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Abstract: We study the estimation problems for a partly dineegression model with a nonlinear time
series error structure. The model consists of arpatric linear component for the regression coieffits
and a nonparametric nonlinear component. The rarglvars are unobservable and modeled by a first-
order Markov bilinear process. Based on a B-spiieges approximation of the nonlinear component
function, we propose a semiparametric ordinarytlegaares estimator and a semiparametric genetalize
least squares estimator of the regression coeffiiea least squares estimator of the autoregressio
parameter for the errors, and a B-spline seriamatir of the nonparametric component function. The
asymptotic properties of these estimators are tigaged and their asymptotic distributions areckti We
also provide a consistent estimator for the asytigptmvariance matrix of the semiparametric geriezel
least squares estimator of the regression coeffgieOur results can be used to make asymptotically
efficient statistical inferences. In addition, aadhsimulation is conducted to evaluate the pertomoe of
the proposed estimators, which shows that the paarnetric generalized least squares estimatdneof t
regression coefficients is more efficient than gsmiparametric ordinary least squares estimator.

Key words: Semiparametric regression model, first-order Mai&o\bilinear process3-splines series
estimation, semiparametric least squares estimasysptotic normality

INTRODUCTION used various estimation methods, such as the kernel
method, spline method, series estimation, locadalin

Partly linear regression models have attractent a | €stimation, M-estimation and two-stage estimatitn,
of research interests due to their flexibility thoey ~ Obtain estimates of the unknown quantities in )(1.1
both linear and nonlinear components, as well adhey also discussed the asymptotic properties eseth
serially correlated errors, which enables themetiep ~ €Stimators. However, the independence assumption fo
describe increasingly complex data from the reafavo the errors Is not alwa_ys appropriate In appl!ca;Uon
than pure parametric or nonparametric models€specially for sequentially collected economic data
Consider a partly linear regression model of thewhich often exhibit evident serial dependence ia th

following form: errors. For example, in the process of fitting the
relationship between temperature and electriciggdd
y.=x'B+9(t)+eg, i=1...,n, 1.1) found that the data are serially correlated. Wisgris

an autoregressive (AR) sefféstudied an estimator of
where,y's are responses, = (Xi,..., %, )’ andt; are  the autocorrelation coefficifit considered the

called the design points, ﬁz(ﬁll"'vﬁp)l is an estimation problem for model (1.1) with linear time

unknown parameter vector representing the ”nea§eries.errors.
It is well known that not all correlated errorsidze

component,g([lis an unknown function defined on [0, fitred well by linear time series errors. Therefamuch

1] for the nonlinear component, and; 's are attention has been shifted to nonlinear time series
models in the recent literatlifeand the references
The model in (1.1) has been extensively studied b%ﬂerelnd._Ther(Ie_ have beg:nl ma.nt)]/ paplgzrs con_cerned .W'th
many researchers. A brief review of relevant litera e ordinary linear models with non Inear time ssri

, o . o] errors. For example, under the assumption of random
is as follows. Wherg; are iid. Random variables  coefficient autoregressive errBf§ investigated the

unobservable random errors.
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limit distribution of the least squares estimatofshe We will further investigate the asymptotic
regression and auto regression parameters. Mot&ver properties of these estimators and derive theiitition
used the framework of the information matrix (IMgst distributions. In addition, a small simulation is
to develop a test for the linear regression modetrw conducted to evaluate the performance of the esiiha
the errors are from an autoregressive conditional ] )
heteroscedastic (ARCH) proc&%ls Derived the Wald Esimators Throughout th|S Study we W|" assume that
and Rao's Score test statistics for testing theceffof ~ the design pointg andt; are fixed, and they are related via:
additional regression parameters. There has, haweve )

been little work on the partial linear regressiondal ~ %s = Ns(f) +Us,  i=1....n; s=1,.. p (2.1)

with nonlinear time series errors in the literature ) )

except®. Blinvestigated the estimating problems of The reasonableness of this relation can be found

partial linear regression models with random cofit !n[21' In addition, suppose that the vector (11)..is not
autoregressive errors. in the space spanned by the column vector cf

In this study, by approximating the nonparametric(xl’---' Xn)'s which ensures the identifiability of model
component with B-spline series we study the problem(1.1) according _t‘&)]. It is also assumed that the
of estimating the parametric and nonparametric€duence of designsforms an asymptotically regular

o . 0l ; )
components of the partial linear regression motlgl)( sequencé” in the sense that:
with a nonlinear time series error structure. More
specifically, we consider a first-order Markovian max

bilinear  error procesg; , which is a stationary I<isn
solution of :

(om0,

n

where, p([)] denotes a positive density function on the

& =(p+le)s_+e, i=1..,n, (1.2)  interval [0,1].
Let{x,t,y;;i=1...,n} be athe modelf observed

where, f} is a zero mean process consisting of i.i.d.data from model (1.1), X = (% )rep and
random variables with finite second momemﬁ.

Obviously, the model (1.2) includes the usual AR (1
structure *“discussed the estimation and test problem 21 ] -
of the ordinary linear regression model with errorknowr® that § . has a basis consisting ok(n)
structure (1.2). Model (1.2) has been extensively, p normalized B-splines L
discussed in the control theory literaftié® {Bi @1 =1... k) +}
(applied model (1.2) to study the well-known Wolfer Where By(ny.j (O has support
sunspot numbers for the years from 1700 to 1955aand ;. _ -1 : -1 and can be
seismic record obtained from an underground nucleaL(J V+_1)k (. (J+'_/+l)k ()] b Ig(m
explosion that was carried out in the USA on Oetob approximated by a linear combinatian' By, ; (O of
29th, 1966. Recently, model (1.2) has been exttime ) O RKM*
the case of space tiffe®. More references about the € basis, where & and
theoretical results, applications and the exterssioh By ; (0= (B2 (D -+ B yk e @'
the model (1.2) can be found in the monogragh.of Forg OR“™* BORP,

Based on the approximation ¢f()] by a B-spline

series and least squares estimation, we consthect t SBa)=n
following estimators for model (1.1) with error

y=(¥,-..,Y,)'- Denote byS((n)’j the class of spline
éunctions of degreeV and k(n) knots. It is well

Y (% =% B0 "By () is minimized at

i=1

structure (1.2): (B,.@,) given bYZ?n:(X'MBK(")X)*X'MBWY and
. . . . . 5 = ' -1 'Y = XA ,  where =
i. Semiparametric ordinary least squares estimatof’ By Bum) ™ B 'V = X0) 0
SOLSE) of /5, (3<(n),l(tl)""’Bk(n)k(n}i-v t.))" MBkn =1- PB“ and
(n) (n)
ii. Least squares estimator of the auto regressio \ - . .o
parametgrw 9 rbBK(n) = By (B 'Bucry) 1Bl<(n) . This 3, is called the

iii. Semiparametric  generalized least squarescTiParametric ordinary least squares  estimator
estimators (SGLSE) of3, (SOLSE) of 5.

iv. Estimator of the asymptotic covariance matrix o When the errors are correlated, the SOLﬁrEis
the SGLSE off3, and not asymptotically efficient as it ignores the ebation.

v. B-spline series estimator of the nonparametridience we propose semiparametric generalized least
component functiog (). square estimator (SGLSE) of 5. Since for a giverg:
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(1-¢)og G (1) = By B Be) By (Y = X Bs) (2.5)

1-7 - 607

Cov(ee )= Q@

Furthermore, an estimator of the asymptotic

where, 5:(51’-'-’5n)'v we define a SGLSE as covariance matrix of,[i’G is given byn_liz,where

follows: 5, =nd%(X" Mg, Q (@1)3((”) ., X)) and:
BG :(XIMBK(n)Q_l(@Bk(”)MBK(n)X)_l (2.2) s i n R ~ )

X Mg, 0 (@B Mg, ¥ G LK A B () @9
Where:

Large sample propertiess We begin with the
following assumptions required to derive the main

1 - 0 0 - 0 results, which are quite mild and can be easilisBatl
¢ 1+¢’ _(:2 o - 0 (Remark 2 below).

a0 |0 e 1+¢ -@ - 0

QM@= T T
P e Assumption 1: Fori = 1,...,nandj = 1,...,p, u; satisfy:
0 0 - -0 I+@ -
0o 0 - 0 - 1
¢ nxn lim _7Z:ule,|k+",l‘J h"l for h=0,+£1%2,..;i,j=1..p (31)

n-oo

Remark 1: By Lemma 3 in the Appendixx '|\/|Bk X

. ™ where, the matrixB = (
and x-MBKmQ-l(@a((n)MBMx are positive definite

whenn is large. Therefore, without loss of generality, max=| A = O [tr(A"AF?)foranymatrix A (3.2)
we can assume that the inverses of these two matric ==
exist.

When @ is unknown, the,éG in (2.2) is not
dlrectly usable, and we need a suitable est|mm>y
% of @. Then we can replac@(w) by Q(%) in Assumption 2: The functionsg([ﬂ and hl([ﬂ,...,f‘bD

(2.2) and obtain an estimate & that can be computed aréV times continuously differentiable on the interval
[0,1], whereVv >1.

OIJ) is nonsingular, and:

where, u =(uy,..
Euclidean norm.

., ug)' and | O denotes the

from the data. Noting thak; is unobservable, a
reasonable estimator ofp is the least squares Assumption 3: The coefficientsd and @, and the

estimator : variancng of {e}in model (1.2) satisfy @< 1 and
}1 |¢* +0%02 K 1.
1

Remark 2: The above u; behave like zero mean,
uncorrelated random variables arg (t) are the
regression ofx; on t. Specifically, suppose that the
A LA A . design pointsx, t) are i.i.d. Random variables, and let
&=Yi™X Bn -a, Bk(n) (ti)' =1....n. (23) h](tl) = E[Xij |t|] and Uij = Xj — hJ(t|) with E[Ui Ui'] =B
Then by the law of large numbers, (3.1) holds with
Consequently, we define our SGLSE #f ,  probability 1. Moreover, according 48 (3.2) holds
when u; behave like zero mean, uncorrelated random
variables. Assumption 2 is mild and holds for most
- - commonly used functions, such as the polynomial and
fs=(X'Mg, QH@)B Mg, X)™ (2.4)  trigonometric functions.
XMy Q‘l(%)Bk Bm Thg first theoremAbeIow shows the asymptotic
normality of the SOLSH3,, .

based on the estimated residuals:

denoted by,éG , as:

Based on this SGLSH3;, we can construct the Theorem 3.1: Suppose that Assumptions 1 to 3 hold
following estimator of the nonparametric componentand ¢,n”’®*9 < k(n)< ¢, #’**Y where ¢ and ¢ are

function g(0): positive constants. Then:
134t
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a-g)a?
1-F-60?

n(B,- ) - N{O B'lGlB'lj asn . o

where, G =limnU'Q(@U provided it is positive
definite, U = (y,..., W)’, B is defined in Assumption 1
and “ - 5 " denotes convergence in distribution.

The asymptotic normality off, is established in
the second theorem below.

Theorem 3.2: Under the conditions of Theorem 3.1, if,
in addition, E[£] <« , then:

n@ -9 -, N[O.

oiEle] + 60 ] ] e
(El&)’

The next theorem shows that the SGL$E
defined in (2.2) and its feasible versign in (2.4) have
the same limiting normal distribution.

Theorem 3.3: Under the conditions of Theorem 3.2 we

have Vn(B; -B)=vn(B, - B +0,(n™?) and the
common limiting distribution of,éG and BG is given
by:

In(Bs-B) - N(o,_z
-¢ -8,

where,G, = lim n"U'Q (@)U provided it is positive
n- oo
definite.
. -1 - -1 .
Since G, < B™'GB™, according to Theorems
3.1 and 3.3q,8G the asymptotic covariance matrixient
than ,Bn in terms of asymptotic covariance matrix.

Let B, ([} denote thev " Bernoulli polynomial,
which is recursively defined by:

B,®)=1 B (t):j;ia_l(z)dzm i=12,.. .

where, q=—iJ':J';I3|_1(z)dzdt is the i"™ Bernoulli

numbel®. The following theorem establishes the
asymptotic normality of the B-spline series estionat

0 (t) of g (0.

Theorem 3.4: Under the conditions of Theorem 3.1, for
any t (i /(k(n) +V), ( +1) /(k(n)+V)]:

{8 - (9 +b®)} -, N(0.1) asn- o,

where, s =Var [Bk(n) (Bt 'Bec) " Buen '5] ’

b(t) =-g“ (B, (tk(n) =) VK] + € = (&p---.E,) "
For inference abouf based on the asymptotic
distribution of 3, , an estimator of its asymptotic

covariance matrix is needed. Lx%.tz be given by (2.6)-
-(2.7). Then we have the following result.

Theorem 3.5: Under the conditions of Theorem 3.2 we
have :

S (1 ¢ )Ce2 -1
2, ——=2-G, =0,(1
2 1-¢ —020,32 2 p()

From the results given in Theorems 3.3 and 8.5, i
follows that:

NG =B)'E Bs=B) ~p Xy aSN -

Therefore, the set
{B: (B - B T fs - B < X2, constitutes a large-
sample100(1- a )% confidence ellipsoid fof3 . For
small sample sizesp rpralpCAN be used to substitute

2
/Yp,l—a :

Remark 3: By applying the tensor-product B-spline
techniqu€” the above results can be easily extended to
the case of multivariate regressor

A simulation study: This presents a simulation study
to evaluate the finite sample performance of the
estimators. The observations are generated from:

y. =3.5x + cos(Zt; }¢
§=(p+0.),+e, i=1..n,

where,t =(i-0.5)/n,x = 3>+ 0.5 and {g} are i.i.d.
N (0,1). For a range of values ¢f, we generate 10,000
samples of size 200 from the above model (¥he
values are generated once for a fixgdvalue) and
estimate@, [ and g([)] for each sample. We here use
the uniform knots. According %' uniform knots are
usually sufficient when the functiog(l)] does not

exhibit dramatic changes in its derivatives. Thws,
just need to determine the number of knots to \se.
use the method %! to do so. Biases and sample
variances (Var) of the simulated estimates arergine

Tables 1 and 2, wher§, (t), §g(t) and g (t) are

based on/;"n, /JA"G and BG respectively.

134¢



Am. J. Appl. Sci., 2 (9): 1343-1349, 2005

Table 1: Simulated biases and variances of thieasirs for ¢J andﬂ

) Bias(@,) var(¢,) Bias([3,) var(f3,) Bias(5; ) var( ) Bias(B5)  Var(fs)
0.2 -0.0059 0.0009 0.1228 0.0178 0.1019 0.0130 1a.10 0.0127
0.3 -0.0095 0.0014 0.1154 0.0161 0.0839 0.0095 29.08 0.0092
0.4 -0.0181 0.0019 0.1089 0.0152 0.0723 0.0082 89.06 0.0076
05 -0.0204 0.0024 0.1181 0.0196 0.0688 0.0082 30.06 0.0071
0.6 -0.0217 0.0029 0.1138 0.0189 0.0466 0.0053 96.03 0.0046
0.7 -0.0229 0.0034 0.1198 0.0240 0.0455 0.0051 36.03 0.0043
0.8 -0.0270 0.0039 0.1195 0.0289 0.0304 0.0048 00.02 0.0042

Table 2: Simulated biases and variances of thenasiis for g([ﬂ

T a(t) Bias(d,,) Var(g,) Bias(Jg ) Var(gg) Bias(Jg ) Var(gg)
(30-0.5)/200 -0.6064 -0.0319 0.0144 -0.0277 0.0140 -0.0269 0.0140
(60-0.5)/200 -0.2940 -0.0308 0.0095 -0.0188 0.0088 -0.0184 0.0087
(90-0.5)/200 -0.9460 -0.0856 0.0239 -0.0502 0.0182 -0.0498 0.0179
(120-0.5)/200 -0.8181 -0.0712 0.0392 -0.0661 0.0358 -0.0659 0.0356
(150-0.5)/200 -0.0157 -0.0352 0.0612 -0.0339 @053 -0.0338 0.0535
(170-0.5)/200 0.5750 0.0613 0.1113 -0.0009 0.0897 -0.0014 0.0897

From Table 1 we can see that in all cases thelemonstrated that the semiparametric generalizzest le
semiparametric generalized least squares estimftor Squares estimator is more efficient than the
has smaller biassemiparametrices  than tha€miparametric ordinary least squares estimator.

semiparametric ordinary least squares estima&pr Appendix: Proofs of Theorems: In order to prove the
The advantage of, over 3, is more significant when theorems presented earlier we first introduce sgver
pis large (high serial correlation), as one woutgeet ~'©MM3S:

since B, takes the serial correlation into accountLemma 1. Suppose that a functiorf (m satisfies

whereasf, does not. Assumption 2. Then we have:

Moreover, aspincreases, the bias and variance of
B, decrease, but this is not the case fr In addition, auq‘f €)- By By Bary ' By 'f‘=
t10,1]
the performance of, is close to that of thwknovyn o k(n)) +O(k(n)™)
semiparametric generalized least squares estinmgtor

across the values of Table 1 also shows that the Wheref=((t)..... f(t)"

estimator@, of ¢ is adequate. ) . .
Lemma 2: For the basis of B-splines @((n)v we
From Table 2 we can see that the nonparametric '

estimatorg, based on the semiparametric generahzed1ave

least squares estimator3, is better than the k()
nonparametric  estimator g, based on [ z Bk( <1 forallt; and

semiparametric ordinary least squares estimgtomn o
terms of bias and variance. ii. All eigenvalues ofn Bk(n) B1<(n) are between

qk_l(n) and czk‘l(n) for some constants
0<c <c,<w.
The proofs of Lemmas 1 and 2 can be fdtthd

CONCLUSION

In this article we have studied the estimation
problem of a partly linear regression model with
bilinear time series errors. Using B-splines
approximate the nonparametric component, we havferernma 3: Suppose that Assumptions 1 and 2 hold.
constructed the semiparametric  ordinary and!Nenasn — o,
generalized least squares estimators of the pammet nx' Mg X -B and
component, the least squares estimator of the _; i
autoregressive parameter, and the B-spline seried X MBM")Q (¢)a<(n)MBKm)X - G,
estimator of the nonparametric component. We have
also derived the asymptotic normality for thesepProof: Applying Lemmas 1 and 2, the proof of Lemma
estimates. In both theory and simulation, we haves is simple. We here omit the detail.
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Consider the normalized weighted sum of randonConsequently:

variables { & } defined in (1.2), namely,

-1/2 .
n n , where £} is a sequence of real
(Zqz] Sas &l q

constants. It has the following asymptotic
property.
Lemma 4: If n'lnzmaiawh'aah forh=2122,.., fa} is
k=1
bounded, and Assumption 3 holds, then:
n -1/2 n h
[vafj Yag -5 NOo?) asn-w, VOC
i=1 i=1
S ay yiny A0 =021~ g?-6%0) Vis the
h=—c0
autocovariance function dfe} .
Proof: According to the property off&} and

Lemmdifficult®®, it is not difficulty to complete the
proof.
We are now ready to prove the main results.

Proof of Theorem 3.1: By (2.1) it is easy to see that
UMg e=Ue-U PRy e+h(I-Py )& i=L...n,
R =(h(),....h, )’

G, =0:(1-¢#-6°c2) . Since

Var(U'Ry €)= Py Q@R U <CoAna[Q@ANG Py G =O(k(n) +V) =o(n),

where Let

where, A (D) denotes the maximum eigenvalue of a

matrix, we havell PBK( E= Op(nllz) .

Moreover, by Lemma 1, there exists a real vedjor
such that:

h =B 7|=00k@)+OKA)Y).

]_|<n

This implies:
Var(hMg, £) =My Q@Mg, R <cilnlalM, h HENCe
=0(n*k(n)*) +O(k(n) ™).
hMg e=0,(n"?) . It follows that
(n)
' - ' 1/2
X MBk(n,E‘U £+0,(M'7)-

Next, by Lemma 1, there exists a real vecidr
such that:

maxg ¢ )-Byw 6 Y4=00 k) *+OKn)").
Thereforexi MBng =0(n*k(n)?)+O(k(n) ™ n) for g

= @), 9t))', wherex = (x;,...,%;)"-

(B, = By =In(X'My  X)*X'M
g=vnU'U)"U e +0,(2).

' Ayt
5K(n>€+\/ﬁ(x MB\((MX) X MB\qn)

The conclusion of Theorem 3.1 then follows from
Lemma 3 and Assumption 1.

Proof of Theorem 3.2:
following equation holds:

It is easy to see that the

(A1)

M:

"35—1 szul 2(5 ) CRE IR

i=2

D&~ 5)5--1+Z(5.1 -

i=2

R
N

According to the definition o, in (2.3), we have:

Z(E —&)E4 = Z(/J’ B)'%é,

i=2

_; (B _,Bn)'X B (Ben) 'BK(n))-l By ()1
+i[g(ti) = By (1)(Bey 'Bey) "By (8) €

_Z‘E'Bk(n) (Bry 'Buiy) " Bugy (1)E
S e

(A.2)
s~ 1, say.

By the rooth consistency of,/3’n and the proof of
Theorem 3.1, we have, =0O,(1) . Next, letB,, =
Byt B ) ., and
Q4 (@) =Var(e)
inequality gives
I121 55“E{<(n)(3<(n) 'Eﬁqn))_l B*K(n) G +(ﬁ‘.én)'x 'Pay(‘,)x(ﬂ‘.én )=l 1, say
Since g[1,] =a(k(n) , we havel,, =0, (k(n) - By Theorem
3.1, it is easy to seg,=0,(1). Sol,=0 (n1/2). Then
Lemma 1 vyields g[I12]=0O(nk(r) ) +O(n"%(n) ) SO
that |, =0(n"%k(n)™)+0O(n"*%*(n)). The proof of
I, =0,(k(n)) is similar to that forl ,;. Therefore,

by (A.2), the middle term in the right hand side(Af1)
is op(nl’z) and similar arguments show that the other
two terms are gn"?) as well. Consequently,

n

£ = (51 """ En—1)'

Then the Cauchy-Schwarz

n
£E,=Y g6 ,+0,(n"?). By the same reason, we
i=2 i=2
n n

have > &2 =5 g’

i=2 i=2

+0,(n"?). It follows that:

(ﬂ} +0,(1).

n
Zfifi—l_

i=2

Jn@ -9 =n {[ze]

i=2
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Combining this with the result Bf, we complete  11.

the proof.

Proof of Theorem 3.3: By the definition of 3, , 12.

Lemmas 1 to 3 and Theorem 3.1 we have:

(B, - B) =n(U'Q(PU) U QHPE +0,(2).

13.

Moreover, similar to the proof of Theorem 4.3
i we have:

JnU'QH(@u) U Q@) - 14.

Thus the proof is complete.

Proof of Theorem 3.4: Combining the root
consistency of3, with Theorem 2.1 #%” we can easily
complete the proof.

Proof of Theorem 3.5: This theorem follows from
Lemma 2 and the proofs of Theorems 3.2-3.3.
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