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Abstract: Rule curves are fundamental guidelines for operating a reservoir system. The objective of 
this paper is to find a suitable objective function and to propose a smoothing function constraint for 
searching the optimal rule curves by using genetic algorithms connected simulation model. The results 
show that an average water shortage is the optimal objective function for searching the optimal rule 
curves. It can represent the situations of water deficit and excess release. The results also indicate that a 
moving average applied to be the constraint of searching can reduce the variation of the upper and 
lower rule curves. Further, the developed model has been applied to determine the optimal rule curves 
of the Bhumibol and Sirikit Reservoirs (the Chao Phraya River Basin, Thailand). It is shown that the 
model gives the rule curves which are more mitigate the situations of water deficit and excess release 
than the existing rule curves. It is also concluded that the genetic algorithms connected simulation with 
the smoothing constraint is more effective than the model without constraint.  
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INTRODUCTION 

 
 Generally, rule curves of a reservoir are basic 
monthly guides for long run of reservoir operation. The 
rule curves have a lower bound that is set to store water 
for reducing the risk of water shortage in the future. 
The rule curves also have an upper bound set to 
maintain water level for controlling flood volume. They 
are to be created when initially implementing the 
reservoirs and generally modified after being used for a 
certain period of time since total water requirements 
(e.g., water supply, industrial demand and irrigation 
requirement) supported by the systems usually increase 
with time.  
 A simulation model is applied to find the suitable 
rule curves[1,2]. The model is straightforward and 
applicable for both simple and complex systems. 
Generally, this approach assesses the effectiveness (i.e., 
objective function) of the systems based on several sets 
of trial rule curves that are adjusted from the preceding 
ones. However, depending on the result of the 
adjustment, it does not guarantee to yield the optimal 
rule curves. Often, a frequency of water deficit was 
used as the objective function for searching of this 
approach. However, an extreme maximum magnitude 
of deficit water possibly occurs because of regard the 
frequency only.   
 A dynamic programming (DP) is another 
optimization technique applied to search the non-linear 
problems of water resource[3-6]. Unfortunately, the 

application of DP to multi-reservoir system is limited 
due to a curse of dimensionality. Chleeraktrakoon and 
Kangrang[7] applied the DP with a principle progressive 
optimality to determine the optimal rule curves using a 
magnitude of water shortage and excess release as the 
objective function. However, this method does not 
guarantee it as the proper objective function for 
searching rule curves.  
 Recently, genetic algorithms (GAs) embedded the 
simulation model (HEC-5) have proposed to search the 
rule curves of the reservoir system[8-11]. The  best  part  
of  GAs  is  that  they  can  handle  any  type  of  
objective function. A shortage index (SI) was used as 
the objective function for searching the curves without 
any constraint. This objective function considers only 
the deficit water, so it may not cover the situation of 
excess water. In order to derive the optimal rule curves, 
a suitable objective function is required. Often, the 
obtained rule curves are not feasible for reservoir 
operation because of the large variations of the intervals 
between the upper and lower rule curves. Therefore, a 
smoothing function constraint is required to include 
into the model for fitting the rule curves.     
 This paper thus proposes the smoothing-function 
constraint for fitting rule curves and presents the 
suitable objective function for determining the optimal 
rule curves using the genetic algorithm (GAs) with the 
simulation model. The proposed approach is applied to 
the Bhumibol and Sirikit Reservoirs (the Chao Phraya 
River Basin, Thailand). 
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Simulation models: Simulation  models (i.e., HEC-3, 
HEC-5) are  generally  used  to  study  the  efficiency of  
the  reservoir  operation. This study conducted the 
simulation model based on those concepts, because it is 
easily connected with an optimization (GAs) model. 
The developed simulation model can be used to 
determine both reservoir storage requirements and 
operational strategies for flood control or conservation. 
Generally, the multi-reservoir operating policies are 
based on the rule curves of individual reservoirs and the 
principles of water balance concept. The reservoir 
system is operated along the standard operating policy 
expressed in Eq.(1) and Fig. 1. 
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Fig. 1: Standard operating policy 
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in which Rν,τ is the release discharges form the reservoir 
during year ν and period τ (τ = 1 to 12 representing 
month, January to December). Dτ  is the water 

requirement of month τ, xτ is lower rule curve of 

month τ, yτ is upper rule curve of month τ and Wν,τ is 
the available water calculated using simple water 
balance described in Eq.(2) as  

, 1 , , ,+ = + − − −W S Q R E DSυ τ υ τ υ τ υ τ τ  (2) 
where Sυ,τ is the stored water at the end of month τ, Qυ,τ 

is monthly reservoir inflow, Eτ is average value of 
evaporation loss and DS is the minimum reservoir 
storage capacity (the capacity of dead storage).  In the 
mention figure and equation, if available water is in a 
range of the upper and lover rule level, then demands 
are satisfied in full. If available water over tops the 
upper rule level, then the water is spilled from the 
reservoir in downstream river in order to maintain water 
level at upper rule level and if available water is below 
the lower rule level, reduce supply is made. The policy 
usually reserves the available water Wν,τ  for reducing 
the risk of water shortage in future, when 0 ≤ 

, < −W x Dυ τ τ τ .  
 At the end of simulation program, the situation of 
water shortage and excess release water (e.g., the 

number of failure year, the number of excess release 
water, the average annual shortage) will be recorded. 
 
Integration of the GAs and simulation model: The 
algorithms of connection the developed simulation 
model into the GAs are described as follows. GAs 
requires encoding schemes that transform the decision 
variables into chromosome. Then, the genetic 
operations (reproduction, crossover and mutation) are 
performed. These genetic operations will generate new 
sets of chromosomes. The most common encoding 
schemes use binary strings as indicated in Fig. 2. Each 
bit of the binary string is called a gene. The 
chromosome in Fig. 2 contains five decision variables, 
each represented by six bits. In this study, each decision 
variable represents a monthly level of the rule curves of 
reservoirs.  
 

Fig. 2: Chromosomes of represented variables 
 
 After the chromosomes (rule curves) of the initial 
population have been determined, the release of the 
system in every period is calculated by the developed 
simulation model corresponding to each chromosome. 
The release of the system for each chromosome is 
retuned to the GAs to evaluate its fitness. The situation 
of water shortage of the system is defined as fitness 
function in this study. Next, the reproduction including 
selection, crossover and mutation is performed for 
creating a new rule curve parameters in next generation. 
This procedure is repeated until the criterion is satisfied 
as described in Fig. 3. Each parameter of the fitness 
functions is applied into the model to find the suitable 
objective function. The objective function of each 
search is to minimize the parameter of the fitness 
functions. There are 48 parameters (rule curve levels) 
of two reservoirs which are represented by the 
chromosomes. This study used population size = 80, 
crossover probability = 0.9, mutation probability = 
0.01. 
 There are six objective functions which chosen for 
searching the optimal rule curve. First, the shortage 
index (SI) which proposed by the US Army crops of 
Engineers[12] and can be summarized as  
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in which N is the total number of periods, Shi is water 
deficit during the period i, Di is target demand during 
the period i. A month is taken as the period of reservoir 
operation. 
 The others are the average water shortage (Aver--
MCM/year), the maximum magnitude of water shortage 
(Max--MCM/year), Frequency of water shortage (Fre, 
times/year), Total square deficit (RMS--MCM2) and 
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sum of above mention (SUM) which described as 
follows: 
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where n is the total number of considered year. Shυ is 
water deficit during year υ ip  be total number of 
annual failure (year that release does not met 100% of 
target demand), iR  is supply water during the period i.   
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Fig. 3: Integration of GAs and simulation model 
 
 To   reduce   the   fluctuate   of   rule   curve  in 
order   to   obtain   the   optimal   rule   curves   which 
are  suitable  in  the  practice,  the   moving   average   
is   chosen   as   a base of the smoothing function 
constraint for fitting the rule curves, for each curve can 
be present as 
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where x is rule curve level and T is active storage of     
each reservoir. These smoothing functions are   
integrated into the fitness function in the procedure of   
searching. 

 
Fig. 4: Location of the Chao Phraya River 
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Fig. 5: Schematic diagram of water resource systems 

in the Chao Praya River Basin 
 

ILLUSTRATIVE APPLICATION 
 
 The proposed approach was applied to search the 
optimal rule curve of a system of major multi-purpose 
storages (the Bhumibol and Sirikit Reservoirs) locating 
in the watershed area of the Chao Phraya River 
(Thailand). Figure 4 and 5 present the location of the 
Chao Phraya River and the schematic diagram of water 
resource systems within the drainage basin. The solid 
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lines represent the systems where they are considered in 
the application. They include the discharges of the two 
reservoirs and the side flows of River Wang and River 
Yom. The dashed lines stand for the systems in which 
they are ignored. For example, these are the discharges 
of River Sakae Krang and River Tha Chin, the releases 
of the Pasak Reservoir and the return flows of irrigation 
projects.  
 Two sequences of 21-year (1975-1995) monthly-
flow records of stations P.12 and SK covering several 
dry and flooding years were commonly used for 
searching the optimal upper and lower rule curves. The 
other average hydrological data for each month 
included series of evaporation losses and precipitation 
of the reservoirs and those of side flows of stations 
W.4A (River Wang) and Y.5 (River Yom). The report 
of the Electrical Generating Authority of Thailand[2] 
was used to provide for the considered water-
requirement information of the applied basin. Results of 
the illustrative application are presented as follows.  
 
Suitable objective function: Figure 6 and 7 
respectively present the optimal rule curves of the 
Bhumibol and Sirikit Reservoirs using all objective 
functions for searching. The figures appear that the 
patterns of the rule curves between the two reservoirs 
generally agree with each other due to the seasonality 
effects on reservoir inflows and considered water 
demands. However, there are large variations of the 
intervals between the upper and lower rule curves.  
 The rule curves of each objective function were 
then assessed to examine the situations of water 
shortage and excess release by considering related 
characteristics (e.g., frequency, magnitude and 
duration). A Monte Carlo simulation study against 500 
samples of generated monthly flows of stations P.12 
and SK[13] was used to compute the interval (mean ± 
standard deviation) of the referred statistics for the 
assessment. In the following, the obtained assessment 
results of the considered water-deficit and excess-
release properties for each objective function are 
presented.  
 Table 1 and 2 respectively show the assessment 
intervals of water shortage and excess release 
characteristics for all objective functions. They indicate 
that the rule curves of using average water shortage 
(Aver) as the objective function gives the magnitude 
bounds of water deficit that are generally less than 
using the others, while the other bounds are not 
different. In addition, the maximum magnitude bounds 
of excess release of using the mention objective 
function are less than using the others. Therefore, the 
average water shortage (Aver) is the most suitable for 
using as an objective function of searching rule curve.  
 
Smoothing function: The average water shortage 
(Aver) was then used to search the rule curve with the 
smoothing function constraint. The developed model 

was applied to determine the optimal rule curves of the 
Bhumibol  and  Sirikit  Reservoirs  (the  Chao    Phraya 
River Basin, Thailand). Figure 8 and 9 present the 
optimal rule curves of GAs connected simulation with 
the smoothing function constraint and without it as well 
as the existing curves of the HEC-3[14] simulation 
approach[2] for the Bhumibol and Sirikit Reservoirs 
respectively. 
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Fig. 6: Optimal rule curves of all objective functions 

(the Bhumibol Reservoir) 
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Fig. 7: Optimal rule curves of all objective functions 

(the Sirikit Reservoir) 
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Fig. 8: Optimal rule curves of the GAs with constraint 

and without constraint (the Bhumibol Reservoir) 
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Fig. 9: Optimal rule curves of the GAs with constraint 

and without constraint (the Sirikit Reservoir) 
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Table 1: Frequency, magnitude and successive period of water shortage for all objective functions 

Frequency Magnitude (MCM/year) Duration (year) 
Objective functions 

(times/year) Average Maximum Average Maximum 

µ 0.142 25 391 2.0 3.1 SI 
σ 0.080 21 243 0.9 1.7 
µ 0.208 29 207 2.1 3.8 Aver 
σ 0.082 14 102 0.7 1.8 
µ 0.807 139 437 8.5 18.1 Max 
σ 0.092 30 98 5.4 7.6 
µ 0.123 45 707 1.9 2.8 Fre 
σ 0.070 35 457 0.8 1.5 
µ 0.196 31 333 2.1 3.7 RMS 
σ 0.087 19 177 0.8 1.7 
µ 0.156 28 353 2.0 3.3 SUM 
σ 0.078 19 218 0.8 1.7 

Note: µ = mean, σ = standard deviation 
 
Table 2: Frequency, magnitude and successive period of excess release for all objective functions 

Frequency Magnitude (MCM/year) Duration (year) 
Objective functions 

(times/year) Average Maximum Average Maximum 

µ 0.848 1,038 4,757 9.0 18.2 SI 
σ 0.072 205 2,002 5.2 7.1 
µ 0.843 1,188 4,446 8.8 17.2 Aver 
σ 0.073 194 1,825 5.6 7.0 
µ 0.856 1,160 5,403 8.3 17.1 Max 
σ 0.065 208 2,031 4.2 6.5 
µ 0.814 1,036 4,882 7.1 15.4 Fre 
σ 0.078 205 1,932 3.2 5.9 
µ 0.836 1,289 5,578 7.9 16.3 RMS 
σ 0.071 231 2,014 4.2 6.3 
µ 0.848 1,082 4,602 8.7 17.7 SUM 
σ 0.071 196 1,922 4.4 6.7 

Note: µ = mean, σ = standard deviation 
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Fig. 10: Magnitude of water shortage for HEC-3 simulation approach, the GAs connected simulation algorithm with 

and without constraints 
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Fig. 11: Frequency and successive period of water shortage for HEC-3 simulation approach, the GAs connected 

simulation algorithm with and without constraints 
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Fig. 12: Magnitude of excess release for HEC-3 simulation approach, the GAs connected simulation algorithm with 

and without constraints 
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Fig. 13: Frequency and successive period of excess release for HEC-3 simulation approach, the GAs connected 

simulation algorithm with and without constraints 
 
They demonstrate that the optimal rule curves of the 
search using smoothing function constraint are 
smoothly than their search without the constraint. 
Moreover, the pattern of the obtained curves which 
using smoothing constraint is similar to the existing 

ones. Thus smoothing function constraint can reduce 
the variation of the upper and lower rule curves. 
 The rule curves of them were then assessed to 
examine the situations of water shortage and excess 
release by comparing related characteristics (e.g.,  
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frequency, magnitude and duration) of the referred 
circumstances with those of the optimal curves. The 
Monte Carlo simulation study against 500 samples of 
generated monthly flows of stations P.12 and SK[13] was 
used to compute the interval (mean ± standard 
deviation) of the referred statistics for the assessment. 
In the following, the obtained assessment results of the 
considered water- deficit and excess-release properties 
for the three cases are presented.  
 Figure 10 and 11 show the assessment intervals of 
water-shortage characteristics for the GAs connected 
simulation with the smoothing function constraint and 
without it as well as the HEC-3 simulation approach. 
They appear that the proposed technique gives the 
water deficit characteristics (e.g., the durations and 
magnitudes of water deficits) which are smaller than the 
existing one does. It can be these concluded that the 
GAs connected simulation with the smoothing function 
constraint is able to reduce the effect of the correlations 
on the water shortage situation. Moreover, the figures 
also demonstrate the water deficit characteristics of 
both using smoothing constraint and without smoothing 
constraint are not much different.  Figure 12 and 13 
present the referred statistics of excess releases for the 
three rules. It is evident that the both of using GAs 
connected simulation techniques do not yield greater 
excess releases, as compared with the existing one.   
 

CONCLUSION 
  
 Rule curves are fundamental guidelines for 
operating a reservoir system. The objective of this 
paper is to find the suitable objective function and to 
propose a smoothing function constraint for searching 
the optimal rule curves by using GAs connected 
simulation technique. The curves of all objective 
functions are compared and assessed on the properties 
(frequency, magnitudes and consecutive duration) of 
water deficit and excess release using the Monte Carlo 
simulation. The results show that the average water 
shortage is the optimal objective function for searching 
the optimal rule curves. It can represent the situations of 
water deficit and excess release.   
 To reduce the fluctuation of rule curves, the 
moving average is applied to be the constraint of the 
searching rule curve. Results indicate that the 
smoothing function constraint can reduce the variation 
of the upper and lower rule curves. The optimal rule 
curves of the developed model which using the average 
water shortage and smoothing function are used for 
evaluating the existing rule curves. Results demonstrate 
that the optimal rule curves of the GAs technique are 
more mitigate the situation of water deficit and excess 
release than the existing rule curves. They are also 
concluded that the GAs connected simulation with 
smoothing constraint is more effective than the model 
without constraint.  
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