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Abstract: The great advancement in computer architecture and cache memory design and technology 
had a considerable influence on the way computer architecture was taught in universities. This 
requires students to be able to visualize the detailed activities that take place within a computer 
processor and its interaction with memory system. Computer simulators could effectively be used to 
enhance the understanding and comprehension of cache memory operation. The main objective of this 
project was to design and implement a computer simulator that was used as an educational tool. This 
paper presents design specifications, implementation and the functional and structural components of 
this simulator. This allows students understand the concepts and theory of the computer hardware 
topics by constructing and verifying knowledge, testing and comparing several different 
configurations and memory access. Although there was a large number of computer simulators in the 
market, this simulator differs in the way it contains a specially designed assembler that feeds the 
simulator with the binary code. In this context it was a tool that provides a high educational value that, 
on one hand, helps students learn to write an error-free assembly code and on the other hand 
comprehend the activities that take place during the execution of the program under different settings. 
At the front-end of the system there are two parts; the editor and the simulator while at the back-end 
there are the system specially developed assembler and database.  
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INTRODUCTION 
 

 Computer simulators are used in education to help 
students understand and comprehend specific topics in 
computer architecture. Some of these simulators 
concentrate on helping students understand assembly 
language programming, while others concentrate on 
general operation of computer and data transfer 
between computer main components. More advanced 
simulators are dedicated to specific more complicated 
issues like cache memory operations. Large number of 
computer simulators of different degrees of complexity 
is available in the market, some of them are offered for 
free while the use of others requires special licenses. 
Examples of available simple to moderate types of 
simulators include Historic Machine Simulators, Digital 
Logic Simulators, Theoretical Machine Simulators, 
Novice Hypothetical Machine Simulators and 
Intermediate Instruction Set Simulators. Other more 
sophisticated simulators include Advanced 
Microarchitecture Simulators, Multi-Processor 
Simulators (including Multi-Processor Interconnection 
Network Simulators), Memory and Operating System 
Simulators, Embedded Processor Simulators and 
Quantum Computer Simulators.  
 With the advent of recent computer architecture 
issues such as burst-mode cache, victim cache and more 
complicated cache coherency issues, multiprocessors, 
parallel processing and complicated processors’ 

architectures, the need for matching sophisticated 
simulators becomes more demanding. This is not for 
education issues only but for development and 
improvement reasons too. In the recent years, large-
scale distributed shared-memory (DSM) 
multiprocessors have emerged as a promising 
architecture to deliver high-performance computing 
power. However, to fully realize the potential 
performance of these systems, designers must solve two 
important and challenging problems. First, it is 
imperative that the cache coherence scheme for such 
systems be efficient, inexpensive and scalable. Second, 
it is necessary to develop efficient techniques to hide 
the large remote memory access latencies in such 
systems[1]. The cache coherence techniques used in 
existing commercially available multiprocessors are 
mainly hardware-based, such as a snoopy cache 
protocol[2] or a hardware directory-based scheme[3,4]. 
 However, in order to reduce the hardware 
complexity and/or increase the flexibility, many 
researchers have considered migrating the coherence 
protocol, or parts of it, to software[5-8]. Shared virtual 
memory (SVM) systems go even further by completely 
supporting the protocol mechanisms at the operating 
system or application level using the virtual memory 
system[9]. 
 Trace-driven simulation is often a cost-effective 
way to estimate the performance of computer system 
designs. Above all when designing caches, Translation-
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Lookaside Buffer (TLBs), or paging systems, trace-
driven simulation is a very popular way to study and 
evaluate computer architectures, obtaining an 
acceptable estimation of performance before a system is 
built[10]. 
 From the author experience teaching computer 
architecture courses for a period of more than fifteen 
years in different universities in the region he identified 
two main problems that students were finding difficult 
to comprehend more than others. This seemed to have 
been consistent over the years. The first problem is 
related to programming in assembly language and the 
efficient use of processor’s registers. The second 
problem is related to cache memory issues and 
operation such as mapping functions, write policies, 
replacement algorithms and cache coherence. This 
work is an attempt to develop a simulator that helps the 
students overcome these problems. This simulator is 
different from other available simulators in the market. 
It does not use memory traces but rather allows the user 
to enter his assembly program in an easy manner. The 
user then selects size of cache, mapping functions, write 
policies and replacement algorithm. The user can also 
select the speed at which the program runs so he/she 
can properly see how data are moved between different 
computer parts during execution and how the chosen 
settings affect execution efficiency. 

 
THEORY 

 
The theory of caching: The concept of the memory 
cache is simple. Data often moves from a slower 
medium, such as the file system, to a faster medium, 
such as main memory. Caching relies on the principle 
of locality of reference, that is, reading a datum predicts 
another read for the same datum in the near future. For�
example, if a browser requests an image on a Web page 
once, there will be a good chance that it will be 
requested again soon[11]. A cache does speed up the 
process of fetching a datum on subsequent requests by 
providing a faster medium.  
 As the processor usually runs very fast and is 
constantly reading information from the memory, it has 
to wait for the information to arrive because the 
memory access times are slower. A cache memory 
therefore is like a small temporary fast memory that the 
processor uses for information it is likely to need again 
in the very near future. All the 5th generation processors 
now have cache memory that is actually built into the 
processor itself.  
 
The purpose of cache memory: The processor is so 
much faster than other devices in the computer system 
and it has to spend a great deal of its time in waiting 
and this is a very inefficient use of the processor. This 
is mainly because of the slow memory access� and 
therefore, in order to reduce the wait time of the 

processor, memory access should be sped up. One way 
to achieve this is to reduce processor visits to main 
memory. This may be achieved by bringing the 
required data closer to the processor and this in turn is 
achieved by using the cache memory. 
 Looking at the relative speed-ups of CPUs and 
memories since 1980 we see that memory has increased 
in speed by a factor of about 4 while the CPUs by has 
increased by a factor of about 20000. The big 
mismatch, which continues to get even worse, means 
that CPUs are continually held back by slow memory. 
One obvious strategy that can help: if memory is too 
slow, don't use it too much. This strategy was used 
extensively in the early RISC processors which they 
often had hundreds of registers. The trouble with this 
technology is that it does nothing for instruction access. 
At least one memory access is required per instruction, 
in a pipelined processor, this means one per cycle.  
 A longstanding solution to this problem is the use 
of cache. Cache is a small block of high-speed memory 
(small enough to be affordable). The vast majority of 
references to instructions and data are local, that is, the 
next data item/instruction is usually close to the 
previous one. When a memory word is accessed, it will 
be searched first in the cache. If it is not there, a cache 
miss occurs and it has to read the word from the main 
memory through the cache.  
 Some methods, which are used to reduce the miss 
rate, increase complexity and consequently reduce 
speed. Therefore, in the tradeoffs between complexity 
and effectiveness, simplicity is much more favored by 
cache designers than virtual memory designers.  
 Figure 1 shows the relationship between main 
memory and a cache. Each slot in the cache can hold 
one block of contiguous memory words; a block is 
usually a specific number of main memory words (in 
Fig. 1 it is 3).  
 

 
Fig. 1: Main memory and cache 

 
 The cache memory is accessed not via a memory 
address as such, but by pattern matching on a tag stored 
in the cache. The tag is constructed from the main 
memory address and means that a block may be stored 
in a vacant slot in the cache. 
 
Mapping functions: Because there are fewer cache 
lines than main memory blocks, an algorithm is needed 
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for mapping main memory blocks into cache lines. 
Further, a means is needed to determine which main 
memory block currently occupies a cache line. The 
choice of the mapping function dictates how the cache 
is organized. Three techniques can be used: direct, 
associative and set associative[12].  
 
* Direct-mapped caches: This is the simplest 
mapping strategy. Each block of main memory can only 
map to a single slot in the cache. A simple example is 
shown in Fig. 2. The memory address is divided into 
three fields; the slot field, which is used to look up a 
particular slot in the cache, the tag field which is used 
to check if a particular block is in the cache and the 
word field which is used to identify the required word 
in the main memory[13].� 
 

 
Fig. 2: Direct mapped cache 

 
* Associative cache: The advantage of direct 
mapping is simplicity. However, it is inflexible and if 
two commonly-used blocks clash, it makes it very slow. 
This is because the need to keep swapping the two 
blocks in and out of cache. Associative mapping is the 
opposite extreme, i.e. any block of memory can map to 
any slot in the cache. This is illustrated in Fig. 3. It is 
obvious that apart from the word field, the remaining 
part of the address is used as a tag. There is no slot field 
because we do not actually lookup a particular slot. 
Associative cache is flexible, but expensive and/or slow 
since we need to simultaneously search all cache slots.  
 
* Set-Associative cache: This mapping function 
represents a compromise between the previous two. It 
combines the simplicity of the first and the flexibility of 
the second and is meant to allow each block of memory 
to occupy one of a small set of slots of cache (typically 
2 or 4). Figure 4 illustrates the basic idea with two-way 
mapping. Effectively, the main cache is divided into a 
number of smaller caches, each of which may contain a 
word or more properly a block from the main memory.  
 
Cache line replacement algorithms: When a new line 
is loaded into the cache, one of the existing lines may 
need to be replaced. In a direct mapped cache, the 
requested block can go in exactly one position and the 

block occupying that position must be replaced. In an 
associative cache the requested block can sit in any 
available cache slot[14]. 

 
Fig. 3: Fully-associative cache 
 

 
Fig. 4: Two-way set-associative cache 
 
 This means that all blocks are candidates for 
replacement. In a set associative cache, we must choose 
among the blocks in the selected set. Therefore a line 
replacement algorithm is needed which sets up well 
defined criteria upon which the replacement is made. A 
large number of algorithms are possible and many have 
been implemented. Four of the most common cache 
line replacement algorithms are� �Least Recently Used 
(LRU), First-In First-Out (FIFO), Least Frequently 
Used (LFU) and Random  
 
Cache write policies: Before a cache line can be 
replaced, it is necessary to determine if the line has 
been modified. The contents of the main memory block 
and the cache line that corresponds to that block are 
essentially copies of each other and should therefore 
hold the same� data. If cache line X has not been 
modified since its arrival in the cache, updating the 
corresponding main memory block is not required. On 
the other hand, if the cache line has been modified, the 
corresponding main memory block must be updated. 
Basically there are two different policies that can be 
employed to ensure that the cache and main memory 
contents remain identical. These are: write-through and 
write-back.� 
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* Write-through: Assuming a cache hit (a write 
hit); the information is written immediately to both the 
line in the cache and the block in the lower-level 
memory (with its normal wait-state delays). The 
advantages of this technique are that the contents of the 
main memory and the cache are always consistent. It is 
easy to implement and any read miss will never result 
in a write operation to main memory. On the other 
hand, the write through policy has a significant 
drawback. For every change in a cache line a main 
memory access is required and hence significantly 
degrades performance. In spite of this, most Intel 
microprocessors use a write-through cache policy.� 
 
* Write-back (sometimes called a posted write or 
copy back cache): On a cache hit, the information is 
written only to the line in the cache. This allows the 
processor to immediately resume processing. The 
modified cache line is written to main memory only 
when it is replaced. To reduce the frequency of writing 
back blocks on replacement, a dirty bit is commonly 
used. This status bit indicates whether the block is dirty 
(modified while in the cache) or clean (not modified). If 
it is clean the block is not written on a miss. The 
advantages of the write-back policy are that writes 
occur at the speed of the cache memory, multiple writes 
within a block require only one write to main memory, 
which results in less memory bandwidth usage. Write-
back is a faster alternative to the write-through policy 
but it has one major disadvantage that comes from the 
possibility of the contents of the cache and the main 
memory may not be consistent[15].  
 

SYSTEM SPECIFICATIONS 
 

 This simulator is used for educational purposes and 
therefore is not meant to be used as performance 
measure for design purposes. The main intention behind 
this work was to help students understand the main 
concepts of computer architecture. This includes an 
easy way to code an error-proof assembly language 
program, to see how the program runs and how data 
moves between different parts of the computer 
including the CPU registers, main memory and cache 
memory. It also includes a means to easily configure 
the cache settings, control the speed at which the 
program runs, pause and resume execution at any time 
and to run program at a step-by-step mode. The 
simulator would provide the results of execution and 
also log all the events taken place during execution and 
store that in a file. The user could select different 
settings for the same program and see the effect of 
selecting different combinations of cache size, mapping 
functions, write policies and replacement algorithms on 
the results in term of hit/miss ratio. The system 
specifications may be summarized as: 

* An easy to use assembly language editor. The user 
is not required to type-in instructions. The user is 
using the mouse to select an instruction group such 
as data movements, arithmetic and logic etc. The 
user then selects an instruction from the group. 
Depending on the instruction type, the valid set of 
operands that go with the instruction will be 
displayed and the user is prompted to select the 
required operands. If the instruction takes only one 
operand, the list of operands will be deactivated 
right after the selection of the first operand. If the 
instruction takes no operands at all, no list will be 
displayed and the user is prompted for the next 
instruction. This insures that only the right 
instruction syntax will be allowed. This is of an 
additional educational value too as it teaches the 
users of common mistakes they usually commit. 

* The user is not to worry about address allocation, 
main memory and stack allocations. 

* Once a program is complete and assembled, the 
user is prompted for more choices. These include 
the size of main memory block (or cache line size), 
the mapping function, replacement algorithm (if 
applicable) and write policy. The user is also to 
select the speed of running to suite his/her 
capability of following up data movement. If the 
execution is too slow or too fast to follow, the user 
can stop the execution, adjust the speed and run 
again. This may be repeated a few times until the 
user convenient speed is reached. The user can also 
select a step-by-step execution instead of 
continuous running. 

* The user is able to easily watch the cache operation 
and how and when cache hits and misses occur. 

* The system logs all the events taken place during 
the execution of a program and stores that in a file 
that is available to the user to examine at any later 
time. 

* The result of execution in terms of hits per misses 
ratio is provided.  

 
SYSTEM DESIGN AND IMPLEMENTATION 

 
 The system is architected to have four 
functionally-related and loosely coupled units. These 
units are the keypad editor, the assembler, the database 
and the simulator. The state chart of the system is 
shown in Fig. 5. 
 The keypad editor is used to enter assembly 
language programs. The mnemonics of instructions are 
immediately stored in the database line-by-line and at 
the same time it is displayed on the right-side of the 
editor. When the program is completely keyed-in, it is 
assembled by the assembler and stored in binary 
(executable) form in the database. The simulator loads 
the assembled program in its executable form and runs 
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it according to the configuration set by the user. After 
execution, the simulator stores a log file in the database. 
This file contains details of all events took place during 
the execution. In the following subsections, we will be 
describing these units in a bit more details. 
 
The keypad editor: The user does not need to 
remember instructions nor has to remember the right 
format of writing instructions. Instructions are supplied 
and the user needs only to select the required 
instruction. If the user enters a wrong instruction 
format, the system will reject it. Only legal instruction 
format is accepted by the system. For example, if the 
user enters only one operand for an instruction that 
takes two operands, the system will not allow him/her 
to continue with the next instruction and so forth. As 
the number of available instructions is too large to fit in 
the limited space of the editor, these instructions are 
divided into five groups: 
* Data transfer group. 
* Arithmetic and logical group. 
* String manipulation group. 
* Control transfer. 
 Processor control group. 
 The operation of the keypad editor is shown in the 
state chart of Fig. 6.  
 Once the system is started, the user is prompted to 
select an instruction set group, one from the groups list 
stated above. All instructions from the selected group 
will be displayed. When selects an instruction, the user 
will be prompted for the exact number of operands that 
are required by the instruction. Every instruction keyed-
in will be automatically displayed on the main display. 
The system determines the length of the current 
instruction and hence calculates the start of the next 
instruction. Figure 7 shows a screen shot of the keypad 
editor when the control transfer instruction group is 
selected. It is useful to mention here that if other group 
is selected only the instructions within that group will 
be displayed. Figure 8 is another screen shot of the 
main display where the mnemonics of instructions are 
displayed. When the program is completely entered, it 
will be moved to the assembler where it is converted to 
binary, all links are resolved and then is converted to an 
executable form. In the next subsection we will be 
briefly talking about the assembler.  
 
The assembler: There are a large number of 
commercially available assemblers, many of them are 
offered for free. The problem with these assemblers is 
the platform dependency, that is, they generate code 
plus extra information that is suitable to the underlying 
software and hardware. For the purpose of this 
simulator, this extra information will create problems.  
 In order to provide the pure binary code for the 
simulator we had to choose between two solutions. The 
first is to use one of the available assemblers and 
perform clean up operation on the generated code. The 
second is to develop our own assembler. Although the 

second choice needed hard work to accomplish but 
nevertheless it always generates the clean code that the 
first choice would not guarantee. This assembler, which 
is regarded as one major part of this work is based on 
Intel x86 processors. The Intel processors are used in 
the majority of PCs and are also the subject in a great 
number of computer architecture textbooks.  

 
Fig. 5: The system state chart 

 

 
Fig. 6: The keypad state chart 
 

 
Fig. 7: Control transfer instruction group 
 
This assembler is good for programs written for all x86 
processors  from  80286  to  Pentium  4.  The  user can 
code  programs  using 8-bit, 16-bit and/or 32-bit 
registers. 
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The Database: As described in the previous subsection 
regarding the specially developed assembler, a database 
is required for assembling purposes, that is, converting 
assembly language programs to binary executable 
forms. Programs and log files are also stored. The user 
can at any time delete these files. However, the 
database conversion tables are inaccessible by the users 
and can not be altered or modified by them. 
The simulator: The simulator contains a variety of 
displays, functionalities and controls. Figure 9 shows a 
block diagram of the simulator part. The main memory 
displays the binary program in hexadecimal values. At 
the start of execution, the user is asked to select the size 
of the main memory block which is the same size o the 
cache line. This is used in matching calculations 
between the main memory and the cache. Before 
running the program, the user has to select the mapping 
algorithm and the write policy. The program may be 
run in normal mode or in a step-by-step fashion. In 
normal mode, the user may pause and resume execution 
at any time. The user may also select the speed of 
running so he/she can comfortably see the transfer of 
data between processor, cache and main memory. This 
is displayed as a dynamic flowchart as seen in Fig. 10. 
The current action is displayed in red so the user can 
easily follow the program execution. On the other hand, 
the user may prefer to run the program in single steps. 
This gives more time to the user to see how the 
program runs and how data is moved. The execution 
controls are shown in Fig. 11. A log window that 
displays the actions taken to run the program is also 
given. This gives the user a detailed textual description 
of what has happened during the execution of the 
program. This is shown in Fig. 12.  
 The principle operation of this tool is as follows. 
The CPU fetches the first instruction from the main 
memory and put it the cache. Normally, the CPU brings 
more than one instruction so next time it does not need 
to go to the main memory. Next, the CPU reads from 
the cache and if the instruction or data requested is 
available in the cache it will take it from there. This 
represents a hit operation. On the other hand if the 
requested instruction or data is not in the cache, the 
CPU will bring another block from the main memory 
and put it in the cache. This represents a miss operation. 
 The cache replacement is dependant on the 
selected mapping function. If the Direct mapping is 
selected, there will be no choice as this is a one-to-one 
mapping technique. This means that each word in the 
main memory should sit in a specific place in the cache 
and if this place is occupied it will be overwritten. If the 
2-Way Associative mapping is used, for instance, there 
will be two possible places in the cache for each word 
in the main memory. If one of them is occupied, the 
second one is used. If both of them are occupied, one of 
these positions will be overwritten. The replacement 
will be carried out according to the selected 

replacement algorithm. The available replacement 
algorithms are stated in a previous section of this 
article. 
 The CPU normally operates on the data in the 
cache and may or may not change it. If no change takes 
place, this will cause no problem when the data in the 
cache is replaced. However, if the data in the cache is 
changed, this will result in two different values for the 
same variable, one in the main memory and the other in  

 
Fig. 8: The program editor 
 

Fig. 9: The simulator block diagram 
 
the cache. This discrepancy in values must be resolved 
in order to avoid potential problems.  
 The way the CPU resolves this problem depends 
on the user selection of write policy. If write through 
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was selected, any change in data in the cache is 
reflected in the main memory immediately. This might 
create traffic overhead on the system busses but is 
necessary if the main memory is used by more than one 
processor or another input/output device such as the 
DMA. However, if the write back policy was selected, 
the change in the memory is only done when the 
changed data in the cache is replaced. This reduces the 
traffic overhead but may create the risk of data 
inconsistency.  

 
Fig. 10: The dynamic flowchart of the simulator 
 

 
Fig. 11: Program execution controls 
 

 
Fig. 12: Action logging window 

 

CONCLUSION 
 
 The purpose of this work was to develop an 
educational tool to help describing the main 
architectural concepts of a computer system. This tool 
is of a great help to computer engineering and computer 
science students who study the computing systems or 
computer architecture and organization courses. 
 A large number of computer simulators of different 
degrees of complexity is available. Examples of 
available simulators include Digital Logic Simulators, 
Theoretical Machine Simulators, Intermediate 
Instruction Set Simulators, Advanced Microarchitecture 
Simulators and Multi-Processor Simulators (including 
Multi-Processor Interconnection Network Simulators). 
Trace-driven simulation is often a cost-effective way to 
estimate the performance of computer system designs. 
It is a very popular way to study and evaluate computer 
architectures, obtaining an acceptable estimation of 
performance before a system is built. Simulators of this 
type usually require memory traces in special text 
format to operate. 
 From the author experience teaching computer 
architecture courses for many years, two main problems 
were identified where students find difficult to 
comprehend more than others. These problems seemed 
to have been consistent over the years. The first 
problem is related to the difficulties of programming in 
assembly language and the inefficient use of 
processor’s registers. The second problem is related to 
cache memory issues and operation such as mapping 
functions, write policies, replacement algorithms and 
cache coherence. 
 A computer simulator was developed to address 
these two issues. The simulator is equipped with easy-
to-use graphical user interface. It contains an Intel-
based assembly language programming editor that 
allows the user to select instructions rather than typing 
them. The total number of instructions is rather big and 
therefore any attempt to display all the available 
instructions on one screen makes it very difficult for the 
user to use. Instead, instructions are divided into 
functionally related groups. Once a group is selected, 
all the instructions within that group will be displayed. 
The editor automatically determines the number of 
operands needed for each particular instruction and will 
not allow an illegal instruction format to be entered. 
This, in fact, serves as a programming educator and it 
is, in this context, representing a valuable educational 
tool. Memory allocation and addressing is 
automatically dealt with by the system. Programs' files 
are stored in the database in two formats, the source 
(mnemonics) and in binary executable forms too. A 
specially designed assembler is used. The reason for 
that is no commercially available assembler would 
generate the pure binary code that is understood by the 
simulator.  
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 Once a program is coded and assembled, a second 
user interface will be displayed. This screen contains all 
the controls that allow the user to define the simulator 
settings. This includes memory block size, cache size, 
mapping function, write policy and replacement 
algorithm. It also includes the execution modes. Two 
modes are available the first mode is the normal mode 
where the user can pause and resume at any time as 
well as controlling the speed of execution. A flowchart 
that dynamically shows the movement of data between 
processor, cache and main memory is provided. The 
screen also shows displays of the current contents of the 
main memory, cache memory and CPU registers. A 
window that logs all events during program execution is 
also provided. 
 Although this tool represents a great help to users, 
it still has a room for more changes and improvements. 
This simulator does not provide the full set of 
instructions and does not allow entering more 
complicated programs. Future work can improve the 
simulator to cover the full set of instructions and more 
complicated combination of these. Also, the simulator 
can be improved to cover more complex issues of cache 
memory such as burst-mode cache, victim cache and 
more complicated cache coherency issues. 
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