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Abstract: Geometric optics approximation for emissivity from triangular surfaces was compared with 

exact scattering predictions from electromagnetic theory. Rigorous electromagnetic scattering theory 

was numerically formulated based on the differential method. We have used a numerical simulation of 

the emissivity of gold and tungsten for a wavelength equal 0.55 micron to explore the validity of the 

geometric optics. Surface parameter domains for the regions of accuracy of the geometric optics 

approximation are quantified and presented as functions of surface slope and roughness. Influence on 

the validity of the approximate method of multiple scattering, the shadowing effect and the cavity 

effect of metallic surface have been investigated. For the latter, our interest was focused on the 

mechanism that enhances the emissivity of an interface when ruling a grating. It has been seen that the 

mechanism responsible for the enhancement of the emissivity depends very much on the period of the 

grating. For gratings with a period much smaller than the wavelength, the roughness essentially 

behaves as a transition layer with a gradient of the optical index. For different period / wavelength 

ratio, we have found a good agreement between the differential method and the homogenization 

regime when the period was smaller than 
10

λ . 
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INTRODUCTION 

 

 The modeling of directional monochromatic 

emissivity of a rough surface remains a subject of 

theoretical, experimental and numerical researches
[1,2]

. 

The directional nature of surface radiative properties is 

of interest in many thermal engineering such as 

semiconductor industry
[3]

, solar energy or the computer 

graphics
[4]

. Radiative scattering from one-dimensional 

rough surfaces can be predicted by a number of 

approximations and exact solution. The exact approach 

based on the electromagnetic theory quantifies the 

directional nature of surface scattering. The geometric 

optics and Kirchhoff approximation are common 

specular approximation to electromagnetic scattering 

and have been extensively compared with exact 

solutions
[5]

.  

 Among the exact methods, we can cited the 

integral method and the differential method. The 

differential method has been extensively studied. This 

theory has engendered wide interest because of its good 

physical insight and the simplicity of its mathematical 

resolution. The differential method is known in the 

literature as a rigorous coupled wave analysis 

(R.C.W.A). Among the authors who were interested in 

the study of the problem of diffusion by the approach 

RCWA, we can cited M.G Moharam and T.K 

Gaylord
[6-8]

 who they applied this approach to a plane 

grating in the case of polarization TE and then, they 

extended it to the case of polarization TM
[9]

. In parallel, 

various versions of algorithms were proposed. 

However, some of the solution algorithms are unstable 

for relatively thick modulated layers
[10,11]

. Chateau and 

Hugonin
[12]

 have proposed a new algorithm known as 

Modal Multilayer Method (MMM). This Technique is 

numerically stable and allows us to study a gratings 

with arbitrary period and depth. In this method, a 

surface relief gratings is divided in to a large number of 

thin layers parallel to the surface. The projection of 

propagation equation on a suitable basis of function 

gives a set of ordinary differential coupled equations. 

For gratings, the fields are then presented on both 

external media of the grating by the electric field 

complex amplitudes of the incident and reflected 

waves. A recursive resolution in terms of these last 

amplitudes allows as to determine the reflection 

efficiencies (ratio of reflected intensity to input 

intensity) in each order. The sum of all the reflected 

efficiencies for the propagating waves lead to 

emissivity ( )λ
ε . 

 Another approach of determination of the radiative 

properties of rough surfaces is considered as an 



Am. J. Applied Sci., 4 (3): 146-154, 2007 

 147 

approximate method and it is based on geometrical 

optics. The geometric optics approximation (GOA) ray 

traces the energy incident on rough surface until it 

leaves the surface, thereby including multiple scatters 

from various surface elements. Each surface interaction 

is modeled as a reflection from a locally optically 

smooth surface ( Fresnel approximation ). Therefore, in 

the limit of plane surface, the geometric optics 

approximation is reduced to the Fresnel approximation 

since only a single scatter from the surface occurs. 

These steps are used to calculated the emissivity ( )λ
ε .  

 Within this framework, several authors dealt with 

this problem for various forms of roughness surface
[13-

17]
. Certain past studies were interested to determine the 

domain of validity of the geometric optics 

approximation in comparison with the integral 

method
[5,18]

. 

 Also, we approach the study of the radiative 

properties of these rough surfaces when the period is 

much smaller than the wavelength. When the grating 

has one period largely lower than the wavelength, it 

does not diffract the light. In other words, only the 

order 0, which corresponds to the specular reflection or 

transmission, is propaged. Thus it behaves exactly like 

a smooth surface. However, its structure confers to him 

a radiative properties which are very different from 

those of homogeneous material. Bouchitté and Petit
[19]

 

showed that a grating of sufficiently small period can 

be compared to an anisotropy layer with index gradient. 

This equivalence between grating and layer leads to a 

coupling between the " multi-layer " process and the 

approach " roughness ". It was used by Gaylord and 

Al
[20]

 and Southwell
[21]

 to replace the traditional anti-

reflecting coating by a grating. This technique was then 

extended to the creation of polarizes and filters band 

suppressor
[22]

.  

 This work has established the region of validity 

between the geometric optics approximation (GOA) 

and differential method (MMM) especially in the cases 

of triangular surfaces of finished conductivity (gold and 

tungsten). We have analyzed the different physical 

phenomena depending on the period and the angles of 

incidence. We have found a satisfactory agreement 

between the emissivity calculated by differential 

method and that given on the basis of homogenization 

regime when the period is much smaller than the wave 

length.  

 

Derivation of the emissivity using differential 

method (MMM)  

Geometry: In this study, we have considered a grating 

with a triangular groove surface relief (Fig. 1). An 

electromagnetic wave obliquely incident upon the 

grating produces both forward and backward-diffracted 

waves, as it is shown in the Fig. 1. Region 1 is a 

homogeneous dielectric with a relative permittivity of 

1
ε . Likewise, region 3 is homogeneous with a complex  
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Fig. 1: Geometry of surface-relief grating 

 

permittivity 
III
ε . Region 2 (the grating region) consists 

of periodic distribution of both types of materiel. In this 

paper, for simplicity, we have assumed that the incident 

light has transverse electric (TE) polarization.  

The permittivity in region 2 may be expanded in a 

Fourier series as: 

( ) ( )2

i

i

x,z n (x,z) n (z) exp( j i K x) x d,z
+∞

=−∞

ε = = = ε +∑ ɶ  (1) 

where d is the grating period, n is the refractive index, 

K is the magnitude of the grating vector (
2

K
d

π

= ) and 

j=(-1)
1/2

. 

 

Theory of differential method: In the present analysis, 

the differential method MMM (Multilayer Modal 

Method) is adapted to the exact electromagnetic 

boundary value problem associated with dielectric and 

metallic miro-rough periodic surfaces. 

 In order to simplify the notation, we have 

introduced a modified magnetic field defined as 

h cH= µ . We have analyzed the propagation of waves 

inside the grating, using the tangential components 

( )z,xEy  and ( )
x

h x, z  of respectively the electric and 

modified magnetic field. These components of 

electromagnetic field are continuous on the boundaries. 

We have introduced the fundamental coupled-wave 

expansions: 

( ) ( )xkjexpzE)z,x(E )i(
x

i

)i(
yy ∑

+∞

−∞=

=  

( ) ( )xkjexpzh)z,x(h )i(
x

i

)i(
xx ∑

+∞

−∞=

=  (2) 

where 

θ⋅= sinnkk 00
)0(

x  et iKkk
)0(

x
)i(

x += , Zi∈  (3) 

 In This method, a surface relief grating is divided 

into a large number of thin layers parallel to the surface. 

By replacing the field expansions (2) and (3) in the 

Maxwell equation
[23]

, we have obtained a differential 

system with constant coefficients according to each thin 

gratin k: 

[ ] )z(UM
dz

)z(dU
k

=  (4) 
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 The solution of the shift invariant system (4) 

between two arbitrary coordinates Zk+1 and Zk (Zk+1>Zk) 

involves a matrix exponential function: 

( )[ ]{ } )z(UMzzexp)z(U
1kkk1kk ++

−−=  (5) 

We shall express the matrix exponential in terms of 

eigenvectors and eigenvalues of [M]. 

Diagonalizing matrix [M], we obtain: 

[ ] [ ][ ][ ] 1

kkkk
PDPM

−

=  (6) 

Where the columns of matrix [ Pk ] are the eigenvectors 

of [ Mk ]and [ Dk ] is the diagonal matrix of the 

eigenvalues of [ Mk ]. 

 Numerical methods for analyzing layered gratings 

face reveal a common difficulty associated with the 

inversion of matrix [7,10]. For solving the problem 

without numerical difficulties, we have adopted the 

stable algorithm presented by N. château and 

J.P.Hugonin[12] for transverse electric polarization 

(TE). The new algorithm that remains stable for 

gratings of any thickness by rearranging the position of 

the eigenvectors matrix columns in relation (6), put the 

eigenvalues in growing order on the diagonal of matrix 

[D]. 

 When the reflected )i(
fb

γ− and transmitted )i(
Lf

γ−  

field complexes amplitudes are known, the diffraction 

efficiencies (ratio of diffracted intensity to input 

intensity) may be directly determined. Then the 

diffraction efficiencies in region 1 and 3 are: 

2
)i(

F)0(
Fz

)i(
Fz)i(

B b
k

k γ−

γ−

γ−
=η ; 

2
)i(

L)0(
Fz

)i(
Lz)i(

F f

k

k γ−

γ−

γ−
=η . avec :

2/1
2)i(

x
22

0
)i(

Fz knkk




 −=  (7) 

 

Surface radiative properties: As our interest is the 

region 1, the precedent general approach has been used 

to derive the monochromatic directional hemispherical 

reflectivity and it is given by function of the angle of 

incidence θ : 

)i(
B

Ni

Ni

)(' γ−
+=

−=

ο
λ η=θρ ∑  (8) 

 Using Kirchhoff’s law and conservation of energy, 

the absorptivity is identified to the directional 

monochromatic emissivity
[15]

. 

)i(
B

Ni

Ni

1)( γ−
+=

−=

λ η−=θε ∑  (9) 

 

Derivation of the emissivity using geometrical 

optics: The geometric optics or ray tracing 

approximation to the electromagnetic theory predictions 

of surface scattering is a multiple scattering solution 

which traces energy from incidence until it leaves the 

surface. Each scattering is treated as a Fresnel reflection 

at the local point of interaction. In the limit of plane 

surface, the geometric optics approximation becomes 

the Fresnel or specular approximation. 

 Thus, the geometric problem consists in calculating 

the coordinates of each rebound point and the local 

reflection angle, from the first reflection point to the 

last one successively. Since the surface groove is 

assumed to the locally optically smooth plane, only a 

single and specular reflection occurs at each interaction 

point. 

 An incident monochromatic pencil of parallel rays 

strikes the surface under the angle of incidence θ . We 

consider M equally spaced point on the line parallel to 

X-axis. An incident ray, determined by the entry point 

XSj , j integer from 1 to M, includes a set of Nj local 

reflection points { }
j

i
1 i N

S
≤ ≤

inside the relief surface. 

Remaining energy is simply proportional to 
λ
ρ . After 

N reflection events, the remaining energy is 

proportional to ( ) ( ) ( )Nj21 ϕρ××ϕρϕρ λλλ ⋯  , where 

i
ϕ  designates the local reflection angle at the 

interaction point Si and ( )
i

ϕρλ
 is the Fresnel reflection 

factor. 

 At each reflection event, a fraction λρ−1 of the 

energy of the beam is absorbed, so, the absorptivity is 

equal to: ( ) ( ) ( )Nj211 ϕρ××ϕρϕρ−
λλλ

⋯ .  

 The absorptivity and emissivity derived from 

geometrical optics are equal to: 

( ) ( )
i

n

1i

s 1X, j ϕρ−=θε ∏
=

λλ
 (10) 

where ( )jsX,θελ  is the local emissivity in the point 

XSj.  

 So, we have evaluated the contribution of the ray 

that impinges on the surface at a particular point XSj. 

The next step is to average the emissivity over the 

grating surface of period d according to a position XSj 

as follow: 

( ) ( )∫ θε=θε λλ

d

0

s dXX,
d
1

j  (11) 

where λε  is the directional monochromatic emissivity.  

 

Concept of homogenization: We treat now the 

radiative behavior of grating with a period much 

smaller than the wavelength. Under these conditions, 

the roughness is equivalent to a superposition of layers 

of given effective indices using the theory of the 

effective mediums
[24]

. 

For TE polarization, the effective dielectric constant of 
iéme
k  layer is given by: 

( ) ( )21k,effk3kk,eff nf1f
+

≡−+ε⋅=ε  (12) 

where fk is the factor of filling.  
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 It is established that the shape of the field in the 

medium of incidence results from the shape of the field 

in that of transition by simple matrix products
[25]

:  

( ) ( )1M2M11 zUAzU
+

+= . (13) 

 The Matrix j

1M

2j

j1 TCTA ∏
+

=

⋅=  characterizes the 

studied system and it is obtained from the matrices of 

transition jT  and the matrices of layer jC
[26]

. 

We define the coefficient of reflection by: 

 amplitude complexe fieldIncident 

  amplitudecomplex  field Reflected
=r  (14) 

The emissivity is given by the following relation: 

2
r1)( −=θε

λ  (15) 

 

RESULTS AND DISCUSSIONS 

 

 In the present paper, we have studied the validity 

of the geometric optics approximation (GOA) in 

comparison with differential method (MMM) in terms 

of directional monochromatic emissivity. We have 

determined by two methods the emissivity of gold (Au) 

and tungsten (W), of respective refractive indexes 

45.2i48.0nu += and 73.2i5.3nW +=  for 

cylindrical surfaces with a triangular profile 

corresponding to wavelength equal to 0.55 microns. 

The directional monochromatic emissivity of the 

surfaces depends on the incidence angle, the profile of 

the surface, the height h and the period d, in addition to 

the nature of material. 

 In our knowledge, the accuracy of this approximate 

method depends on the multiple reflection and 

shadowing phenomenon due to the relief of surface. For 

incidence angles surrounding °=θ 0  (normal 

incidence), there is no effects of shadow and only 

multiple scattering is to be considered. The effect of 

shadowing is most important at large incident angles. In 

order to study the influence of these effects on the 

regions of validity of the GOA, our calculations were 

performed with the angle of incidence °=θ 1  for the 

former effect and with °=θ 60  for the latter. 

 It is clear that for a height h of the grating, when 

the period d increases sufficiently, angle β  defined by 

d
h2tg =β  tends towards zero, so the directional 

emissivity ( )θελ'  tends towards the emissivity of the 

plane surface. Thus, we should expected that the two 

curves displaying emissivity ( )
λ

ελ
d

'  versus 
λ

d , for 

fixed θ  and 
λ

h , obtained by the differential method 

and the geometric optics approximation presented the  
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Fig. 2: Comparison of differential method (MMM) 

solutions with geometric optics approximation 

(GOA) for the directional monochromatic 

emissivity ( )' d
λ
ε

λ
 of triangular surfaces. Case 

of the angle of incidence °=θ 1  
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same horizontal asymptotic behavior, for d greater than 

λ . By comparing these two curves, we can calculate 

the limit value ( )
lim

d
λ

 which quantifies the validity of 

the GOA for constants 
λ

d  and θ . 

 

Case of the ratio h/λ=0.1 and h/λ= 1: We start by 

presenting and discussing the results concerning the 

symmetrical triangular grooves with height h/λ=0.1 

and h/λ = 1. We compare the curves of emissivity 

( )
λ

ελ
d

'  calculated by the two methods for the angles of 

incidence °=θ 1  and °=θ 60 . 

 

a. Case of the angle of incidence °=θ 1 : Figure 2a 

and 2b show curves displaying the directional 

monochromatic emissivity 
λε'  of gold grating versus 

the ratio 
λ

d  (logarithmic/linear scale) for a heights 

equal to λ1.0  and λ1 . In order to study the different 

regimes, we have varied the period d of the grating in 

the range [ ]λλ 20,
20

. It seem that the ray tracing 

approach GOA yields the same results as the MMM 

method for large periods but fails for periods smaller 

than ( ) 4.0d
lim

=
λ

 corresponding to h equal to λ1.0  

(Fig. 2a) and for periods smaller than ( ) 8.0d
lim

=
λ

 

corresponding to h equal to λ1  (Fig. 2b). These two 

limits can also be expressed by the inequality: 
lim

β<β , 

where 
lim

β  is about 26.56° for λ= 1.0h  and about 

68.19° for λ=1h . In the case λ= 1.0h , the agreement 

between the two methods corresponds to cavities in V 

inside of which an incident ray under the angle 1° 

undergoes only one reflection according to a local angle 

equal to (β + 1°). Whereas for λ=1h , this agreement 

exceeds the single scattering domain limited to 

approximately ( ) 4.6d
lim

>
λ

, to cover cases of multiple 

scattering defined by ratio 
λ

d  included between 0.8 

and 6.4 corresponding to angles β  located between 

approximately 30° and 70°. As example, for λ=1h  

and λ= 8.0d  the number of point of impact associated 

with an incident ray inside the cavity in V is equal to 

four for the total incident beam. 

 We can concluded from the first two figures that 

we can groove on a plane surface a symmetrical 

cavities in V with positive slope 2h/d inside of which 

the GOA remains valid until this slope reaches value 

0.5 for λ= 1.0h  and the value 2.5 for λ=1h . 

 Thus, in these two cases ( λ= 1.0h  and λ=1h ) 

and for °=θ 1  the domain of validity in term of slope of 

surface is more extended when the height h of the 

grating is higher. Then, we show that the common 

asymptotic behavior of the exact and approximate 

solutions is well illustrated in these figures. The 

horizontal asymptote of emissivity given by the limit 

value of ( )
λ

ελ
d

' , corresponds exactly to that of plane 

surface according to the normal incidence. It is equal to 

0.21 as shown by the indicatrix of emissivity of this 

surface (Fig. 3a) calculated by the relation of Fresnel 

deduced from the electromagnetic theory of 

Maxwell
[15]

. Also, the Fig. 2a and 2b showed no 

agreement between the two methods when the slope is 

higher than 0.5 for λ= 1.0h  and when the slope 

exceeds 2.5 for λ=1h . 

 In the case of tungsten (W) for the same profiles in 

V and the same angle of incidence 1°, there is an 

agreement between the two methods from 
λ

d  equal to 

approximately 0.8 for the two considered heights 

λ= 1.0h  (Fig. 2c) and λ=1h  (Fig. 2d). This 

agreement is practically identical to that of the case of 

gold and the precedent interpretations remain valid 

here. 

 Asymptotic limit of emissivity, corresponding to 

the low values of β  (
λ

d
 great height), is well that of 

the plane surface according to the normal and it is equal 

to 0.51 (Fig. 3b). For the symmetrical V profiles and for 

incidences angles surrounding °=θ 0  (normal 

incidence), it is established that the GOA lead to values 

of emissivity which tend towards the unit when angle 

β  tends towards 
2

π
 as well for conducting materials as 

dielectric. This is explained by the fact that an incident 

ray under the angle 1° is trapped and undergoes a large 

number of reflections inside the cavity (62 for 1
h
=

λ
 

and 05.0
d
=

λ
) which behaves then like a black body. 

This fact is seen in Fig. 2b and 2d. The emissivity 

increases gradually as the period decreases. The 

mechanism responsible for this enhancement of the 

emissivity is very simple and can be explained by the 

fact that since there is multiple scattering (or ray 

trapping) there is more absorption. We may call this a 

cavity effect
[26]

. For smaller periods, the effect is 

different. So far, we shall examine this case in 

homogenization regime.  

 

b. Case of the angle of incidence °=θ 60 : For the 

same symmetrical V profile of gold or tungsten and for 

angle of incidence θ  equal to 60°, there is an  
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Fig. 3: Emissivity of plane surface 

 

agreement between the two methods if the ratio 
λ

d
 is 

greater than 1.6 and the height of the grating is equal to 

λ1.0  (Fig. 4a and 4b). In these cases, the condition of 

validity of the GOA is expressed by an angle β  lower 

than 10° according to a simple reflection under a local 

angle equal to (60° β± ) for any incidence. Therefore, it 

is clear that there domains of validity in term of slope 

are much more extended than those of the angle of 

incidence °=θ 1 . 

 The asymptotic limit value of ( )
λ

ελ
d

'  is about 

0.121 for gold (Fig. 3a) and 0.296 for tungsten (Fig. 3b) 

and it is in agreement with that given by the Fresnel’s 

formulae. We have already pointed out that the angle of 

incidence °=θ 60  has been chosen to study the 

influence of the shadowing effect on the validity of the 

GOA. However, at this angle of incidence, this effect 

occurs for surfaces having grooves with slopes greater 

than 30°. The shadowing effect is then important and 

the GOA is not valid. Besides, an analysis of multiple 

reflection shows that in these cases the simple 

scattering is rather frequent. The shadowing effect 

combined with a multiple reflection prohibit validity of 

the geometric method. Thus for λ= 1.0h , the absence 

of this effect for °=θ 60  and °<β 30 , always realized 

for °=θ 1 , must be associated with a simple reflection 

in order to validate the GOA. 
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Fig. 4: Comparison of differential method (MMM) 

solutions with geometric optics approximation 

(GOA) for the directional monochromatic 

emissivity ( )' d
λ
ε

λ
 of triangular surfaces. Case 

of the angle of incidence 60θ = °  
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Table 1: Emissivity computed using the homogenization regime and those calculated by the differential method and geometrical optics 

d
0.05=

λ
 

  Au W 

  MMM Homogenization GOA MMM Homogenization GOA 

h θ        

 

λ= 1.0h  

1° 0,2416 0,2425 0,6624 0,6185 0,6233 0,9245 

10° 0,2380 0,2388 0,6433 0,6128 0,6175 0,9169 

50° 0,1559 0,1565 0,4994 0,4586 0,4629 0,8250 

60° 0,1220 0,1225 0,4332 0,3787 0,3826 0,7481 

 

λ=1h  

1° 0,5190 0,5199 0,9734 0,8979 0,8965 0,9736 

10° 0,5145 0,5103 0,9799 0,8938 0,8924 0,9799 

50° 0,3196 0,3165 0,9740 0,7524 0,7512 0,9761 

60° 0,2448 0,2451 0,9712 0,6572 0,6561 0,9764 

 

 When the height of the grating is equal to λ  there 

is practically an agreement between the GOA and the 

MMM for 
λ

d
 higher than 0.8 as well for gold and 

tungsten (Fig. 4c and 4d). This limit also results in 

angles β  lower than approximately 70° like the case of 

the angle of incidence 1°. However, for surfaces with 

λ=1h , the shadowing phenomenon does not prohibit 

the validity of the geometric method. 

 

Limiting slope ( )
limd

h2  function of the angle of 

incidence θ : In order to study the validity domain of 

the geometric optics, we have considered again the 

preceding study in the cases of gold for heights 

λ= 1.0h  and λ=1h , for the angles of incidence in the 

range [10°, 80°] with a step of 10°. The two curves of 

emissivity ( )
λ

ελ
d

'  for fixed h and θ , calculated by the 

two methods and taking forms similar to those of the 

curves presented on Fig. 2a and 2b, allow as to 

determine the value of limiting ratio ( )
lim

d
λ

 from 

which the GOA is valid. In order to obtain eight values 

of ( )
lim

d
λ

, for each fixed height ( λ= 1.0h  and 

λ=1h ), we have studied the variation of '
λε  as a 

function of 
λ

d
. For this ratio, we have associated the 

limiting slope ( )
limd

h2  for fixed h. Figure 5 shows curves 

displaying the limiting slope versus the cosine of the 

angle of incidence or emission θ , for a fixed height h. 

This curves delimits two regions. The entire region 

below the curve is the region of validity of the 

geometric optics, whereas in the above region the use of 

the MMM or another exact method is necessary. This 

graph shows that the domain validity of the geometric 

optics approximation is more extended for λ=h  thane 

for λ= 1.0h . 
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h
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Fig. 5: Differential method of triangular surfaces 

domain plot with region validity for the 

geometric optics approximation in terms of 

limiting slope ( )
lim

2h
d
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Fig. 6: Ratio ( )
lim

2h
d

 as a function of ( )h cosθ
λ

 

 

Limiting slope ( )
limd

h2
 function of ( ) θ

λ
cos

h
: By 

adopting the preceding step, for fixed 
λ

h  and θ  while 

varying the ratio 
λ

d , we have determined the limit of 

validity of the GOA in comparison with the MMM for 

the angles of incidence 1° and 60° and for the ratio 
λ

h
 

going up to value 10 with a step equal to 2. However, 

we include the points determined from the curves of  
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Fig. 7: The directional monochromatic emissivity '

λ
ε  

versus d
λ

 given by a differential method and 

homogenization regime 

 

Fig. 5. Thus, Fig. 6 gives a significant idea concerning 

the region of validity of the geometric optics 

approximation. As can be seen, in the region situated 

below the “cloud” of points of this figure, the geometric 

optics approximation is valid, whereas above this same 

“cloud” the use of an exact method is necessary. It is to 

be noted that the differential method is the unique used 

method for the depth of λ=10h  relative to the metallic 

surface. 

 

Homogenization regime: We have compared the 

diffraction efficiencies of grating by using the 

differential method (MMM) with the homogenization 

regime. We have considered a symmetrical grating in V 

and a normal incident monochromatic wave upon the 

grating. We have varied the period d of the grating in 

the range [ ]
2
,

80
λλ

 for two materials. Figures 7a and 7b 

show curves displaying the directional monochromatic 

emissivity '
λε  versus 

λ

d
 given by a differential method 

and homogenization regime. We have noticed that in 

the case of TE polarization and for two materials, the 

relative error between two methods is lower than 2% 

when the period is smaller than 
10

λ
. Under these 

conditions, the grating is equivalent to a superposition 

of layers with given effective indices determined by the 

theory of the effective mediums. We have summarized 

the results of the comparison between the 

homogenization model, MMM and the GOA in Table 1 

for two materials when the ratio 
λ

d  is equal to 0.05. 

We note a good agreement between the homogenization 

regime and the differential method (MMM) in all these 

cases and no agreement with the geometric optics 

approximation (GOA). For homogenization regime, we 

have shown that the emissivity can be enhanced. The 

mechanism responsible of this enhancement depends 

very much on the period of the grating. For gratings 

with a period much smaller than the wavelength, the 

roughness essentially behaves as a transition layer with 

a gradient of the optical index. Such a layer reduces the 

reflection thereby increasing the absorption. 

 

CONCLUSION 

 

 In this paper, we have determined by the 

differential method (MMM), the geometric optics 

approximation (GOA) and the homogenization regime, 

the emissivity of gold (Au) and tungsten (W) surfaces 

with a triangular profile, for a wavelength equal to 0.55 

microns. To our knowledge, comparison between these 

three methods in term of directional monochromatic 

emissivity, especially for metallic surfaces is not 

frequent. Indeed it is known that the treatment of these 

cases by the integral method is of an excessively high 

numerical cost. 

 The results obtained by the exploitation of the 
codes elaborated for the three methods and for TE 
polarization are validated. The accuracy of the used 
numerical differential method has been tested in some 
cases of angles of incidence and surface parameters. 
However, in this paper surface parameter domains for 
the regions of accuracy of the geometric optics 
approximation have quantified and presented as a 
functions of surface slope and roughness. 
 In this respect, the influence of the multiple 

scattering, the shadowing phenomena and the 

homogenization regime is studied in several different 

cases. 

 From results obtained in this work, we have found 

that the domains of validity depends on the ratio d
λ

. 

For values of d
λ

 larger than 2, the ray tracing model is 

valid provided that there is no shadowing and the 

simple reflection is usually required. The shadowing 

effect combined with a multiple reflection prohibit the 

validity of the geometric method. However, for surfaces 

with λ=1h  the shadowing phenomenon does not 

prohibit the validity of the geometric method. By using 

the ray tracing approach, we have obtained a large 

absorptivity which can be explained by the cavity effect 

(multiple scattering). 
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 For values of d
λ

 smaller than 0.5, the emissivity 

of the rough surface is well described by an effective 

homogeneous index which is known as the 

homogenization regime. In this homogenization regime, 

a large absorptivity caused by the index gradient 

multilayer reduces reflection. We found a good 

agreement between the emissivity calculated by the 

Multilayer Modal Method (MMM) and that given on 

the basis of the homogenization regime. 

 An extension of this work to other periodic and two 

dimensional rough surfaces in polarization TM is to be 

considered for other materials and wave lengths. 
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