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Abstract: This study reports the validity of the modified Shanks’ conjecture on the planar least 
squares inverse (PLSI) method of stabilizing two-dimensional (2-D) recursive digital filters. A 
theoretical procedure  proposed based on the Lagrange multiplier method of mathematical 
optimization. The results indicate that the modified Shanks’ conjecture reported by Jury was valid for 
special classes of 2-D polynomials.   
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INTRODUCTION 

 
 Two-dimensional (2-D) recursive digital filters find 
many applications, such as biomedical electronics, 
image processing, seismic record processing, etc. For a 
given response characteristic, recursive filters have less 
hardware requirements and thus, wherever linear phase 
is not mandatory, recursive filters are preferred. 
However, the problem of stability is associated with the 
design of recursive digital filters[1]. The stability tests 
for 2-D recursive digital filters continue to gain 
attention from researchers because of their importance 
in many applications. 
 It is known in the literature that the least squares 
inverse (LSI) of a one-dimensional (1-D) polynomial, 
which represents the denominator of a discrete system 
function is always stable. This fact has been used for 
the design of 1-D recursive digital filters with 
guaranteed stability[2,3]. Shanks’ et al.[4] proposed the 
extension of this stabilization technique to 2-D. The    
1-D LSI when extended to 2-D is known as planar least 
squares inverse (PLSI) and Shanks’ conjecture has been 
verified for many practical examples. However, the 
Shanks conjecture has been shown to be invalid in 
general. Counterexamples have first been produced and 
thereafter, a rather simple algebraic procedure has been 
given to generate polynomials yielding unstable PLSI 
polynomials of degree (1, 1)[5,6]. Subsequently the 
modified form of Shanks’ conjecture was reported by 
Jury[7]. According to this modified conjecture, “if the 
original 2-D polynomial and the corresponding PLSI 
are of the same degree, then the reciprocal of the PLSI 

(i.e. the double PLSI) is a stable filter”. This conjecture 
has been verified rigorously for low degree 
polynomials. However, it has not been proved in 
general. Jury’s conjecture had been verified for a large 
number of numerical examples. Later, Kayran and 
King[2] proposed a counterexample to disprove Jury’s 
conjecture. This counterexample shows that Jury’s 
conjecture is not valid in general. In all the above 
cases, only 2-D quarter-plane (QP) polynomials were 
considered. In this study, in order to show the validity 
of the modified form of Shanks’ conjecture, 2-D 
nonsymmetric half-plane (NSHP) polynomials have 
been taken. It is shown that if the original 2-D NSHP 
polynomial and its inverse (i.e. PLSI) are of the same 
degree, then the reciprocal of PLSI (i.e. double PLSI) is 
a stable filter. In other words, the 2-D PLSI polynomial 
of an unstable 2-D NSHP polynomial will be definitely 
stable, provided they both have the same degree. 
 

MATERIALS AND METHODS 
 
 Given a transfer function of certain recursive 
systems,  
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A 1-D polynomial )(zA  is stable if  

           1,0)( ≤≠ zzA                         
(2) 

 This is a well known theorem with the fact that the 
z-transform is defined with positive powers of z. The 
condition given in (2) states that a 1-D polynomial is 
stable if and only if all its zeros lie outside the unit 
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circle. It is marginally stable if some zero(s) lie on the 
unit circle[8]. 
 A theoretical procedure is now proposed here for 
testing the 1-D polynomial A(z) for stability based on 
the Lagrange multiplier method of mathematical 
optimization. The Lagrange multiplier method aims to 
maximize the constant term of the  1-D polynomial and 
a decision regarding its stability can be made depending 
upon whether the constant term of the 1-D polynomial 
is maximizable or not. 

Let the given 1-D polynomial ∑
=
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N
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)(  be of 

degree N. It has (N+1) autocorrelation functions sγ ’s as 
given below:  
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Including the given 1-D polynomial A(z), there are 
totally 2N number of 1-D polynomials (in general) 
which have the same autocorrelation coefficients γs’s as 
that of A(z) [10,11]. Out of these 2N number of 1-D 
polynomials, which are said to form a ‘family’, only 
one polynomial is found to be stable. This stable 
polynomial is one whose constant term 0a has the 
highest magnitude. Therefore, given a 1-D polynomial 
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)( , to test whether it is stable or not, we use 

the Lagrange Multiplier method[9]. 
 
 Let the stable version of A(z) be )(' zA . In this 

method one has to maximize the function 0af ′=  
satisfying the constraints gi, given as 

Nsaag
N

r
ssrri ,,2,1,0,0''

0
==γ−= ∑

=
+

          (4)
 

where,  
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that is  

Nigi ,,2,1,0,0 ==                     (6)
 For clarity, we briefly discuss the method as follows. 

Let us form the Lagrange Function ),'( 0 jaL λ  such that  
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where λj are the Lagrange multipliers. Then form  
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and  
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 Hereafter we refer to (8) as the Lagrange equation. 
We have in (8) and (9) a set of 2)1(1 +=++ NN   
nonlinear equations involving the coefficients ia′ ’s and 
λj’s as unknowns. Practically (8) is a single equation 
from which an expression for 0a′  can be derived in 

terms of the other ia′ ’s and λj’s and then 0a′ ’s can be 
substituted in (9). If the resulting nonlinear equations 
are solvable for ia′ ’s ),,2,1,0( Ni =  and hence for 

0a′ ’s and in this process if all λj’s turn out to be 

positive, then the value  *
00' aa =   will be the maximum. 

The corresponding polynomial )(' zA  with these ia' ’s 
as coefficients will be stable or marginally stable. On 
the other hand if the nonlinear equations are not 
solvable, one can then conclude that this method fails to 
give us maximum value for 0'a  and hence we have 
failed to obtain a stable 1-D polynomial corresponding 
to the given unstable 1-D polynomial A(z) by this 
approach.  
 
Existence of maximum for 2-D QP and NSHP PLSI 
polynomials: Here, the stability of 2-D QP & NSHP 
PLSI polynomials is discussed. 
 
Case I:  QP PLSI polynomials: If the given 2-D QP 
polynomial A(z1, z2) has a centrosymmetry in its 
coefficient matrix [A], then it has been proved in 
general by Philippe Delsarte et al.[12] that the 2-D QP 
PLSI polynomial B(z1, z2) will have its coefficient 
matrix [B] symmetric. 
 In order to prove that the QP PLSI polynomial 
B(z1, z2) is stable, we have to show or prove the 
existence of maximum for its constant term b00. In this 
process, we arrive at a figure for the number of 
unknowns for the Mth degree 2-D QP polynomials. The 
total number of unknowns, namely bij’s is given by 

12)1)(1( 2 ++=++ MMMM              (10) 
Since [B] is symmetric, the number of independent bij’s 
is 

2
23

2
)2)(1( 2 ++
=

++ MMMM              (11) 

So the number of jλ ’s is 



 Am. J. Applied Sci., 4 (4): 184-187, 2007  
 

 186

2
232 ++ MM                              (12) 

 Thus we have a total number of unknowns U as the 
sum of the two numbers given in (11) and (12). That is 

232 ++= MMU . However, the total number of 
independent constraint equations will be 
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The ‘ 1+ ’ in equation (13) is due to the Lagrange 
equation. Theoretically the optimum for 00'b  exists if 

QU ≥ . That is, if 
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 So the maximum value of M for which (14) is 
satisfied is M = 3. Thus for any value of M < 3, there 
may exist a solution for the equations and hence the 
optimum for 00'b  exists. This means that the PLSI 
polynomial B(z1, z2) will be stable. And for any M > 3, 
the corresponding PLSI will be unstable. 
 But when M = 3, an interesting situation arises. 
That is, the number of equations is equal to the number 
of unknowns. If the number of unknowns is equal to the 
number of nonlinear equations, the real solution may 
not necessarily exist. In general if the number of 
equations is equal to the number of unknowns, the 
solution may or may not exist. 
 
Case II: NSHP PLSI polynomials: If the given 2-D 
NSHP polynomial A(z1, z2) has a centrosymmetry in its 
coefficient matrix [A], then it has been shown that the 
2-D NSHP PLSI polynomial B(z1, z2) will not have its 
coefficient matrix [B] symmetric[11]. 
 In order to prove that the NSHP PLSI polynomial 
B(z1, z2) is stable, we have to show or prove the 
existence of maximum for its constant term b00. In this 
process, we first arrive at a figure for the number of 
unknowns for the Mth degree 2-D NSHP polynomials. 
For the 2-D NSHP polynomial of Mth degree, the total 
number of constraint equations are 224 2 ++ MM . 
But the number of unknowns λj’s is  122 2 ++ MM   
and bij is 122 2 ++ MM  and hence the total of  

244 2 ++ MM . (The highest order of the form 
preserving 1-D polynomial being MM 24 2 +  for the 
Mth degree NSHP polynomial). Since 

244 2 ++ MM > 224 2 ++ MM , the numbers of 
unknowns is more than the number of equations and it 
can easily be solved for and hence the optimum b00 
exists. Therefore the PLSI polynomial is stable. 
 
Numerical examples: Consider now the following 2-D 
QP 5th degree polynomial (in matrix form), which is 
unstable. 
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 As we notice, coefficient matrix of A(z1, z2) is 
symmetric. We find that the coefficient matrix of the   
2-D PLSI polynomial B(z1, z2) is also symmetric. It is 
found that the form preserving 1-D polynomial of B(z1, 
z2), i.e. B(z11, z) has a pair of complex conjugate zeros 
whose magnitude is 0.99388. [As the z-transform is 
defined with positive powers of z, for the PLSI 
polynomial to be stable, the magnitudes of all its zeros 
should be greater than 1].  So the PLSI in this case is 
unstable.  
 To verify this theoretically, we now use the 
Lagrange multiplier method as discussed earlier. As the 
coefficient matrix of the PLSI polynomial is also 
symmetric, the number of unknowns will be less than 
the number of equations in the process of optimization 
and hence the equations are not solvable in general. 
Therefore, we are unable to obtain the maximum for the 
constant term and the PLSI becomes unstable.   
 On the other hand, consider the following 2-D 
NSHP polynomial of degree 2 
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 The PLSI B(z1, z2) is found to be stable even 
though the original NSHP polynomial A(z1, z2) has 
centrosymmetry among the coefficients in the quarter 
plane. To verify this theoretically, we have to use the 
Lagrange multiplier method. In this process, the total 
number of equations and unknowns turn out to be 22 
and 26, respectively. As the number of unknowns is 
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more than the equations, the equations are solvable and 
hence the optimum exists. Thus the PLSI is found to be 
stable.  
 

CONCLUSION 
 
 In the case of quarter-plane filters, if the given 
unstable polynomial A(z1, z2) has a coefficient matrix 
[A] such that the resulting PLSI polynomial B(z1, z2) has 
no relationship among themselves, the polynomial  
B(z1, z2) is always stable when the degrees of B(z1, z2) 
and A(z1, z2) are one and the same. This can be easily 
guessed from the matrix [A] since no symmetry of any 
kind will ensure that there will not be any relationship 
among the coefficients of B(z1, z2). On the other hand, if 
there is symmetry among the coefficients in the 
coefficient matrix [A] and hence in the PLSI [B], the 
resulting PLSI may not be stable if the degree is greater 
than two. This symmetry in quarter-plane polynomials 
therefore violates the Modified Shank’s conjecture by 
Jury.  
 In nonsymmetric half-plane filters, even if the 
original polynomial A(z1, z2) has a coefficient matrix 
[A] which is centrosymmetric or symmetric, the 
resulting PLSI polynomial B(z1, z2) will not have any 
symmetry in its coefficient matrix and hence the PLSI 
will always be stable provided the degrees of both the 
polynomials are one and the same. Therefore the 
Modified Shanks’ conjecture holds true for a special 
classes of 2-D polynomials i.e., NSHP polynomials. 
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