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Abstract: This study investigates an aggregative optimal growth model in which short-lived 
individuals obtain their labour skill through education. The process of human capital formation is 
described by an increasing, convex-concave education function relating the success rate to the 
educational expenditure per student. The cost of education is publicly funded by an income tax 
imposed on adult workers. Despite the apparent regularity and rationality of this idealized economy, it 
is shown that the existence of the steady state of the model is not guaranteed. In fact, the steady state 
only exists for carefully chosen social time rates of preference. However, the steady state, if it exists, is 
unique and in terms of local stability, a saddle point. 
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INTRODUCTION 

 
 The traditional theory of economic growth 
typically takes labour as a homogenous primary 
factor of production. At the same time, there has 
been a recognition that knowledge or skill plays an 
important role in augmenting raw labour 
productivity. In fact this is a crucial feature in the 
strand of the theory of endogenous growth[1-3]. 
Although the literature on this subject is very 
substantial, it seems to suffer from three main 
weaknesses. 
 Firstly and surprisingly, in spite of the obvious 
advantage of the overlapping generations framework 
in analyzing the economics of education, many studies 
assume that economic agents (and thus human capital) 
are infinitely long-lived[1,4,5]. Secondly, many models 
assume that either the process of acquiring knowledge 
is costless and instantaneous[1,6] or the time spent on 
education is the only opportunity cost of education[7-9]. 
An exception is Eicher[10] who analyzed a growth 
model which is free of these first two weaknesses. 
 Thirdly and finally, virtually all models 
incorporating an education sector assume that the 
outcome of education is certain, i.e., the possibility of 
failure in education is not entertained. This is 
essentially an implication of either the identical agents 
assumption or the perfect information assumption. 
Under the assumption of identical agents, if one student 
passes, then all other students of the same cohort will 
also pass. Under the perfect information scenario, only 
those students who can pass will undertake education so 

that the success rate is 100%. These assumptions 
obviously fail to take into account the facts that (i) 
children do not possess the same amount of natural 
talents and (ii) they often do not know the extent of 
their innate abilities until a late stage of their education. 
 The focus of this study is not on endogenous 
growth but rather on the role of education as a process 
of forming short-lived human capital. It follows the 
approach of Tran-Nam et al.[11] and Shimomura and 
Tran-Nam[12] who attempted to remedy the above 
drawbacks by developing a model of overlapping 
generations in which education takes time and incurs 
direct costs and its outcome is not certain. This line of 
approach assumes in particular that the outcome of 
education (in terms of the success rate) is a 
nonnegative, strictly increasing and strictly concave 
function of educational expenditure per student. The 
assumed concavity of the education function seems to 
be a reasonable one when total educational 
expenditure per student is large. However, it may not 
be entirely justified when the total educational 
expenditure per student is small. 
 It is well known that the curvature of the 
production function has interesting implications in 
models of growth. In analyzing an optimal growth 
model with a convex-concave production function, 
Skiba[13] found that there are two possible steady states: 
One is a saddle point while the other is an unstable 
focus. More recently, in the theory of endogenous 
growth where the production function exhibits 
increasing returns to scale, it has been shown that the 
optimal growth path exists only for carefully chosen 
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values of the social discount rate[3,6,14,15]. In a model of 
economic growth incorporating an educational sector, 
there is a clear direct relationship between production 
and education via the produced input, skilled labour. It 
seems therefore appropriate to explore the role of a 
convex-concave education function in such models. 
 The principal aim of this study is to examine the 
implications of a convex-concave education function in 
an overlapping generations economy, in which 
education is publicly funded by an income tax imposed 
on workers. The crucial feature of this model is that the 
change in the success rate is strictly increasing 
(decreasing) for relatively small (large) educational 
expenditures per student. The main findings of this 
study are as follows. Despite all the regularity and 
rationality features of the model, the existence of a 
steady state of this economy is no longer assured. 
However, if a steady state exists, it is unique. In terms 
of local stability, a steady state, if it exists, is an 
unstable saddle point. 
 
The Model: Consider an aggregative closed economy 
that commences operation in period 1 and continues 
over periods t = 2, 3, 4, …, extending indefinitely into 
the future. This economy can be described in terms of 
its three components: the population, the production 
sector and the government. The population is composed 
of individuals who live for exactly for three periods. 
These individuals study, work and retire in the three 
periods of their lives, respectively. The production side 
of the economy consists of two sectors. In the 
manufacturing sector, production of a single perishable 
final good takes place with the aid of skilled labour and 
unskilled labour. The final good can be consumed or 
invested in education. In the education sector, students 
combine their natural talents with the final good to form 
short-lived human capital. The government is a long-
lived, far sighted central planner which seeks to 
maximize the present value of a stream of discounted 
utilities based on per capita consumption. In each 
period, the government imposes an income tax on 
workers to finance the free education of students. Each 
of three components of the economy is described in 
greater detail below. 
 At the beginning of each period t (≥1), a new 
generation of individuals is born. This generation, 
called generation t, is denoted by its date of birth and 
consists of Nt members. Members of the generation t 
live for exactly three periods. They exist during period t 
(when they are called the young), t+1 (when they are 
called the adults), t+2 (when they are called the old); 
and at the end of period t+2, they all die. In the initial 
period 1, the adults and old people exist. Thus, at any 

point in time, the population is composed of the young, 
the adults and the old; each age group associated with a 
different generation. It is assumed that only the adults 
are fertile and that the rate of fertility n is an 
exogenously given, nonnegative constant, i.e.: 
 

( )Nt  1 n Nt 1t  1,  2,  3 ...= + − =  (1) 
 
where, n≥0 (to avoid the uninteresting possibility of 
long run extinction of the population) and N0 (≡ number 
of adults at time 1) is given and positive. Without 
serious loss, it is further assumed that the number of 
adults and the number of old people at time 1 are also 
related by Eq. (1). 
 All individuals are required to undertake education 
when young (because child labour is illegal or/and for 
equity reasons all children have the right to go to 
school). The natural talents of children are not identical 
but obey a fixed distribution over time. As a result, the 
outcome of education is not deterministic. Successful 
students of generations t will become skilled workers in 
period t+1, while their unsuccessful fellow students will 
work as unskilled workers in period t+1. The skill level 
of successful students is treated as uniform. (We need 
not think of the outcome of education in terms of 
success or failure. More broadly speaking, education 
can be thought of as producing two broad categories of 
graduates. Category 1 graduates work as skilled labour, 
Category 2 graduates as unskilled labour). 
 The success of education depends on students’ 
natural talents and the amount of resources invested on 
education. Given that the distribution of natural talents 
remains constant over time, the overall probability that 
students will successfully complete their study is 
assumed to be dependent on the educational 
expenditure per student. (For simplicity, educators are 
assumed away.) The time-invariant functional 
relationship g that relates xt (the pass rate in period t) to 
zt-1 (educational expenditure per student in period t-1) is 
called the education function Eq. (2): 
 

( )xt g zt 1 t  2,  3,  4 = − = …  (2) 

 
 Education investment is indispensable in the sense 
that g(0) = 0. The education function g is supposed to 
be nonnegative, twice differentiable and strictly 
increasing and approach unity from the left as 
educational investment becomes indefinitely large. In 
particular, we also assume g to be strictly convex 
(concave) for z<(>)zɶ  with g'(zɶ ) <∞. 
 The assumed change in curvature of the education 
function requires elaboration. Education is subjected to 
the law of diminishing returns. It typically requires 
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some fixed costs (e.g., costs of building schools and 
libraries). A small increase of educational expenditure 
above the fixed costs is most likely to raise the success 
ratio at an increasing rate. As educational expenditure 
increases, the returns to education may decline steadily. 
Beyond a certain level of expenditure, any further 
increases will cause the success ratio to increase at a 
decreasing rate. Thus, it may be appropriate to assume 
that the rate of return to education is strictly increasing 
(decreasing) for relatively small (large) educational 
expenditure per child. 
 Next, let us describe the production technology 
prevailing in the manufacturing sector. Competitive 
firms in the manufacturing sector produce a perishable 
good with the aid of skilled and unskilled workers using 
an unchanging technology. The crucial difference 
between skilled and unskilled labourers is that skilled 
workers can perform unskilled tasks while unskilled 
workers cannot engage in skilled work. The aggregate 
production function is then written Eq. (3): 
 

s u
t t tY  F(N ,N )t  1,  2,  3 ...= =  (3) 

 
where Yt, s

tN  and u
tN stand for the total output and the 

amount of skilled and unskilled labour in period t, 
respectively. The production function F(x, y) is 
assumed to possess all standard neoclassical properties, 
specifically, it is linearly homogeneous in skilled labour 
x and unskilled labour y, strictly increasing in x and y, 
strictly quasi-concave and satisfies the Inada conditions 

x y
x 0 y 0
limF limF

→ →
= = ∞  where Fx and Fy stand for the 

marginal product of skilled and unskilled workers, 
respectively. Skilled labour is indispensable for 
production, i.e., F(0, y) = 0 for all y. For completeness, 
the number of skilled workers in period 1 (slN ) is 

supposed to be given, positive and smaller than N0. Full 
employment of labour resources requires that Eq. (4): 
 

s u
t tN N Nt 1 t 1,2,3....+ = − =  (4) 

 
 Keeping in mind that by definition xt ≡ s

tN /Nt-1 and 

making use the linear homogeneity of F and the full-
employment condition (4), the production function can 
be rewritten in per worker terms as follows: 
 

( )t t 1 tY  N f x t  1,  2,  3 ...  −= =  (5) 
 
where f(x) ≡ F[x, (1-x)]. It is assumed that there exists a 
unique ( )x̂ 0,  1∈  such that Eq. (6): 

 
( ) ( )f ' x  0  for x (x)> = < ⌢  (6) 

 To avoid triviality, it is further assumed that 

( )x̂ x g z> ≡ɶ ɶ . Condition (6) means that at x̂  and beyond, 

skilled and unskilled labour are perfect substitutes. 
 Finally, let us describe the government’s 
optimizing problem. The government is a long-lived, 
far-sighted central planner. It provides, in each period, 
free education to all young children and finances it 
expenditure by imposing an income tax on adult 
workers in the economy. Let τt be the overall tax rate in 
period t. The government budget is supposed to be 
balanced in all time periods, i.e., Eq. (7): 
 

t t t tY z N  t 1,2,3τ = = …  (7) 

 
 The government’s objective is to maximize the 
target function Eq. (8): 
 

( )
tT

t
t 1

1 n
J U c

1=

 +=  + ρ 
∑  (8) 

 
where, ρ (> n) is the social rate of time preference, ct is 
per capita consumption in period t and U is a twice 
differentiable, strictly increasing and strictly concave 
social welfare function satisfying the regularity 
condition Eq. (9): 
 

c 0
lim U'(c)

→
= ∞  (9) 

 
 Note that the distribution of consumption between 
the two types of labour and between the three 
generations in any period is also ignored. A possible 
interpretation is that the government can devise a tax-
transfer system to guarantee that total consumption is 
equally divided among all members of the population at 
any time. Under this egalitarian approach to 
consumption, it does not matter whether the tax scale is 
proportional, regressive or progressive, or whether the 
process of taxing-transferring is costless or not. 
 Combining the balanced budget condition (7) and 
Eq. (5) and (1) yields Eq. (10): 
 

( ) ( )t t tz  t f x / 1 n t 1,2,3 = + = …  (10) 

 
 Similarly, the per capita consumption in period t 
can be expressed as Eq. (11): 
 

( ) ( )t t tc  (1 t ) / f x / h n t 1,2,3 = − = …  (11) 

 
where, h(n) ≡ 2+n+1/(1+n). 
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 Thus, the government’s optimizing problem can be 
cast in the form of a discrete-time finite-horizon control 
problem as follows eq. (12): 
 

( ) ( )
T

t

t
t 1

max J 1 r U c
−

=
≡ +∑  (12) 

 
 Subject to Eq. (13-15): 
 

( ) ( )t t tx  g[ 1f x 1 / 1 n ]t 2,3, ,T= τ − − + = …  (13) 

 

1 T 1x  is given and x  is free+  (14) 

 

t t t0  1 and 0 x  1 2,3, ,T≤ τ ≤ ≤ ≤ = …  (15) 

 
where, r ≡ (ρ-n)/(1+n) (>0), τt is the control variable 
and xt the state variable. 

 
Dynamic analysis: We note that J ≡ J(τ1, x1, τ2, x2, …, 
τT-1, xT-1, τT, xT) is a continuous function defined on a 
compact domain [0, 1]2T (from Tychonoff’s  theorem 
we know that a finite product of a compact set is itself a 
compact set). Keeping in mind the strict concavity of U 
and the monotonicity of g, the Weierstrass theorem 
ensures that there exists a unique solution {(* *

t t,xτ ): t = 

1, 2, …, T} to problem (12)-(15). Further, this optimal 
path must be an interior solution in the sense that 
0< *

tτ <1 and 0< *
tx <1 for t = 1, 2, …, T (since if τt = 0 

then ct+1 = 0 and if τt = 1 then ct = 0 and neither of 
which can be optimal in view of the regularity 
condition (9)). Thus, we can now state. 
 
Proposition 1: An interior solution to problem (12)-
(15) exists and is unique. 
 To characterize the optimal time path we first 
define the augmented objective function as Eq. (16): 
 

 
( ) ( ) ( ){ }

( )

T
t

a t t 1 t 1 t
t 1

T

t t 1 t 1
t 1

J 1 r U c p x g z

H p x

−
+ +

=

+ +
=

 ≡ + − − 

≡ −

∑

∑
 (16) 

 
where, pt is the co-state variable and Ht (≡ (1+r)-tU(ct) 
+pt+1g[τtf(x t)/(1+n)]) is the discrete Hamiltonian. The 
first-order necessary conditions for an interior 
optimum are Eq. (17-19): 
 

( ) ( )
( )

t

t t t t

t 1 t

p H / x  1 r (1 )f '/ h n

p g ' f '/ 1 n t 1,2, ,T

−

+

= ∂ ∂ = + − τ

+ τ + = …
  (17) 

( ) ( )
( )

t

t t

t 1

H /  1 r f / h n

p g 'f / 1 n 0 t 1,2, ,T

−

+

∂ ∂τ = +

+ + = = …
  (18) 

 
T 1p 0+ =   (19) 

 
where, the *’s are omitted to alleviate cumbersome 
notation. 
 Equations (16) and (17) supply 2T-1 optimality 
conditions while (19) gives one tranversality 
condition. These equations, together with T-1 
feasibility conditions in (13) and one boundary 
condition (14) completely determine the values of the 
3T variables ( )* *

t t t 1, x ,p +τ , t = 1, 2, …, T. Since the 

optimal path is unique, these 3T equations provide 
necessary and sufficient conditions for a unique global 
optimum. Once *

tτ  and *
tx  are determined, the value of 

*
tc  is specified by (11). 

 Solving for pt+1 from (18) and substituting it into 
(17) gives after some simplification Eq. (20): 
 

( ) ( ) ( ) ( )* * * *
t t 1 t 1 tU' c /U' c (1 ) / [g ' z f ' x ]

t 2,3, ,T 1

+ −= + ρ

= … +
 (20) 

 
 The economic interpretation of (20) is abundantly 
clear. By reducing per capita consumption by one unit 
of the good in period t-1, the loss in social welfare is 
U’(ct-1). Investing this one unit of good in education 
raises xt by g'(zt-1)h(n)/(1+n), which in turns gives 
rise to an increase of f’(xt)g'(zt-1)h(n)/(1+n) in per 
worker output in period t. The corresponding increase 
in social welfare in period t is therefore given by 
U’(c t)f'(xt)g'(zt-1)/(1+ρ). Equation (20) is thus the 
familiar competitive intertemporal arbitrage condition 
that equates the marginal utility of consumption in two 
periods and the marginal rate of substitution of 
consumption between the two periods. 
 From equation (20) it is also clear that f’ (*

tx ) > 0 

or *
tx < x̂  for all t > 1. Thus, we may state 

 
Proposition 2: Except possibly at t = 1, the values of 

*
tx  along the optimal time path are always smaller 

than x̂ . 
 This is reminiscent of the well-known 
proposition in the traditional growth theory that the 
optimal capital/labour ratio k* is less than kg where 
kg is the capital/labour which maximizes per capita 
consumption. However, Proposition 2 allows a more 
straightforward interpretation. By definition, f’ (x) ≡ 
Fx-Fy, i.e., f’ (x) is the difference between marginal 
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products of skilled and unskilled labour. If xt ≥ x̂  
then f’ (x) = 0, i.e., Fx = Fy. This means that 
education is wasteful and therefore suboptimal. 

 Multiplying both sides of (20) by U`( )*ct 1−  and 

inverting, we can express *ct  in terms of *
t 1τ −  and *xt 1−  

as follows Eq. (21): 
 

* *
t 1 t 1

* * * *
't 1 t 1 t 1 t 1'

*c Vt

(1 )f (x )'(1 )U
h(n)

t  2,  3,  ,T 
f (x ) f (x )

g f g
1 n 1 n

− −

− − − −

=

  − τ+ ρ  
   = … 

    τ τ 
    + +     

  (21) 

 

where V ≡ ' 1(U )−  and V(y) > 0 and V’ (y) < 0 for all 
y > 0. Bearing (11) in mind, (21) implies Eq. (22): 
 

* *
t 1 t 1

* *
t 1 t 1

* * * *
' 't 1 t 1 t 1 t 1

h(n)* 1 Vt f (x )
f g

1 n

(1 )f (x )'(1 )U
h(n)

t  2,  3,  ,T
f (x ) f (x )

g f g
1 n 1 n

− −

− −

− − − −

τ = −
  τ
  +  

  − τ+ ρ  
   = … 

    τ τ 
    + +     

 (22) 

  
 We note that (22) and (13) define the optimal time 
path by a system of two nonlinear difference equations. 
Thus we have established. 
 
Proposition 3: The optimal time path is defined by: 
 

( )* * *G ,x t  2,  3,  ,Tt t 1 t 1τ = τ = …− −  (22’) 

 

( )* * *x H ,x t  2,  3,  ,Tt t 1 t 1= τ = …− −   (13’) 

 
where, G and H are defined in (22) and (13) 
respectively. 
 
Steady state analysis: When T becomes indefinitely 
large, the steady state of the model, if it exists, is a 
solution to the timeless version of (13) and (20): 
 

( ) ( )x  g[ f x / 1 n ]= τ +  (23) 
 

( ) ( ) ( )g '[ f x / 1 n ]f ' x   1τ + = + ρ  (24) 
 

 Since g is monotonic, φ (≡ g−1) exists. Inverting 
both sides of (23) gives: 

( ) ( ) ( )f x / 1 n xτ + = φ  (25) 
 
 Substituting (25) into the left hand side of (24) 
reduces the system (23)-(24) to: 
 

( )x 1Φ = + ρ  (26) 
 
where, Φ(x) ≡ g’ [φ(x)]f’ (x). Since g’ [φ(x)] ≡ 1/φ’ (x), 
equation (26) can be equivalently written as: 
 

( ) ( )' x  f ' x / (1 )φ = + ρ  (26’) 
 
 Once x* is determined by (26), τ* can be worked 
out by (25). The timeless version of (11) can then be 
used to pin down the value of c*. It is interesting to 
note that the determination of the steady state 
involves the social time rate of preference but is 
completely independent of the functional form of the 
social utility u. 
 
Interpretation of the steady state: Let us assume for 
the time being that there exists a unique x* that 
satisfies (26). Since φ (x) can be thought of the total 
cost of education, φ’( x) is simply the marginal cost 
of education. As discussed previously, f’ (x) 
represents the marginal benefit of education. 
Equation (26’) thus gives the familiar first-order 
condition of optimality equating the marginal cost of 
education (in the current period) to the marginal 
benefit of education (in the next period). Under the 
assumption about the curvature of g, φ’( x) first 
declines, attains a minimum at xɶ  and then rises. The 
second-order condition requires that the φ’(x) curve 
cuts the f’(x)/(1+ρ) curve on the rising portion of 
φ'(x), which in turn implies that the steady state lies 
on the concave range of the education function (x* > 
xɶ ). It is now possible to state. 
 
Proposition 4: At a steady state, if one exists, x* > xɶ  
and the marginal cost of education is equal to the 
(discounted) marginal benefit of education. 
 
Existence and uniqueness of the steady state: To 
determine the existence of a steady state we need to 
study the conditions under which the curve φ’(x) 
intersects the curve f’(x)/(1+ρ) on the rising portion of 
the φ’(x). Now, under the assumptions made, the 
f’( x)/(1+ρ) curves is asymptotic to the vertical axis, 
declines steadily and becomes horizontal at x = x̂ . The 
curve φ’(x) has the U shape, attaining a minimum at xɶ  
(recalling that xɶ  < x̂ ). Note that φ’(x) may approach 

infinity or a finite constant as x approaches 0+, 
depending respectively on whether g'(z) approaches 0 
or a finite constant z approaches 0+. 



Am. J. Appl. Sci., 2 (13): 19-26, 2005 
 

 24 

 There are in general three cases: 
 
Case i: φ’(x) approaches a positive constant, or infinity 
at a slower rate than f’ (x), i.e., Φ(x) approaches infinity 
as x approaches 0+; or 
 
Case ii: φ’(x) and f’ (x) approach infinity at the same 
rate, i.e., Φ(x) approaches a positive constant as x → 

0+; or 
 
Case iii: φ’(x) approaches infinity at a faster rate than f’ 
(x) so that Φ(x) approaches zero as x → 0+. 
 Only in case i the intersection of the φ’(x) and f’ 
(x)/(1+ρ) curves is guaranteed for any choice of ρ. In 
cases ii and iii, such a intersection occurs if and only if 
1+ ρ ≤ max Φ(x). 
 Note further that in case i the φ’(x) and f’ (x)/(1+ ρ) 
curves only intersects once. However, this intersection 
corresponds to a steady state only if the resulting x* is 
greater thanxɶ , as dictated by the second-order 
condition. In cases ii and iii, if 1+ ρ = max Φ(x), then 
the φ’(x) curve will touch the f’ (x)/(1+ ρ) curve once. 
However, this happens in the falling range of the φ’(x) 
curve and cannot correspond to a steady state. In cases 
ii and iii, if 1+ ρ < max Φ(x), the two curves will 
intersect twice. However, this gives rise to at most one 
steady state at which x* > xɶ . We are now able to state 
 
Proposition 5: A steady state exists if and only if 1+ρ 
≤max Φ(x) and the intersection of φ’(x) and f’ (x)/(1+ 
ρ) curves occur in the concave range of the education 
function. If a steady state exists, it is unique. 
 The interpretation of the above proposition is not 
straightforward. In the Uzawa-Lucas-Romer strand of 
the theory of endogenous growth where production 
exhibits increasing returns it has been established that 
various equilibria only exist for carefully chosen time 
rates of preference[3,6,14,15]. Proposition 5 is somewhat 
analogous to these results. In the present study, the 
magnitude of Φ(x) is indicative of the ratio of society’s 
future gain to its sacrifice of current consumption for 
education. If the social discount factor exceeds the highest 
possible intertemporal tradeoff ratio, the optimal path will 
never converge to a steady state, in spite of all the 
regularity and rationality features of the model. 
 
Comparative statics of the steady state: Since a 
steady state, if one exists, is unique, it is meaningful to 
talk about its comparative statics, so long as the change 
is small so that the solution to (26) remains on the 
rising portion of φ’(x). Now, differentiating (25) with 
respect to x* and making use of (26’) we have: 

'd * f (x*)
[(1 n)(1 ) *] 0

dx * f (x*)

τ = + + ρ − τ >   (27) 

 
 That is, τ* and x* move in the same direction. In 
view of how the φ’( x) and f’ (x)/(1+ρ) curves 
respond to changes in the model parameters, we can 
therefore establish. 
 
Proposition 6: The greater the rate of population 
growth (higher n), the lower is the steady state tax rate 
τ* and the lower is the steady state ratio of skilled 
labour x*. The greater the social rate of discount (higher 
ρ), the lower is the steady state tax rate τ* and the 
lower is the steady state ratio of skilled labour x*. An 
improvement in the education technology will result in 
higher τ* and x*. An improvement in favour of skilled 
labour in the manufacturing technology will result in 
higher τ* and x*. 
 The above results are intuitively appealing and 
need no further elaboration. 
 
Local stability of the steady state: Suppose now that a 
steady state (τ*, x*) exists uniquely. To study the local 
stability of the solution path, we rewrite (22’) and (13’) 
respectively as: 
 

( )K ,x ; ,x 0t t t 1 t 1τ τ =− −  (22”) 

 

( )L ,x ; ,x 0t t t 1 t 1τ τ =− −  (13”) 

 
where, K ≡ U’ (ct)g'(zt-1) f’ (x t)-(1+ρ) U’ (ct-1) and L ≡ 
xt-g[τt-1f (xt-1)/(1+n)]. Linearizing (22”) and (13”) about 
(τ*, x*) we have in matrix notation: 

t

t

3 4 t 1

1 3 3 2 1 4 4 2 t 1

x x *

*

L L x x *

(K L K ) / K (K L K ) / K *
−

−

− 
 τ −τ 

− − −   
=    − − τ −τ   

(28) 

 
where, ' '

3L g f / (1 n)= −τ + , '
4L g f / (1 n)= − + , 

' ' 2 ' '
1K (1 )U"g (f ) / h U g f "= − τ + , 2K (1 )U"f / h= − + ρ , 

' ' 2 '
3K U g"(f ) / (1 n) (1 )(1 )U"f / h= τ + − + ρ − τ  and 

' '
4K U g"ff / (1 n) (1 )U"f / h= + + + ρ , all evaluated at (τ*, 

x*). 
 It can then be shown that the characteristic 
equation arising from the above system is given by: 
 

( )2 (2 r )  1 r   0λ − + + β + + =  (29) 
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where, β ≡ h U’g"/[(1+n)U" g']. It can be shown that 
the two characteristics roots are: 
 

( )1  1 r hU 'g"/ [ 1 n U"g ']λ = + + +  (30) 

 
And 
 

2
21 (r ) 4 (r ) / 2 λ = − + β + β − + β 

 
  (31) 

 

where, 0 < 2(r ) 4 (r )+ β + β − + β  < 2. Keeping in mind 

that x* > xɶ  so that g" < 0, we have 0 < λ2 < 1 < λ1. We 
may now state 
 
Proposition 7: The steady state, if it exists, is an 
unstable saddle point. 
 It is interesting to note that if the φ’ (x) and 
f ' (x)/(1+ρ) curves intersect twice, then the intersection 
in the convex range of the education function (thus not 
a steady state) can be an unstable focus, node or saddle 
point (see the Appendix). 
 

CONCLUSION 
 
 This study constructs a model of an idealized 
economy in which the population is composed of 
individuals who live for exactly three periods. When 
young, all individuals are required to undertake 
publicly provided education. As adults, they work as 
skilled or unskilled labour, depending on the outcome 
of their education, to produce a single perishable good 
which can be used for consumption or education. 
When old, they are all retired. The economy is 
governed by a long-lived central planner which 
conducts a tax-transfer scheme to finance the costs of 
public education and to redistribute income so that the 
distribution of consumption is egalitarian. The 
government’s long-term objective is to maximize the 
present value of a sum of (discounted) social utilities 
based on per capita consumption. 
 A special feature of the model is the education 
sector. Education as a process of human capital 
formation is not only costly, in terms of time spent by 
students and resources expended, but its outcome is 
uncertain, depending in part on the distribution of 
talents. In this sense, the model rejects the assumption 
of identical agents. The education process produces two 
broad kinds of input for production: skilled and 
unskilled labour. In particular, assuming a fixed 
distribution of natural abilities, the ratio of skilled 
labour to the workforce in the current period strictly 
increases in educational expenditure per student in the 

last period. The law of diminishing returns applies to 
education so that as educational expenditure per student 
increases, the success rate first rises at an increasing 
rate and then at a decreasing rate. 
 Apart from the education sector, the rest of the 
economy is characterized by the usual regularity and 
rationality assumptions: the aggregate production 
function possesses all the standard neoclassical 
properties; specifically, the central government is far 
sighted and there are no transaction costs. Under 
these assumptions, it is shown that an interior, 
optimal time path exists uniquely. Surprisingly, 
however, the optimal time path will converge to a 
unique and unstable saddle-point steady state under 
fairly restricted conditions. Further, the steady state, 
if it exists, is independent of the functional form of 
the social utility (but not the social time rate of 
discount). These results are counter-intuitive within 
the neoclassical framework of analysis. 
 
Appendix: The characteristic equation is given by: 
 
 λ2 - (2+r+β)λ + (1+r) = 0 
 
where, β ≡ h(n)U'g"/[(1+n)U"g']. The discriminant of 

(12) is ∆ = (r+β)2 + 4β and the product of the 
characteristic roots satisfies: 
 

1 2 1 r 1λ λ = + >  
 
 Suppose that the φ’(x) intersects the curve f’ 
(x)/(1+ρ) twice, at *

1x  and *
2x  where *

1x  < xɶ  < *
2x . At 

the steady state *
2x  it has been shown that 

0 < λ2 < 1 < λ1. At *
1x , β < 0 and the discriminant ∆ 

can be negative, zero or positive. 
 

• ∆ < 0 
 
 In this case there are two complex roots {2+r+β ± 

i[-(r+β)2-4β]1/2}/2 with λ1= λ2= 1+ r  > 1, i.e., 
( *

1τ , *
1x ) is an unstable focus (a spiral point). 

 
• ∆ = 0 
 
 In this case there is a repeated real roots λ = 

(2+r+β)/2 with λ1= 1+ r  > 1, i.e., ( *
1τ , *

1x ) is an 

unstable improper node. 
 

• ∆ > 0 
 
 There are two subcases: 
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r 0+ β >  
 

 Since ∆ < (r+β)2 we may write ∆  = r+β-θ where 
0 < θ < r+β. There are two real characteristics roots: 
 

1

2 r (r )
1 r 1

2 2

+ + β + + β − θ θλ = + β − >  

 
And: 
 

2

2 r (r )
1 1

2 2

+ + β − + β − θ θλ = + >  

 
 The point ( *

1τ , *
1x ) is in this case an unstable node. 

r+β< 0 
 Suppose r+β = -k (k > 0). The requirement ∆ > 0 
implies that -4β < (r+β)2 = k2, i.e., β > -k2/4. Since r 
is positive this in turn implies that-k = r + β > β > -
k2/4, i.e., k > 4. In other words,-4 ≤ r+β< 0 is 
incompatible with ∆ > 0. Thus, we only need to 
consider r+β < -4. Since λ1λ2 = 1 + r > 1 and λ1+λ2 = 
2 + r + β < -2, both characteristic roots are negative. 
In this case, we have either λ1<1< λ2(a saddle 
point) or 1 < λ1< λ2 (an unstable focus). In his 
study, Skiba[13] showed that if the steady state occurs 
in the convex range of the production function, then 
it is an unstable focus. The results above are similar 
to but richer than Skiba’s findings. 
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