initial upper bound maxv  of the final     

completion time as∞ . 
Step 2: For each possible permutation of task 

sequence, do the following steps. 
Step 3: Set the initial completion time di of the 

machine 
iM  (i = 1 to m, m is the number of 

tasks in a job) to zero.  
Step 4: Assign the first job jJ  in its schedule 

sequence generated in Step 2 to the machines 
such that jJ ’s first task T1j is assigned to 1M , 
T2j is assigned to 2M , …, mjT  is assigned to 

mM . 
Step 5: Add the processing time t1j to the completion 

time d1 of the first machine 1M ; that is: 
d1 = d1 + t1j. 

Step 6: If d1 is larger than maxv , go to Step 2 for 
trying another permutation. 

Step 7: Set jkkkk tddd )1(11 ),max( +++ += , for k = 
1 to (m-1). 

Step 8: If 1+kd  is larger than maxv , go to Step 2 for 
trying another permutation; otherwise, do the 
next step. 

Step 9: Remove job jJ  from the sequence. 
Step 10: Repeat Step 4 to 9 until the job sequence is 

empty. 
Step 11: Set the completion time d  as the completion 

time md  of its m-th machine. 
Step 12: If d  is smaller than maxv , then set 

dv =max . 
Step 13: Repeat Step 2 to Step 12 until all possible 

permutations have been tested. 
Step 14: Set maxv  as the final completion time of the 

job scheduling and save the schedule that 
gives the minimum total completion time. 

 
 After Step 14, scheduling is finished and an optimal 
completion time for a flow shop has been found. 
 
The first algorithm for scheduling on a flexible flow 
shop with more than two machine centers: A 
heuristic algorithm for solving flexible flow-shop 
problems of two machine centers is proposed by 
Sriskandarajah and Sethi in 1989[12]. In this paper, we 
generalize it to solve flexible flow-shop problems of 
more than two machine centers. The proposed flexible 
flow-shop algorithm is based on the LPT and the 
proposed search-and-prune approaches to manage job 
scheduling. The algorithm is decomposed into three 
parts as Sriskandarajah and Sethi’s method was. The 
first part forms the machine groups, each of which 
contains a machine from each center. The second part 
uses the LPT method to assign jobs to each machine 

group (flow shop). The third part deals with job 
sequencing and timing using the search-and-prune 
procedure for a flow shop. The proposed algorithm is 
stated below.  
  
The proposed LPT_ Search-and-prune flexible flow-
shop algorithm: 
 
Input: A set of n jobs, each having m (m > 2) tasks, to 

be executed respectively on each of m machine 
centers with p parallel machines. 

 
Output:  A schedule with a suboptimal completion time. 
 
Part 1:    Forming the machine groups 
Step 1: Form p machine groups, each of which 

contains one machine from each machine 
center. Each machine group can be thought of 
as a simple flow shop F1, F2, …, Fp. 

Step 2: Initialize the completion time f1, f2, …, fp of 
each flow shop F1, F2, …, Fp to zero. 

 
Part 2:     Assigning jobs to machine groups 
Step 3: For each job Jj, 1≤ j ≤ n, find its total 

execution time ttj = t1j + t2j +…+ tmj. 
Step 4: Sort the jobs in descending order of 

processing time ttj; if any two jobs have the 
same ttj values, sort them in an arbitrary 
order. 

Step 5: Find the flow shop Fi with the minimum 
processing time fi among all the flow shops; if 
two flowshops have the same minimum fi 
value, choose one arbitrarily. 

Step 6: Assign the first job Jj in the sorted list to the 
chosen flow shop Fi, which has the minimum 
completion time fi, among all p flow shops. 

Step 7: Add the total time ttj of job Jj to the needed 
total time of the chosen flow shop, Fi; that is: 
 

fi = fi + ttj. 
 

Step 8: Remove job Jj from the job list. 
Step 9: Repeat Steps 5 to 8 until the job list is empty. 
  
After Step 9, jobs are clustered into p groups and are 
allocated to the p machine flow shops. 
 
Part 3:     Dealing with job sequence in each flow shop 
Step 10: For each flow shop Fi, set the initial 

completion time of the machines fji (j = 1 to 
m, i = 1 to p) to zero. 

Step 11: Find the completion time of each flow shop 

if  by the proposed search-and-prune 

procedure in Section 4. 
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Step 12: Find the final completion time 

)(max
1

i

p

i
fff

=
= among the completion time 

of all the flow shops. 
 
 After Step 12, scheduling is finished and a total 
completion time ff has been found. 
 
An Example For The Proposed Heuristic Algorithm: 
Assume five jobs, J1 to J5, each having three tasks (t1j, 
t2j, t3j), are to be scheduled via three operations. Each 
operation is executed by a machine at the corresponding 
machine center. Each machine center includes two 
parallel machines. Assume the execution times of these 
jobs are listed in Table 1. The algorithm proceeds as 
follows.  
 
Table 1: Processing times for the five jobs 
   

t1j t2j t3j 

J1 4 7 3 
J2 1 5 2 
J3 5 2 4 
J4 2 5 3 
J5 5 5 6 

 
Part 1:      Forming the machine groups: 
Step 1: Form two machine groups, F1 and F2, each of 

which is thought of as a three-machine 
flowshop. Without lose of generality, we may 
assume the flowshops are constructed as 
follows: 

F1 → {m11 + m12 + m13}, 
F2 → {m21 + m22 + m23},  

where mij is the i-th machine in the j-th 
center. 

Step 2: Initialize f1 = f2 = 0, where fi is the initial 
completion time of Fi. 

 

Part 2:    Assigning jobs to machine groups: 
Step 3: For each job Jj, j = 1 to 5, find its total 

execution time ttj = t1j + t2j + t3j. For example, 
the total processing time of job 1 is calculated 
as: 

               143743121111 =++=++= ttttt . 

The total processing times of the other jobs 
can be similarly found and the results are 
listed in Table 2. 

 

Table 2: The total processing times of the five jobs 

Jobj total processing time jtt  

J1 14 
J2 8 
J3 11 
J4 10 
J5 16 

 

Step 4: Sort the jobs J1 to J5 in a descending order of 

the total processing time (tt j ). The following 

results are obtained: 
              Job list = {J5, J1, J3, J4, J2}. 

Step 5: Find the minimum f i  between the two 

flowshops F1 and F2. Since both the total 
processing times of the two flowshops are 
equal to zero, any arbitrary flowshop can be 
chosen. Without lose of generality, assume F1 

is chosen. 
Step 6: Assign the first job J5 in the sorted list to the 

chosen flowshop F1. 
Step 7: Add the total processing time tt5 of job J5 to 

the needed total time of the chosen flowshop 
F1. Thus: 

f1 = f1 + tt5 = 0 + 16 = 16. 
 

 After Step 7, the results of allocating J5 to the 
flowshop F1 are shown in Table 3. 

 
Step 8: Remove the job J5 from the job list. After J5 

is removed, the job list is then as follows: 
Job list = {J1, J3, J4, J2}. 

Step 9: Repeat Steps 5 to 8 until the job list is empty. 
After Step 9, jobs are clustered into two 
groups and are respectively allocated to the 
two flowshops. Results are shown in Table 4. 

 
Table 3:  The flowshops with allocated jobs and total 

processing time 

Flowshopi allocated jobs total processing time 

F1 J5 16 
F2 None 0 

 
Table 4: The jobs in each flow shop 

Flowshopi Jobs allocated 
F1 J5, J4 
F2 J1, J3, J2 

 

Jobj 

 Execution 
       time 
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Part 3:      Dealing with job sequencing in each flow shop: 
Step 10: In each flow shop Fi, set the initial 

completion time of the machines fji  = 0 (j = 1 
to 3, i=1 to 2). 

Step 11: Find the completion time of each flow shop 

if  by the proposed search-and-prune 

procedure in Section 4. The results are found 
as follows: 

.18

,20

2

1

=
=

f

f  

Step 12: Find the maximal final completion time ff 
between the completion times of both the 
flow shops. We can thus get: 

               ff = 20. 
 
 ff has been found ff is then output as the final total 
completion time. The schedule obtained by the above 
steps is shown in Fig. 1. 
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Fig.  1: The final scheduling result in the example 
 
The Second Algorithm:  In the first algorithm, the 
LPT method is used to assign jobs to machine groups. 
The job sequencing and timing in each group is then 
done by the search-and-prune procedure. The tasks in a 
set of clustered jobs are executed in the same machine 
group. The makespans obtained in the above way do 
not guarantee to be optimal. For getting an optimal 
schedule, the tasks in a set of jobs may be executed in 
different machine groups. In this section, we thus 
propose another scheduling algorithm based on the 
search-and-prune technique to get the optimal solutions, 
which can also be used to measure the performance of 
the first algorithm. The proposed optimal algorithm is 
stated below.  
  

The proposed optimal flexible flow-shop algorithm: 
Input: A set of n jobs, each having m (m > 2) tasks, to 

be executed respectively on each of m machine 
centers with p parallel machines. 

Output: A schedule with an optimal completion time. 
Step 1: Set the initial upper bound vmax of the final 

completion time as∞ .  
Step 2: For each possible combination of task 

allocation and permutation of task sequence, 
do the following steps. 

Step 3: In each machine center, set the initial 
completion time of each machine to zero.  

Step 4: Set the variable g to one, where g represents 
the number of the current machine center to 
be processed. 

Step 5: Schedule the first tasks of all jobs in the 
machines of the first machine center. That is, 
for each task T1i of the i-th job allocated to 
the j-th machine Dj1 in the first machine 
center, do the following substeps according to 
the scheduling order in the permutation and 
combination generated: 
(a)Add the processing time t1i to the 

completion time dj1 of the machine Dj1. 
That is:  

               dj1 = dj1 + t1i, and 
c1i = dj1. 

(b)If dj1 is larger than vmax, neglect all the 
permutations and combinations with this 
sequence in the first machine center and go 
to Step 2 for trying another permutation 
and combination.  

Step 6: Set g = g + 1. 
Step 7: Schedule the g-th tasks of all jobs in the 

machines of the g-th machine centers 
according to the permutation and combination 
generated. For each task Tgi of the i-th job 
allocated to the j-th machine Djg in the g-th 
machine center, do the following substeps in 
the scheduled order:  
(a)Find the completion time djg of the 

machine Djg as: 
 

djg = max(djg, c(g-1)i)+ tgi, and 
cgi = djg. 

 
(b)If djg is larger than vmax, neglect all the 

permutations and combinations with this 
sequence in the first g machine centers and 
go to Step 2 for trying another permutation 
and combination.  

Step 8: Repeat Steps 6 and 7 until g > m. 
Step 9: Set the completion time dm of the current 
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schedule = ( )jm

p

j
d

1
max

=
 among the p machines 

in the m-th machine center. 
 

Step 10: If dm is smaller than vmax, then set vmax = dm. 
Step 11: Repeat Steps 2 to 10 until all the possible 

permutations and combinations have been 
tested.  

Step 12: Set the optimal final completion time of the 
job scheduling ff = vmax. 

 
 After Step 12, a globally optimal completion time ff 
has been found. In the above two algorithms, the 
permutations and combinations of task sequences or 
machine centers must be tested, causing the execution 
time is intractable in the worst case. Below, we propose 
another heuristic algorithm to reduce the computation 
time. 
The Third Algorithm: The third algorithm is based on 
the PT approach to manage job scheduling. The 
algorithm is decomposed into three parts as the first 
algorithm. The first part forms the machine groups, 
each of which contains a machine from each center. 
The second part uses the LPT method to assign jobs to 
each machine group (flow shop). The third part deals 
with job sequencing and timing using the PT procedure 
for a flow shop. The proposed algorithm is stated 
below.  
  
The proposed LPT_PT flexible flow-shop algorithm: 
Input: A set of n jobs, each having m (m > 2) tasks, to 

be executed respectively on each of m machine 
centers with p parallel machines. 

Output: A schedule with a nearly completion time. 
Part 1: Forming the machine groups: The same as in 

the first algorithm. 
Part 2: Assigning jobs to machine groups: The same 

as in the first algorithm. 
Part 3: Dealing with job sequencing in each flow shop: 
Step 10: For each flow shop Fi, set the initial 

completion time of the machines fji (j = 1 to 
m, i=1 to p) to zero. 

Step 11: For each job j, calculate ∑
=

=
2/

1

m

k
kj

C
j tt  and 

∑
+=

=
m

mk
kj

D
j tt

1)2/(
 for even m, and ∑

+

=
=

2/)1(

1

m

k
kj

C
j tt  

and ∑
+=

=
m

mk
kj

D
j tt

2/)1(

 for odd m. 

Step 12: Schedule the jobs in each flow shop fi 

according to the Cjt  and D
jt  values by the 

Johnson algorithm. Denote the schedule in Fi 
as QFi. 

Step 13: For each flowshop Fi, assign the first job Jj 
in QFi to the machines such that J1j is 
assigned to F1i, J2j is assigned to F2i, …, and 
Jmj is assigned to Fmi. 

Step 14: Add the processing time t1j to the completion 
time of the first machine f1i ; that is: 

f1i = f1i + t1j . 
Step 15: Set f(k+1)i =max(fki, f(k+1)i)+ t(k+1)j, for k =1 to 

(m-1). 
Step 16: Remove job Jj from QFi. 
Step 17: Repeat Steps 13 to 16 until QFi   is empty. 
Step 18: Set the final completion time of each 

flowshop fi = the completion time of the m-th 
machine fmi. 

Step 19: Find the maximum final completion 

time )f(maxff i

p

1i=
= among the completion time 

of all the flowshops. 
 After Step 19, scheduling is finished and a total 
completion time ff has been found. 
 
Experiments: This section reports on experiments 
made to show the performance of the proposed 
scheduling algorithms. They were respectively 
implemented by Visual C++ at an AMD Athlon(tm) XP 
1800+ PC. In the first part of the experiments, five sets 
of problems were tested, respectively for 3 to 7 jobs. 
Each job has three tasks and each machine center has 
two parallel machines. The execution time of each task 
was randomly generated in the range of 5 to 50. Each 
set of problems was executed for 20 tests and the 
makespans and computation times were measured. The 
proposed optimal approach did not work for more than 
seven jobs in limited time of 10 hours in our 
environments due to the large amount of computation 
time.  
 The optimal approach considered all possible 
combinations and used a pruning technique to increase 
its efficiency. The makespans obtained in this way were 
optimal. The makespans for problems of three to seven 
jobs by the three proposed methods are shown in Fig. 2 
to 4. 
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Fig. 2: Makespans of 20 tests for three jobs 
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Fig. 3: Makespans of 20 tests for five jobs 
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Fig. 4: Makespans of 20 tests for seven jobs 
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Fig. 5:  Average makespans obtained by the three 

proposed algorithms 
 
From Figs.  2 to 4, it is easily seen that the makespans 
by the proposed three algorithms have the following 
relation: Algorithm 3 > Algorithm 1 > Algorithm 2. It is 
totally consistent with our expectation. The deviation 
percentages for the first and the third algorithms from 
the optimal algorithm for processing different numbers 
of jobs are shown in Table 5. The average deviation 
percentage for the first and the third proposed heuristic 
algorithm from the optimal algorithm is respectively 
5.05% and 6.19%. Note that the deviation rate for the 
second algorithm is 0% since it is an optimal approach. 
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Fig. 6: The average CPU times for processing different 

numbers of jobs 

 

Table 5: The distribution of deviation rates for different 

numbers of jobs and the run number is 20 

Proble

m 

Size 
Run 

number 

The first algorithm The third algorithm 

n 
No. 

Optimals 

Largest 

Deviatio

n (%) 

Average 

Deviatio

n (%) 

No. 

Optimals 

Largest 

Deviatio

n (%) 

Average 

Deviatio

n (%) 

3 20 16 3.70 0.51 15 12.20 1.12 

4 20 11 13.33 2.47 11 13.33 2.58 

5 20 2 16.98 7.28 1 16.98 7.80 

6 20 0 14.93 7.80 0 27.89 9.89 

7 20 0 14.73 7.17 0 16.31 9.57 

Total    100 29  5.05 27  6.19 

 
 In the second part of the experiments, we extend the 
job number to 25. The average makespan for problems 
with three to twenty-five jobs are shown in Fig. 5 for 
comparison. Note that the optimal approach can process 
no more than seven jobs in this environment. 
 The average CPU times for problems of three to 
twenty-five jobs are shown in Fig. 6. The optimal 
algorithm proposed cannot run over seven jobs in ten 
hours due to its high time complexity. 
 From Figs. 5 and 6, it is easily seen that the first 
and the third algorithms got a little larger makespans 
than the second one did. The computational time 
needed by the second algorithm was, however, much 
larger than that needed by the other two approaches, 
especially when the job number was large. Actually, 
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since the flexible flow-shop problem is an NP-hard 
problem, the second approach can work only for a small 
number of jobs. 
 As to the first and the third algorithms, the latter got 
a little larger makespan but used less computational 
time than the former one. The former can be applied for 
solving a medium-sized problem. 
 At the last part, experiments for large job numbers 
ranging from 3 to 8000 were executed for verifying the 
efficiency of the third approach. The average CPU 
times for different jobs are shown in Fig. 7. It can be 
observed that all the execution times are less than 0.8 
seconds. Hence, the third approach is feasible and 
efficient even for a large number of jobs. It is thus more 
suitable than the other two proposed approaches for real 
applications. 
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Fig. 7: The average CPU times for processing 3 to 

8000 jobs by the third approach 
 

 
CONCLUSION 

 
 Appropriate scheduling cannot only reduce 
manufacturing costs but also reduce the material 
handling cost and time. Finding good schedules for 
given sets of jobs can thus help factory supervisors 
control job flows and provide for good job sequencing. 
Scheduling jobs in flexible flow shops has long been 
known an NP-hard problem. In this paper, we propose 
three algorithms to solve flexible flow-shop problems 
of more than two machine centers. The first one extends 
Sriskandarajah and Sethi’s method by combining both 
the LPT and the search-and-prune approaches to get a 
nearly optimal makespan. It is suitable for a medium-
sized number of jobs. The second one is an optimal 
algorithm, entirely using the search-and-prune 

technique. It can work only when the job number is 
small. The third one is similar to the first one, except 
that it uses Petrov’s approach (PT) to deal with job 
sequencing instead of search-and-prune. It can get a 
polynomial time complexity, thus being more suitable 
for real applications than the other two. Experimental 
results show that the computational times by the 
proposed three algorithms have the following relation: 
Algorithm 3 < Algorithm 1 < Algorithm 2, and the 
makespans have the following relation: Algorithm 3 > 
Algorithm 1 > Algorithm 2. It is totally consistent with 
our expectation. A trade-off can thus be achieved 
between accuracy and time complexity. The choice 
among the three proposed approaches to solve a flexible 
flow-shop problem thus depends on the problem size, 
the allowed execution time and the allowed error. In the 
future, we will consider other task constraints, such as 
setup times, due dates and priorities.  
 

 
REFERENCES 

 
1. Campbell, H. G., R. A. Dudek and M. L. Smith, 

1970. A heuristic algorithm for the n job, m 
machine sequencing problem. Management 
Science., 16: B630-B637. 

2. Chung, S. C. and D. Y. Liao, 1992. Scheduling 
flexible flow shops with no setup effects. The 1992 
IEEE International Conference on Robotics and 
Automation., pp: 1179-1184. 

3. Dudek, R. A., S. S. Panwalkar and M. L. Smith, 
1992. The lessons of flowshop scheduling research. 
Operations Research., 40: 7-13. 

4. Gupta, J. N. D., 1971. A functional heuristic 
algorithm for the flowshop scheduling problem. 
Operations Research., 40: 7-13. 

5. Hong, T. P., C. M Huang and K. M. Yu, 1998. LPT 
scheduling for fuzzy tasks. Fuzzy Sets and 
Systems., 97: 277-286. 

6. Johnson, S. M., 1954. Optimal two- and three-stage 
production schedules with set-up times included. 
Naval Research Logistics Quarterly., 1: 61-68. 

7. Logendran, R. and N. Nudtasomboon, 1991. 
Minimizing the makespan of a group scheduling 
problem: a new heuristic. International Journal of 
Production Economics., 22: 217-230. 

8. Morton, T. E. and D. W. Pentico, 1993. Heuristic 
Scheduling Systems with Applications to 
Production Systems and Project Management. John 
Wiley & Sons Inc., New York. 



Am. J. Applied Sci., 4 (11): 887-895 2007 
 

 895 

9. Nawaz, M., J. E. E. Enscore and I. Ham, 1983. A 
heuristic algorithm for the m-machine, n-job flow-
shop sequencing problem. Omega., 11(1): 91-95. 

10. Palmer, D. S., 1965. Sequencing jobs through a 
multi-stage process in the minimum total time- a 
quick method of obtaining a near optimum. 
Operational Research Quarterly., 16(1): 101-107. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

11. Petrov, V. A., 1966. Flow Line Group Production 
Planning. Business Publications, London. 

12. Sriskandarajah, C. and S. P. Sethi, 1989. 
Scheduling algorithms for flexible flow shops: 
worst and average case performance. European 
Journal of Operational Research., 43: 143-160. 


