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Abstract: The existence of many large transactions distributed databases with high data schemas, the 
centralized approach for mining association rules in such databases will not be feasible. Some 
distributed algorithms have been developed [FDM, CD], but none of them have considered the 
problem of data skews in distributed mining of association rules. The skewness of datasets reduces the 
workload balancing between processors involved in distributed mining of association rules. It is 
important to invent an efficient approach for distributed mining of association rules which have the 
ability to generate homogeneous partitions of the whole data sets; hence the supports of most large 
item sets are distributed evenly across the processors. We proposed an efficient stratified sampling 
based partitioned technique, which generate homogeneous partitions on which processors works in 
parallel and generate their local concepts approximately simultaneously. 
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INTRODUCTION 

 
 Association rule mining finds interesting 
associative or correlative relationships among a large 
set of data items. The problem was formulated 
originally in the context of transaction data at the 
supermarket.  
 This market basket data consisst of transactions 
made by each customer. Each transaction contains 
items bought by the customer. The goal is to see if the 
occurrence of certain items in a transaction can be used 
to deduce occurrence of other items or in other words, 
to find associative relationships between items. If such 
interesting relationships are found, then they can be put 
to various profitable uses such as self management, 
inventory management, etc. Thus association rules were 
born[1]. 
 Let I = {  I1,I2, …………,Im} be a set of items. Let 
D, be a set of database transactions where each 
transaction T is a set of items such that T ⊆ I. Each 
transaction is associated with an identifier, called T_ID 
(transaction identity).  
 Let A be a set of items. A transaction T is said to 
contain A if and only if A ⊆ T. An association rule is an 
implication of the form A =>B, where A ⊂ I, B ⊂ I and 
A ∩ B=∅. 
 The rule A =>B holds in the transaction set D with 
supports, where s is the percentage of transactions in D 

that contain A∪B. This is taken to be the probability, P 
(A∪B). 
 The rule A =>B has confidence c in the transaction 
set D if c is the percentage of transactions in D 
containing A that also contain B. This is taken to be the 
conditional probability, P (B/A). That is:  
 
support (A =>B) = P(A∪B) 
 
confidence (A =>B) = P(B/A) 
 
 Rules that satisfy both a minimum support 
threshold (min_sup) and a minimum confidence 
threshold (min_conf) are called strong. An utmost that 
contain k items is a k-item sets. The set, {bread, butter} 
is a 2-item set. The occurrence frequency of an itemset 
is the number of transactions that contain the itemset. 
This is also known as frequency of support count. An 
itemset satisfies minimum support, if the occurrence 
frequency of the utmost is greater than or equal to the 
product of min_sup and the total number of transactions 
in D. If an item set satisfies minimum support, then it is 
a frequent item set. The set of frequent k-item sets are 
commonly denoted by Lk. Association rule mining is a 
two-step process. Find all frequent itemsets and 
generate strong association rules from the frequent 
itemsets. 
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Fig.1: Apriori Algorithm 
 
 In this study, we concentrate on the most time 
consuming process, which is the discovery of frequent 
item set. The first algorithm that handled the problem of 
generation of the frequent item set was the Apriori 
algorithm[2]. This algorithm used a very fundamental 
property for the support of item sets: An item set of size 
k can meet the minimum level of support only if all of 
its subsets also meet the minimum level of support. 
This property used to systematically prune the search 
space of desired itemsets, by increasing the length of 
the itemsets being discovered. In an iteration k, all 
candidate k-itemsets are formed such that all its (k-1) 
subsets are frequent. The numbers of occurrences of 
these candidates are then counted in the transaction 
database. Efficient data structures are used to perform 
the fast counting. Since its conception, many others 
algorithm[3-10] have emerged that improve upon the 
runtime, I/O and scalability performance of the Apriori 
algorithm by various efficient means of pruning the 
itemset search space and counting the candidate 
occurrences in large databases.  
 We assume that the database is a transactional 
database with high data skewness. The database 
consists of the huge amount of transaction records, each 
with a transaction identifier (TID) and a set of data 
items. The data mining in such databases requires 
substantial processing power and parallel system is a 
possible solution. This observation motivates us to 
study efficient parallel algorithms for mining 
association rules in large databases. The database is 
partitioned ‘horizontally’ (i.e., grouped by transactions) 
and each partition generated by using stratified 
sampling to select a sample of transactions for a 
partition. Allocate these partitions to the processors of 
sites in distributed system which communicates via a 
fast network. It has been well known that the major cost 
of mining association rules is the computation of the set 
of large itemsets (i.e. Frequently occurring sets of 
items) in the database. An itemset (a set of items) is 
large if the percentage of transactions that containing all 
these items is greater than a given threshold.  
 
Sequential Mining of Association Rules: 
A priori Algorithm: The Apriori algorithm consists of 
a number of passes Initially F1 contains all the items 

(i.e., Item set of size one) that satisfy the minimum 
support requirement. During pass k, the algorithm finds 
the set of frequent itemsets Fk of size k that satisfy the 
minimum support requirement. The algorithm 
terminates when Fk has satisfied the minimum support 
requirement. The algorithm terminates when Fk is 
empty. In each pass, the algorithm first generates Ck the 
candidate itemsets of size k. Function apriori_gen (Fk-1) 
constructs Ck by extending frequent itemsets of size k – 
1. This ensures that all the subsets of size k – 1 of a new 
candidate itemset are in Fk–1. Once the candidate 
itemsets are found, their frequencies are computed by 
counting how many transactions contain these 
candidate itemsets. 
 Finally, Fk is generated by pruning Ck to eliminate 
itemsets with frequencies smaller than the minimum 

support. The union of the frequent itemsets, ∪ Fk, is the 
frequent itemsets from which we generate association 
rules. 
 Computing the counts of the candidate itemsets is 
the most computationally expensive steps of the 
algorithm.  
 
Parallel and Distributed Mining: The Count 
Distribution (CD) algorithm is a simple data 
parallelization algorithm. The database D is positioned 
horizontally into D1, D2..Dn and distributed across n 
processors Pi (1≤ i≤ n). It uses sequential Apriori 
algorithms on each partition. The CD algorithm’s main 
advantage is that it does not exchange data tuples 
between processors, it only exchange counts. In the first 
database scan, each processor generates its local 
candidate itemsets depending on the items present in its 
local partition. The algorithm obtains global support 
counts by exchanging local support count with all other 
processors. The algorithm communication overhead is 
O (|c|. n) at each phase, where |c| and n are the size of 
candidate itemsets and the number of data sets, 
respectively. 
 Researchers proposed FDM (Fast Distributed 
Mining) algorithms to mine association rules from 
distributed datasets partitioned among different sites[8]. 
At each site, FDMK find the local support counts and 
prunes locally in frequent itemsets. After completing 
local pruning, each site broadcasts messages containing 
all the remaining candidate sets to all other sites to 
collect their support counts. It then decides whether 
locally large itemsets are globally large and generates the 
candidate itemsets from those globally large itemsets. 
 The FDM’s main advantages over CD is that it 
reduces the communication overhead to O (|cp|. n), 
where |cp| and n are number of large itemsets and the 
number of sites. FDM generates fewer candidate 
itemsets compared to CD, when the number of disjoint 
candidate itemsets among various sites is large. 
However, we can achieve this when different sites have 
non homogenous data sets. The FDM’s message 
optimization technique requires some functions to 
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determine the polling site, which could cause extra 
computational cost when each site has numerous local 
frequent itemsets. 
 All of the parallel approaches optimize message to 
reduce communication costs, but none of the parallel 
algorithm has considered the problem of partitioned 
database with high data schemas. Whenever, the 
partitioned database with high data skews increases 
computational cost and reduces workload balancing of 
processors and hence in such situation a parallel 
algorithm works look likes a sequential. Hence without 
consideration of problems with data schemas, we can’t 
achieve the advantages of parallelization of a mining 
algorithm.  
 Proposed algorithm, WBDM (Workload Balanced 
Distributed Mining) deals with the problem of data 
skews and workload balancing by using a stratified 
sampling method to partition the database. 
 
Data Skewness and Workload Balance: A partioned 
database has high data skewness if most globally large 
itemsets are locally large only at a very few partitions. 
It is low if most globally large itemsets are locally large 
evenly across the processors. When the clustering of 
different large itemsets distributed evenly across the 
processors; hence each processor would have similar 
numbers of locally large itemsets. This case 
characterizes as high workload balance. When the 
clustering of different large itemsets concentrated on a 
few processors; hence some processes would have 
much more locally large itemsets than the others. This 
is a case of low workload balance. When the clustering 
of different large itemsets distributed not evenly across 
the processors, then the pruning effects would be 
reduced significantly and the work of computing the 
large itemsets would be concentrated on a few 
processors which is a very troublesome issue of parallel 
computation. 
 For example Table 1 shows an example of high 
data skews and low workload balance. The global 
threshold is 15 and the local support threshold at each 
processor is 5.  
 
Table 1: High Data Skewness and Low Workload 

Balance Case 
Items A B C D E F 
Local support 13 33 12 34 2 1 
at proc-1 
Local support 1 3 1 2 1 4 
at proc-2 
Local support 2 1 2 1 12 33 
at proc-3 
Global support 16 37 15 37 15 38 
Globally large √ √ √ √ × × 
at proc-1 
Globally large × × × × × × 
at proc- 2 
Globally large × × × × √ √ 
at proc-3 

 In this case, distributed pruning will generate 7 
sizes-2 candidates, namely AB, AC, AD, BC, BD, CD 
and EF, while the CD will have 15 candidates. Thus 
distributed pruning to be very effective, but most 
globally large itemsets are locally large only at 
processor1, hence have lower high workload balance.  
 For example Table2 shows an example of low data 
skews and high workload balance. The support counts 
of items A, B, C, D, E and F are almost equally 
distributed over three processors. Hence the data skews 
are low. On the other hand the workload balance is 
high, because the number of locally large itemsets in 
each processor is almost the same. In this case, both CD 
and distributed pruning will generate the same 15 
candidate sets; however, global pruning can prune away 
the three candidates AC, AE and CE. Hence FPM still 
has 20% of improvement over CD in the case of Low 
data skews and high workload balance. 
 
Stratified Sampling Based Partitions: With stratified 
random sampling, the whole database is divided into a 
number of parts or ‘strata’ according to some 
characteristic. Simple random samples are then selected 
from each stratum. The same proportion will be 
selected within each stratum, making the sample a 
proportionate stratified random sample. Stratified 
sampling can be used as a data partition technique, it 
allows a high skewed data set can be partitioned as 
homogeneous portions 
 Let DB be a database with D transactions. Assume 
that there is N processors P1, P2… PN in a distributed 
environment. The database divided into N stratum DB1, 
DB2…. DBN each with D/N transactions.  
 Simple random samples Si, j (j=1..N), each with 
D/N2 transactions selected from each stratum DBi 
(i=1..N). Thus N partitions DSi, with homogeneous data 
of size DI (=D/N) for i=1..N, can be generated as: 
 

DSi =Si,1 ∪  Si,2….∪  Si,N (i=1..N) 
 
Such that: 

DS1 ∪  DS2 …….∪  DSN =DB and 
DS1 ∩ DS2 ……. ∩ DSN = φ 

Maps these N partitions DSi ( i=1..N) to processors Pi 
(i=1..N) respectively.  
 
Table 2: Low Data Skewness and High Workload 

Balance Case 
Items A B C D E F 
Local support at proc-1 6 12 4 13 5 12 
Local support at proc-2 6 12 5 12 4 13 
Local support at proc-3 4 13 6 12 6 13 
Global support 16 37 15 37 15 38 
Globally large at proc-1 √ √ × √ √ √ 
Globally large at proc- 2 √ √ √ √ × √ 
Globally large at proc-3 × √ √ √ √ √ 
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 In this technique the database of size D is divided 
into N mutually disjoint parts called strata, each of size 
D/N, a stratified sampling partition can be generated by 
obtaining a simple random sample of size (D/N) /N 
(=D/N2

 ) from each stratum and N samples of size D/N2 

makes a sample of size D/N (= (D/N2
 ) *N) with 

homogeneous data. This helps to ensure a 
representative sample, especially when the data are 
skewed.  
 
Distributed Approach for Generating Frequent 
Itemsets: Let the size of partitions DBi be Di (=D/N) 
for i=1..N. Let X. sup and X. spy be the support counts 
of an item sets X in DB and DSi, respectively. X.sup is 
called global support count and X.supi is called local 
support count of X at processor Pi. for a given minimum 
support threshold s, X is globally the largest if X.sup ≥ 
s×D and X is locally large at Pi if X.supi ≥ s×DSi. 
 
Notations: 
 
D Number of transactions in DB 
s Support threshold min-sup 
L(k) Globally large k-itemsets 
C (k) Candidate sets generated from L(k) 
X. sup Global support count of X 
L i(k) Locally large k-itemsets at Si 
X. supi Local support count of X at Si 

CG(k) Candidate sets generated from L(k-1) 
Ti (j) Data structure to maintain the item set an their 
support count at the site Si in jth iteration  
Di Number of transactions in DSi 

 
 There is an important relationship between large 
itemsets and the partitions in allocating to distributed 
system: every globally large itemsets must be locally 
large at some partitions DSi. If an itemset X is both 
globally large and locally large at a partition DSi, X is 
called gl_large at DSi. Notice that at each partition DSi, 
if a candidate set X∈CG(k) is not locally large at 
partition DSi , there is no need for DSi to find out its 
global support count to determine whether it is globally 
the largest. This is because in this case, either X is 
small (not globally large). Or it will be locally large at 
some other partition DSi and hence only the partition 
DSi at which X is locally large needed to be responsible 
to find the global support count of X. In the proposed 
approach since each processor has homogeneous data, 
hence generate approximately equal number of locally 
large itemsets simultaneously.  
 
Workload Balanced Distributed Algorithm: 
//Phase-I : Generation of homogeneous partitions: 
 
Partition the database DB into N partitions DBi (I = 1, 
2……. N) each of size D/N 
for (i = 1 to N)  
{ 

 for (j = 1 to N)  
 { 
DSi (j) =random sample from DBj of size D/N2  
 } 

 DSi = DSi(1) ∪  DSi(2) 
∪

…………
∪ DSi(N)

 

} 
 
//Phase-II: Generation of frequent itemsets: 
 
if k = 1 then 
 Tie (1) = get_local_count ( DSi , φ, 1) 
else 
 { 
 CG (k) = ∪

N

i
kCGi

1
)(

=
 

 = ∪
N

i
kGLigenApriory

1
);1((_

=
−  

Ti  (k) = get_local_count ( DSi , CG (k), i); 

} 
for_all X ∈ Ti(k) do  
 

 if X. supi 
≥ s × D/N then 

 for j = 1 to N do 
 if polling_site ( X ) = Pi then  
  insert <X, X. supi) into LLi,j(k) ; 
for j =1, ….. , N do  
Send LLi, j (k) to processor Pi; 
for j =1, ….. , N do  
{ 
 Receive LLi, j (k) ; 
 for_all X ∈ LL i, j (k) do  
 { 
 if X ∉ LPi(k) then 
 Insert X into LPi (k) ; 
 update X. large_processors ; 
 } 
} 
 for_all X ∈ LPi(k) do  
 send_polling_request (X); 
reply_polling_request (Ti (k)); 
for_all X ∈ LPi(k) do  
{ 
receive X.supj from the processors Pj , 
where Pj ∉ X. large_processors; 
X.sup = X.sup1 + X. sup2…… + X. supN; 

 if X. sup 
≥ s × D then 

 insert X into Gi(k) ; 
} 
broadcast Gi(k) ; 
receive Gj(k) from all processors Pj (j ≠ i); 

L(k)
 = ∪

N

i
kGi

1
).(

=
 

Divide L (k)
 into GLi (k), ( i=1,…, N); 

return L(k)  

 
Explanation of Algorithm: 
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* Phase1 create N (N is the no. of processors i.e. 
Sites) homogeneous partitions from the large high 
skew database. 

 
*.  Home Site: Generate Candidate Sets and 

Submit Them to Polling Sites: In the first 
iteration, the site Si calls get_local_count to scan 
the partition DSi once and store the local support 
counts of all the 1-itemsets found in the array Ti(1). 
At the k-th (for k>1) iteration, Si first computes the 
set of candidate set CG(k) and then scan DSi to 
build the hash tree Ti(k) containing the local support 
counts of all the sets in CG(k) by traversing Ti(k), Si 
finds out all locally large k-itemsets and group 
them according to their polling sites. Finally, it 
sends the candidate sets with their local support 
counts to their polling sites. 

 
* Polling Site: Receive Candidate Sets And Send 

Polling Requests: As a polling site, the site Si 
receives candidate sets from the other sites and 
insert them in LPi(k). For each candidate set X ∈ 
LPi(k), Si stores all its “home “ sites in X. 
large_sites, which contains all those sites from 
which X is sent to Si for polling. In order to 
perform count exchange for X, Si calls 
send_polling_request to send X to those sites not in 
the list X. large_sites to collect the remaining 
support counts.  

 
* Remote Site: Return Support Counts to Polling 

Site: When Si receives polling requests from the 
other sites, it acts as a remote site. For each 
candidate sets Y it receives from a polling site, it 
retrieves Y. supi from the hash tree Ti(k) and returns 
it to the polling site. 

 
* Polling Site: Receive Support Counts and Find 

Large Itemsets: As a polling site, Si receives local 
support counts for the candidate sets in LPi(k).. 
Following that it computes the global support 
counts of all these candidate set and find out the 
globally large itemsets among them. These globally 
large k-itemsets are stored in the set GI (k) . Finally, 
Si broadcasts the set Gi(k) to all the other sites.  

 
* Home Site: Receives Large Itemsets: As a “home 

“site, Si receives the sets of globally large k-
itemsets Gi(k) from all the polling sites. By taking 
the union of Gi(k) , (i=1,…..N), Si finds out the set Lk 
of all the size-k large itemsets. Further Si finds out 
from Lk the set GLi(k) of gl-large itemsets for each 
site by using the site list in X. large_sites. The set 
GLi (k) will be used for candidate set generation in 
the next iteration.  

 
Comparison: Now let a sequential approach takes T 
time for support count of candidate sets in any iteration. 

And let processors, Pi (i=1...N) takes, Ti time to 
calculate support counts in allocating partition. Then on 
the proposed distributed approach each processor works 
on homogeneous partitions (have equal number of 
locally large itemsets), hence each processor Pi, 
performed their processing at same time T/N for i=1..N.  
Now since no any other distributed approach has 
considered a homogeneous partition technique of a 
database with high skins, hence must be most of 
globally large itemsets are locally large only on few 
processors. Thus the time required for processing in any 
other distributed approaches like Count Distribution 
(CD), Fast Distributed Algorithm (FDM) equal to Max 
(Ti , i=1..N), which will be greater than T/N.  
 

CONCLUSION 
 
 We considered the problem of mining frequent 
itemsets on a shared–nothing multiprocessor 
environment on which data has been partitioned, across 
the nodes, by using stratified random sampling. An 
advantage of sampling for data partition is that the cost 
of obtaining a sample is propositional to the size of the 
sample, S, rather than the size of the datasets, D. Other 
data partition techniques can require at least one 
complete pass through D. This algorithm also attempts 
to minimize communication by allocating 
homogeneous partitions to each processor.  
 This algorithm is more efficient to mining frequent 
itemsets for those databases, whose size is very large 
and have high data skewness. Any parallel algorithm 
working on database with high data skews could not 
achieve the advantages of parallel processing, because 
most globally large itemsets clustered on few 
processors. The stratified random sampling used as 
partitioning approach balanced work load on each 
processor in a distributed environment. 
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