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Abstract: The existence of many large transactions disteibutatabases with high data schemas, the
centralized approach for mining association rulessuch databases will not be feasible. Some
distributed algorithms have been developed [FDM,],Gut none of them have considered the
problem of data skews in distributed mining of @&sstion rules. The skewness of datasets reduces the
workload balancing between processors involved igtriduted mining of association rules. It is
important to invent an efficient approach for dimited mining of association rules which have the
ability to generate homogeneous partitions of thwles data sets; hence the supports of most large
item sets are distributed evenly across the procgs$Ve proposed an efficient stratified sampling
based partitioned technique, which generate honemgen partitions on which processors works in
parallel and generate their local concepts appratéiy simultaneously.
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INTRODUCTION that containAB. This is taken to be the probabilify,
o N . . _ (ALB).
Association rule  mining finds interesting The ruleA =>B has confidence in the transaction

associative or correlative relationships amongrgela set D if ¢ is the percentage of transactions in D

set of data items. The problem was formulatedcontaining A that also contain B. This is takerbeothe
originally in the context of transaction data aeth .4ditional probabilityP (B/A) That is:
supermarket.

This market basket data consisst of _transactlo_n§uploort (A =>B) = P(AUB)

made by each customer. Each transaction contains

items bought by thg customer. The goal_ is to sdleeif confidence (A =>B) = P(B/A)
occurrence of certain items in a transaction candss
to deduce occurrence of other items or in otherdgior Rul that i both - ¢
to find associative relationships between itemsuih h hu ﬁjs at sa |sfyd oth a minimum f_(sjuppor
interesting relationships are found, then theylpaput ~ threshold (min_sup) and a minimum confidence
to various profitable uses such as self m(,;m(,j‘gementlljreshold(mln_con)‘ are called strong. An utmost that

inventory management, etc. Thus association ruée w contain k items is &-item setsThe set, {bread, butter}
borr. is a 2-item set. The occurrence frequency of amstd

Letl = { Iylp overnnnn.. 4} be a set of items. Let is the number of transactions that contain the gttm
D, be a set of database transactions where eachis is also known as frequency of support count. A
transactionT is a set of items such that[T |. Each itemset satisfies minimum support, if the occureenc

transaction is associated with an identifier, chlleID  frequency of the utmost is greater than or equahéo
(transaction identity). product of min_sup and the total number of tranieast

Let A be a set of items. A transactidnis said to in D. If an item set satisfies minimum support,rthieis
contain A if and only ifA 0 T. An association rule is an a frequent item set. The set of frequent k-itens see
implication of the form A =>B, where Al I, B 71 and commonly denoted by, Association rule mining is a
ANB=/. two-step process. Find all frequent itemsets and

The ruleA =>B holds in the transaction sBtwith ~ generate strong association rules from the frequent
suppors, wheres is the percentage of transactionDin  itemsets.
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1. F,= {frequent 1-itemsets}; (i.e., Item set of size or_1e) that satisfy the mumm
2. for(k=2;Fu; =0 k++){ support requirement. During pds_sthe algorlth_m finds
3. Cp=apriori_gen (Fys) th_e set of frequent |temseft-'§ of sizek that satisfy the
A forall tl'ansgctionst e T{ minimum  support requirement. The algorithm
' g . terminates whetfr, has satisfied the minimum support
5. subset (G ) requirement. The algorithm terminates whég is
6. empty. In each pass, the algorithm first gener@idbe
7. Fx=1{c € Cy | c.count = minsup} candidate itemsets of sikeFunctionapriori_gen (F.)
8.} constructsC, by extending frequent itemsets of size k —
9. Answer=|JF, 1. This ensures that all the subsets of kizel of a new
candidate itemset are if,;. Once the candidate
Fig.1: Apriori Algorithm itemsets are found, their frequencies are compbted

counting how many transactions contain these
In this study, we concentrate on the most timecandidate itemsets. _ o
consuming process, which is the discovery of fratue Finally, Fy is generated by pruning, to eliminate
item set. The first algorithm that handled the peabof  itemsets with frequencies smaller than the minimum

generatiog of the frequent item set was #riori  support. The union of the frequent itemsétsE, is the
algorithnt?. This algorithm used a very fundamental frequent itemsets from which we generate assodiatio
property for the support of item sets: An itemaksize  ryles.

k can meet the minimum level of support only if @l Computing the counts of the candidate itemsets is

itS.SUbsetS also meet the mlnlmum level of Supportthe most Computaﬂona”y expensive Steps of the
This property used to systematically prune the cear algorithm.

space of desired itemsets, by increasing the lenfjth

the itemsets being discovered. In an iteration Ik, a Parallel and Distributed Mining: The Count
candidate k-itemsets are formed such that allkt$)( Distribution (CD) algorithm is a simple data
subsets are frequent. The numbers of occurrences phrallelization algorithm. The database D is positid
these candidates are then counted in the traneactidnorizontally intoD1, D2..Dnand distributed across n
database. Efficient data structures are used tmnper processorsP; (1< i< n). It uses sequential Apriori
the fast counting. Since its conception, many atheralgorithms on each partition. The CD algorithm’sima
algorithn?*® have emerged that improve upon theadvantage is that it does not exchange data tuples
runtime, 1/0 and scalability performance of the iapir ~ between processors, it only exchange counts. Ifirste
algorithm by various efficient means of pruning thedatabase scan, each processor generates its local

itemset search space and counting the candidaf@ndidate itemsets depending on the items presetst i
occurrences in large databases. local partition. The algorithm obtains global sugpo

gpunts by exchanging local support count with #ileo
ocessors. The algorithm communication overhead is
(Ic|- n) at each phase, where |c| and n ardzbeok

We assume that the database is a transaction
database with high data skewness. The databa
consists of the huge amount of transaction receratsh candidate itemsets and the number of data sets
with a transaction identifier (TID) and a set oftala respectively '

items. The data mining in such databases requires™ o carchers proposed FDM (Fast Distributed
substantial processing power and parallel system is _ .. . : . "
c;Vlmlng) algorithms to mine association rules from

possible solution. This observation motivates us td' ibuted dataset itioned Jifferetaddi
study efficient parallel algorithms for mining IStributed datasets partiioned among difieretessl

association rules in large databases. The dataisase’At €ach site, FDMK find the local support countsian
partitioned ‘horizontally’ (i.e., grouped by transans) ~ Prunes Iopally in frequent itemsets. After com.pigtll
and each partiton generated by usirsratified local pruning, each site broadcasts messages comgai
sampling to select a sample of transactions for adll the remaining candidate sets to all other sites
partition. Allocate these partitions to the processof ~ collect their support counts. It then decides wéeth
sites in distributed system which communicates avia locally large itemsets are globally large and gatesr the
fast network. It has been well known that the majmst ~ candidate itemsets from those globally large itésase

of mining association rules is the computationhaf $et The FDM’'s main advantages over CD is that it
of large itemsets (i.e. Frequently occurring sefs oreduces the communication overhead to Q. ([e),
items) in the database. An itemset (a set of itei;is) Where |g| and n are number of large itemsets and the
large if the percentage of transactions that caimigiall ~number of sites. FDM generates fewer candidate

these items is greater than a given threshold. itemsets compared to CD, when the number of disjoin
candidate itemsets among various sites is large.
Sequential Mining of Association Rules: However, we can achieve this when different sitageh

A priori Algorithm: The Apriori algorithmconsists of  non homogenous data sets. The FDM's message
a number of passes Initially,; Eontains all the items optimization technique requires some functions to
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determine the polling site, which could cause extra In this case, distributed pruning will generate 7
computational cost when each site has numerous$ locaizes-2 candidates, namely AB, AC, AD, BC, BD, CD
frequent itemsets. and EF, while the CD will have 15 candidates. Thus
All of the parallel approaches optimize message tdlistributed pruning to be very effective, but most
reduce communication costs, but none of the parallgglobally large itemsets are locally large only at
algorithm has considered the problem of partitionedorocessorl, hence have lower high workload balance.
database with high data schemas. Whenever, the For example Table2 shows an example of low data
partitioned database with high data skews increaseskews and high workload balance. The support counts
computational cost and reduces workload balancing oof items A, B, C, D, E and F are almost equally
processors and hence in such situation a parallgfistributed over three processors. Hence the daas
algorithm works look likes a sequential. Hence with  gre Jow. On the other hand the workload balance is
consideration of problems with data schemas, wét canpigh, pecause the number of locally large itemgets
achie_ve the advantages of parallelization of a mgni oach processor is almost the same. In this catie (id
algorithm. . and distributed pruning will generate the same 15
: F_’roposed_qlgonthm, WBDM (Workload Balanced . jiq4te sets; however, global pruning can pruwaya
Distributed Mining) deals with the problem of data he three candidates AC, AE and CE. Hence FPM still

skews_ and workload b?‘!a“C'”g by using a stratifie as 20% of improvement over CD in the case of Low
sampling method to partition the database. .
data skews and high workload balance.

Data Skewness and Workload Balance: A partioned . . - . -
database has high data skewness if mostpglobagye la Stratified Sampling Based Partitions: With stratified
itemsets are locally large only at a very few (ians. random sampling, the whole database is divided anto

It is low if most globally large itemsets are Idgdarge ~ NUmber of parts or ‘strata’ according to some
evenly across the processors. When the clustering &gharacteristic. Simple random samples are themtseele
different large itemsets distributed evenly acrttss ~ from each stratum. The same proportion will be
processors; hence each processor would have similgelected within each stratum, making the sample a
numbers of locally large itemsets. This caseproportionate stratified random sample. Stratified
characterizes as high workload balance. When thsampling can be used as a data partition technigue,
clustering of different large itemsets concentrateda  allows a high skewed data set can be partitioned as
few processors; hence some processes would hav®mogeneous portions

much more locally large itemsets than the othetss T Let DB be a database wifd transactions. Assume

is a case of low workload balance. When the clirsfer that there isN processors;, P,... By in a distributed

of different large itemsets distributed not eveatyoss environment. The database divided iht@tratumDB,,

the processors, then the pruning effects would b&g,.... DB, each withD/N transactions.

reduce_d significantly and the work of computing the Simple random sampleS, ; (j=1..N), each with
large itemsets would be concentrated on a fewyN? transactions selected from each stratiB
processors which is a very troublesome issue dligar (i=1..N). Thus N partition®S, with homogeneous data

computation. _of size DI (D/N) for i=1..N, can be generated as:
For example Table 1 shows an example of high

data skews and low workload balance. The globab _
threshold is 15 and the local support thresholdaat S$=S1 U Sa-U Sneam
processor is 5.

Such that:

Table 1: High Data Skewness and Low WorkloadDS, J DS ......] |J DS, =DB and

Balance Case DS DS ....... NnDSN=¢
ltems A B c D E F Maps these N partitionBS ( i=1..N) to processorB,
Local support 13 33 12 34 2 1 (i=1..N) respectively.
at proc-1
;? g?cl)s_uzpport ! 3 1 2 1 4 Table 2: Low Data Skewness and High Workload
Local support 2 1 2 1 12 33 Balance Case
at proc-3 Items A B C D E F
Global support 16 37 15 37 15 38 Local support at proc-1 6 12 4 13 5 12
Globally large \ S N x x Local supportatproc-2 6 12 5 12 4 13
at proc-1 Local support at proc-3 4 13 6 12 6 13
Globally large  x x x X x x Global support 16 37 15 37 15 38
at proc- 2 Globally large at proc-1 v v x S \/
Globally large  x x x x A \ Globally large at proc-2 N v+ vooox A
at proc-3 Globally large at proc-3  x NN W
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In this technique the database of dixés divided

for(j=1toN)

into N mutually disjoint parts called strata, each oésiz {
DIN, a stratified sampling partition can be generdted DS j =random sample from DBf size DIN

obtaining a simple random sample of si@@N) /N
(=D/N?) from each stratum and N samples of iz
makes a sample of sizB/N (= (D/N°) *N) with
homogeneous data. This helps to ensure

}
DS =DSy U DS U

X

representative sample, especially when the data are

skewed.

Distributed Approach for Generating Frequent
Itemsets: Let the size of partition®B; be D; (=D/N)

for i=1..N. Let X. supandX. spybe the support counts

of an item setX in DB andDS, respectivelyX.supis
called global support count anflsup is called local
support count oX at processobP;. for a given minimum
support threshold, X is globally the largest iX.sup>
sxD and X is locally large &®; if X.sup> sxDS.

Notations:

D Number of transactions in DB

s  Support threshold min-sup

Ly Globally large k-itemsets

C ( Candidate sets generated frogg L
X.sup Global support count of X

Lig Locally large k-itemsets a§ S

X.sup Local support count of X at S
CGy Candidate sets generated frogl
Ti(j) Data structure to maintain the item set laitt
support count at the site i jth iteration

D; Number of transactions in PS

//Phase-11: Generation of frequent itemsets:

if k=1 then
Tie )= get_local_count ( DSg, 1)
else

{
CGw = |J' caik)

= UiN:1 Apriory _ger(GLi(k - 1);
Tig= get_local_count ( DSCG ), i);

for_all X O Tig do

if X. Sunz s x D/N then
forj=1to N do

if polling_site ( X ) = Pthen
insert <X, X. sup into LL;j ;

forj=1, ..... , N do

Send LL j « to processor P
forj=1, ..... , N do

{

Receive Ll;,j(k) )
for_all xa LLiyj ® do

There is an important relationship between largejf x LP, then

itemsets and the partitions in allocating to distted

Insert X into LR ;

system: every globally large itemsets must be lpcal ypdate X. large_processors ;

large at some partitionBS. If an itemset X is both

globally large and locally large at a partitid®i, X is
called gl_large abS. Notice that at each partitiddS,

if a candidate seXOCGy, is not locally large at

partition DS , there is no need fddS to find out its
global support count to determine whether it ishglty

the largest. This is because in this case, eithds X

small (not globally large). Or it will be locallyatge at

for_all xa LPi(k) do
send_polling_request (X);
reply_polling_request (J);
for_aII X O LPi(k) do

{

some other partitioDS and hence only the partition receive X.supfrom the processors P
DS at whichX is locally large needed to be responsiblewhere PjC] X. large_processors;

to find the global support count of X. In the prepd

X.sup = X.sup+ X. sup..... + X. Supy;

approach since each processor has homogeneous datgx. sup= S * D then
hence generate approximately equal number of kcall insert X into Gi(k) ;

large itemsets simultaneously.

Workload Balanced Distributed Algorithm:
/[Phase-l : Generation of homogeneous partitions:

Partition the database DB into N partitions;B= 1,
2. N) each of size D/N

for(i=1toN)

{

}
broadcast ¢, ;

receive Gy, from all processors;g # i);
L = ", Gi(k).

Divide L ¢ MO GLi (k), (i=1,..., N);
return L(k)

Explanation of Algorithm:
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Phasel creat® (N is the no. of processors i.e. And let processorsPi (i=1..N) takes, T time to
Sites) homogeneous partitions from the large higltalculate support counts in allocating partitiohef on
skew database. the proposed distributed approach each processtswo
on homogeneous partitions (have equal number of
locally large itemsets), hence each processqr P
performed their processing at same tifvi for i=1..N.

Now since no any other distributed approach has
considered a homogeneous partition technique of a
database with high skins, hence must be most of
globally large itemsets are locally large only awf
processors. Thus the time required for processiramny
other distributed approaches like Count Distribaitio

finds out all locally largek-itemsetsand group (CD), Fast Distributed Algorithm (FDM) equal to Max

them according to their polling sites. Finally, it (Ti, i=1..N), which will be greater thai/N.
sends the candidate sets with their local support
counts to their polling sites.

Home Site: Generate Candidate Sets and
Submit Them to Polling Sites: In the first
iteration, the site§ calls get_local_countto scan
the partitionDS once and store the local support
counts of all the 1-itemsets found in the arfay.

At the k-th (for k>1) iteration,S first computes the
set of candidate set @& and then scam§ to
build the hash tre&y, containing the local support
counts of all the sets iGBGy, by traversingTiy, S

CONCLUSION

Polling Site: Receive Candidate Sets And Send _ We considered the problem .of mining_ frequent
Polling Requests As a polling site, the sit& |temsets on a shared—nothing mgltlprocessor
receives candidate sets from the other sites an@nVironment on which data has been partitionedysacr
insert them inLPg, For each candidate st (] the nodes, by using stratified randpm .sampling. An
LPw, S stores all its “home “ sites irX. advantage of sampling for data partition is that ¢bst
large_sites which contains all those sites from Of obtaining a sample is propositional to the siz¢he
which X is sent to Sfor polling. In order to Sample, S, rather than the size of the datasetStier
perform count exchange forX, § calls data partition techniques can require at least one
send_polling_requesb sendX to those sites not in complete pass through D. This algorithm also attsmp
the list X. large_sitesto collect the remaining to  minimize = communication by  allocating
support counts. homogeneous partitions to each processor.
This algorithm is more efficient to mining frequen

Remote Site: Return Support Countsto Polling  itemsets for those databases, whose size is veyg la
Site: When § receives polling requests from the and have high data skewness. Any parallel algorithm
other sites, it acts as a remote site. For eaclyorking on database with high data skews could not
candidate set¥ it receives from a polling site, it achieve the advantages of parallel processing,useca
retrievesY. supfrom the hash tre®,) and returns  most globally large itemsets clustered on few
it to the polling site. processors. The stratified random sampling used as

partitioning approach balanced work load on each

Polling Site: Receive Support Counts and Find 5065507 in a distributed environment.

Large Itemsets. As a polling siteS receives local
support counts for the candidate sets Lify).
Following that it computes the global support
counts of all these candidate set and find out th
globally large itemsets among them. These globally
largek-itemsetsare stored in the s@l . Finally,

S broadcasts the s&fy, to all the other sites.
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