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Abstract: We study the estimation problems for a partly linear regression model with a nonlinear time 
series error structure. The model consists of a parametric linear component for the regression coefficients 
and a nonparametric nonlinear component. The random errors are unobservable and modeled by a first-
order Markov bilinear process. Based on a B-spline series approximation of the nonlinear component 
function, we propose a semiparametric ordinary least squares estimator and a semiparametric generalized 
least squares estimator of the regression coefficients, a least squares estimator of the autoregression 
parameter for the errors, and a B-spline series estimator of the nonparametric component function. The 
asymptotic properties of these estimators are investigated and their asymptotic distributions are derived. We 
also provide a consistent estimator for the asymptotic covariance matrix of the semiparametric generalized 
least squares estimator of the regression coefficients. Our results can be used to make asymptotically 
efficient statistical inferences. In addition, a small simulation is conducted to evaluate the performance of 
the proposed estimators, which shows that the  semiparametric generalized least squares estimator of the 
regression coefficients is more efficient than the  semiparametric ordinary least squares estimator. 
 
Key words: Semiparametric regression model, first-order Markovian bilinear process, β-splines series 
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INTRODUCTION 
 
 Partly linear regression models have attracted a lot 
of research interests due to their flexibility to allow 
both linear and nonlinear components, as well as 
serially correlated errors, which enables them to better 
describe increasingly complex data from the real world 
than pure parametric or nonparametric models. 
Consider a partly linear regression model of the 
following form: 
 

' ( ) , 1, , ,i i i iy x g t i nβ ε= + + = …  (1.1) 

 
where, yi's are responses, xi = (xi1,…, xip )' and ti are 
called the design points, 1( , , ) 'pβ β β= …  is an 

unknown parameter vector representing the linear 
component, ( )g ⋅ is an unknown function defined on [0, 

1] for the nonlinear component, and iε 's are 

unobservable random errors. 
 The model in (1.1) has been extensively studied by 
many researchers. A brief review of relevant literature 

is as follows. When iε  are i.i.d. Random variables[1-5] 

used various estimation methods, such as the kernel 
method, spline method, series estimation, local linear 
estimation, M-estimation and two-stage estimation, to 
obtain  estimates of the unknown quantities in (1.1). 
They also discussed the asymptotic properties of these 
estimators. However, the independence assumption for 
the errors is not always appropriate in applications, 
especially for sequentially collected economic data, 
which often exhibit evident serial dependence in the 
errors. For example, in the process of fitting the 
relationship between temperature and electricity usage[6] 

found that the data are serially correlated. When iε  is 

an autoregressive (AR) series[7] studied an estimator of 
the autocorrelation coefficient[8] considered the 
estimation problem for model (1.1) with linear time 
series errors.  
 It is well known that not all correlated errors can be 
fitted well by linear time series errors. Therefore, much 
attention has been shifted to nonlinear time series 
models in the recent literature[9] and the references 
therein. There have been many papers concerned with 
the ordinary linear models with nonlinear time series 
errors. For example, under the assumption of random 
coefficient autoregressive errors[10] investigated the 
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limit distribution of the least squares estimators of the 
regression and auto regression parameters. Moreover[11] 
used the framework of the information matrix (IM) test 
to develop a test for the linear regression model when 
the errors are from an autoregressive conditional 
heteroscedastic (ARCH) process[12].  Derived the Wald 
and Rao's Score test statistics for testing the effects of 
additional regression parameters. There has, however, 
been little work on the partial linear regression model 
with nonlinear time series errors in the literature 
except[13]. [13]investigated the estimating problems of 
partial linear regression models with random coefficient 
autoregressive errors. 
 In this study, by approximating the nonparametric 
component with B-spline series we study the problems 
of estimating the parametric and nonparametric 
components of the partial linear regression model (1.1) 
with a nonlinear time series error structure.  More 
specifically, we consider a first-order Markovian 

bilinear   error  process iε , which is a stationary 

solution of : 
 

1( ) , 1, , ,i i i ie e i nε φ θ ε −= + + = …  (1.2) 

 
where, {ei} is a zero mean process consisting of i.i.d. 

random variables with finite second moments 2eσ . 

Obviously, the model (1.2) includes the usual AR (1) 
structure. [14]discussed the estimation and test problems 
of the ordinary linear regression model with error 
structure (1.2). Model (1.2) has been extensively 
discussed in the control theory literature[15,16]. 
[17]applied model (1.2) to study the well-known Wolfer 
sunspot numbers for the years from 1700 to 1955 and a 
seismic record obtained from an underground nuclear 
explosion that was carried  out in the USA on October 
29th, 1966.  Recently, model (1.2) has been extended to 
the case of space time[18,19]. More references about the 
theoretical results, applications and the extensions of 
the model (1.2) can be found in the monograph of [9].     
 Based on the approximation of ( )g ⋅  by a B-spline 

series and least squares estimation, we construct the 
following estimators for model (1.1) with error 
structure (1.2): 
 
i. Semiparametric ordinary least squares estimator 

(SOLSE) of β , 

ii. Least squares estimator of the auto regression 
parameter φ , 

iii. Semiparametric generalized least squares 
estimators (SGLSE) of β ,  

iv. Estimator of the asymptotic covariance matrix of 
the SGLSE of β , and  

v. B-spline series estimator of the nonparametric 
component function ( )g ⋅ . 

 We will further investigate the asymptotic 
properties of these estimators and derive their limiting 
distributions. In addition, a small simulation is 
conducted to evaluate the performance of the estimators. 
 
Estimators: Throughout this study we will assume that 
the design points xi and ti are fixed, and they are related via:  
 

( ) , 1, , ;   1, , .is s i isx h t u i n s p= + = =… …  (2.1) 
 
 The reasonableness of this relation can be found 
in[2]. In addition, suppose that the vector (1,…,1)' is not 
in the space spanned by the column vectors of X = 
(x1,…, xn)', which ensures the identifiability of model 
(1.1) according to[1]. It is also assumed that the 
sequence of designs ti forms an asymptotically regular 
sequence[20] in the sense that: 
 

1/ 2

01

1
max ( ) ( ),

1
it

i n

i
p t dt o n

n
−

≤ ≤

−− =
−∫  

 
where, ( )p ⋅  denotes a positive density function on the 

interval [0,1]. 
 Let { }, , ; 1, ,i i ix t y i n= …  be a the modelf observed 

data from model (1.1), ( )ij n pX x ×=  and  

1( , , ) 'ny y y= … . Denote by ( ),k n jS  the class of spline 

functions of degree ν  and k(n) knots. It is well 

known[21] that ( ),k n jS  has a basis consisting of  k(n) 

+ ν  normalized B-splines { }( ), ( ) : 1, , ( )k n jB j k n ν⋅ = +…  

where ( ), ( )k n jB ⋅ has support 

1 1[( 1) ( ),  ( 1) ( )]j k n j k nν ν− −− + + + , and ( )g ⋅  can be 

approximated by a linear combination ( ),' ( )k n jBα ⋅  of 

the basis, where ( )Rk n να +∈  and 

( ), ( ),1 ( ), ( )( ) ( ( ), , ( )) 'k n j k n k n k nB B B ν+⋅ = ⋅ ⋅… . 

 For ( )R , Rk n pνα β+∈ ∈ , 

1 2
( )

1

( , ) ( ' ' ( ))
n

n i i k n i
i

S n y x B tβ α β α−

=
= − −∑   is minimized at 

ˆ ˆ( , )n nβ α  given by 
( ) ( )

1ˆ ( ' ) '
k n k nn B BX M X X M Yβ −=  and 

1
( ) ( ) ( )

ˆˆ ( ' ) '( )n k n k n k n nB B B Y Xα β−= − , where 
( )k nB = 

( ),1 1 ( ), ( )( ( ), , ( )) 'k n k n k n nB t B tν+… , 
( ) ( )

1
k n k nB BM P= − and 

( )

1
( ) ( ) ( ) ( )( ' ) '

k nB k n k n k n k nP B B B B−= . This ˆ
nβ  is called the 

semiparametric ordinary least squares estimator 
(SOLSE) of β . 

 When the errors are correlated, the SOLSE ˆ
nβ  is 

not asymptotically efficient as it ignores the correlation. 
Hence we propose a semiparametric generalized least 
square estimator (SGLSE) of β . Since for a given φ : 
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2 2

2 2 2

(1 )
Cov( ') ( )

1
e

e

φ σεε φ
φ θ σ
−= Ω

− −
 

 

where, 1( , , ) 'nε ε ε= … , we define a SGLSE as 

follows:  
 

( ) ( )

( ) ( )

1 1
( )

1
( )

( ' ( ) )

' ( )

k n k n

k n k n

G B k n B

B k n B

X M B M X

X M B M Y

β φ

φ

− −

−

= Ω

Ω

ɶ
 (2.2) 

 
Where: 
  

2

2
1

2

n n

1 0 0 0

1 0 0

0 1 0
( )

0 0 1

0 0 0 1

−

×

−φ 
 

−φ + φ −φ 
 −φ + φ −φ Ω φ =
 
 

−φ + φ −φ 
 −φ 

⋯

⋯

⋯

⋮ ⋮ ⋱ ⋱ ⋱ ⋮

⋯

⋯

 

 
Remark 1: By Lemma 3 in the Appendix, 

( )
'

k nBX M X  

and 
( ) ( )

1
( )' ( )

k n k nB k n BX M B M Xφ−Ω  are positive definite 

when n is large. Therefore, without loss of generality, 
we can assume that the inverses of these two matrices 
exist. 

 When φ  is unknown, the Gβɶ  in (2.2) is not 

directly usable, and we need a suitable estimator, say 

n̂φ , of φ . Then we can replace ( )φΩ  by ˆ( )nφΩ  in 

(2.2) and obtain an estimate of β  that can be computed 

from the data. Noting that iε  is unobservable, a 

reasonable estimator of φ  is the least squares 

estimator : 
 

1
2

1 1
2 2

ˆ ˆ ˆ ˆ
n n

n i i i
i i

φ ε ε ε
−

− −
= =

 
=  

 
∑ ∑  

 
based on the estimated residuals: 
 

( )
ˆˆ ˆ' ' ( ), 1, , .i i i n n k n iy x B t i nε β α= − − = …  (2.3) 

 
 Consequently, we define our SGLSE of β , 

denoted by ˆGβ , as: 
 

( ) ( )

( ) ( )

1 1
( )

1
( )

ˆ ˆ( ' ( ) )

ˆ' ( )

k n k n

k n k n

G B n k n B

B n k n B

X M B M X

X M B M Y

β φ

φ

− −

−

= Ω

Ω

  (2.4) 

 

 Based on this SGLSE ̂Gβ , we can construct the 

following estimator of the nonparametric component 
function ( )g ⋅ :  

1
( ) ( ) ( ) ( )

ˆˆ ( ) ( ' ) '( )G k n k n k n k n Gg t B B B B Y X β−= −  (2.5) 

 
 Furthermore, an estimator of the asymptotic 

covariance  matrix  of  ̂ Gβ   is  given by 1
2

ˆn− Σ , where   

( ) ( )

2 1 1
2 ( )

ˆˆ ˆ ( ' ( ) )
k n k nB n k n Bn X M B M Xεσ φ− −Σ = Ω   and: 

  

2 1 2
( )

1

ˆ ˆˆ ( ' ' ( ))
n

i i n n k n i
i

n y x B tεσ β α−

=
= − −∑  (2.6) 

 
Large sample properties: We begin with the 
following assumptions required to derive the main 
results, which are quite mild and can be easily satisfied 
(Remark 2 below).  
 
Assumption 1: For i = 1,…, n and j = 1,…, p, uij satisfy: 
 

| |,
1

1
lim , for  0, 1, 2, ;   , 1, ,

n h

ki k h j hij
n

k

u u b h i j p
n

−

+→∞ =
= = = ± ± =∑ … …

 (3.1) 

 

where, the matrix ( )oijB b=  is nonsingular, and:  

 

( )* 1/2
i

1 i p
max Au O [tr(A 'A] foranymatrix A
≤ ≤

= =  (3.2) 

 
where,  *

1( , , ) 'i i niu u u= …  and    ⋅  denotes the 

Euclidean norm. 
 
Assumption 2: The functions ( )g ⋅  and 1 ph ( ),...,h ( )⋅ ⋅  

are ν  times continuously differentiable on the interval 

[0,1], where 1ν > . 
 
Assumption 3: The coefficients θ  and φ , and the 

variance 2
eσ  of  {ei} in model (1.2) satisfy | | 1φ <  and 

2 2 2
e| | 1φ + θ σ < . 

 
Remark 2:  The above  uij  behave like zero mean, 
uncorrelated random variables and hj (ti) are the 
regression of xij on ti. Specifically, suppose that the 
design points (xi, ti) are i.i.d. Random variables, and let 
hj(ti)  = E[xij | ti] and uij = xij  –  hj(ti)  with E[ui ui'] = B. 
Then by the law of large numbers, (3.1) holds with 
probability 1. Moreover, according to[22] (3.2) holds 
when uij behave like zero mean, uncorrelated random 
variables. Assumption 2 is mild and holds for most 
commonly used functions, such as the polynomial and 
trigonometric functions. 
 The first theorem below shows the asymptotic 
normality of the SOLSE nβ̂ . 

 
Theorem 3.1: Suppose that Assumptions 1 to 3 hold 

and / (2 1) /(2 1)
1 2c n k(n) c nν ν+ ν ν+≤ ≤  where c1 and c2 are 

positive constants. Then:   
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2 2
1 1

12 2 2

(1 )ˆ( ) 0,  
1

− − −− → → ∞ − − 

φ σβ β
φ θ σ

e
n D

e

n N B G B as n  

 
where, 1

1 lim ' ( )−

→∞
= Ω φ

n
G n U U  provided it is positive 

definite, U = (u1,…, un)’, B is defined in Assumption 1 

and “ D→ ” denotes convergence in distribution.  

 The asymptotic normality of ̂nφ  is established in 

the second theorem below. 
 
Theorem 3.2: Under the conditions of Theorem 3.1, if, 
in addition, 4

1[ ] < ∞εE , then: 

  
2 2 2 2 2

1 1
2 2
1

[ ] [ ]ˆ( ) 0,  
( [ ])

 +− → → ∞ 
 

σ ε θ σ εφ φ
ε

e e
n D

E E
n N as n

E
 

 
 The next theorem shows that the SGLSE 

Gβɶ  

defined in (2.2) and its feasible version ˆ
Gβ  in (2.4) have 

the same limiting normal distribution. 
 
Theorem 3.3: Under the conditions of Theorem 3.2 we 
have 1/2ˆ( ) ( ) ( )−− = − +ɶβ β β βG G pn n O n and the 

common limiting distribution of ̂ Gβ  and Gβɶ  is given 

by: 
 

2 2
1

22 2 2

(1 )ˆ( ) 0,  
1

− −− → → ∞ − − 

φ σβ β
φ θ σ

e
G D

e

n N G as n  

 

where, 1 1
2 lim ' ( )

n
G n U Uφ− −

→∞
= Ω  provided it is positive 

definite.  

 Since 1 1 1
2 1G B G B− − −≤ , according to Theorems 

3.1 and 3.3, ̂ Gβ  the asymptotic covariance matrixient 

than ˆ
nβ  in terms of asymptotic covariance matrix.    

 Let ( )Bν ⋅  denote the ν th Bernoulli polynomial, 

which is recursively defined by: 
 

0 10
( ) 1, ( ) ( ) 1,2, ,

t

i i iB t B t iB z dz b i−= = + =∫ …  

 

where, 
1

10 0
( )−= − ∫ ∫

t

i ib i B z dzdt  is the ith Bernoulli 

number[23]. The following theorem establishes the 
asymptotic normality of the B-spline series estimator 

ˆ ( )Gg t of g (t). 

 
Theorem 3.4: Under the conditions of Theorem 3.1, for 
any ( /( ( ) ), ( 1) /( ( ) )]t i k n i k nν ν∈ + + + : 

 

{ }1 ˆ ( ) ( ( ) ( )) (0,1)   n G Ds g t g t b t N as n− − + → → ∞ , 

where, 2 1
( ) ( ) ( ) ( )( ' ) 'n k n k n k n k ns Var B B B B ε− =  

,  

( )( ) ( ) ( ( ) ) /[ ! ( ) ]b t g t B tk n i k nν ν
ν ν= − − , 1( , , ) 'nε ε ε= … . 

 For inference about β based on the asymptotic 
distribution of β̂G , an estimator of its asymptotic 

covariance matrix is needed.  Let 2Σ̂  be given by (2.6)-

-(2.7). Then we have the following result. 
 
Theorem 3.5: Under the conditions of Theorem 3.2 we 
have : 
 

2 2
1

2 22 2 2

(1 )ˆ (1)
1

e
p

e

G o
φ σ

φ θ σ
−−Σ − =

− −
 

 
 From the results given in Theorems 3.3 and  3.5, it 
follows that: 
  

1 2
2

ˆ ˆ( ) ' ( ) as  G G D pn nβ β β β χ−− Σ − → → ∞  

 
 Therefore, the set 

1 2
2 ,1

ˆ ˆ{ : ( ) ' ( ) }G G pn αβ β β β β χ−
−− Σ − ≤ constitutes a large-

sample 100(1 )%α−  confidence ellipsoid forβ . For 

small sample sizes 
, ,1 /p n pF pα− −

can be used to substitute 

2
,1p αχ − . 

 
Remark 3:  By applying the tensor-product B-spline 
technique[24] the above results can be easily extended to 
the case of multivariate regressor t. 
 
A simulation study: This presents a simulation study 
to evaluate the finite sample performance of the 
estimators. The observations are generated from: 
 

1

3.5 cos(2 ) ,

( 0.1 ) , 1, , ,−

= + +
= + + = …

π ε
ε φ ε

i i i i

i i i i

y x t

e e i n
 

 
where, 2( 0.5) / ,  5 0.5i i i it i n x t η= − = +  and {ei} are i.i.d. 

N (0,1). For a range of values of φ , we generate 10,000 

samples of size 200 from the above model (the xij 
values are generated once for a fixed φ  value) and 

estimate φ , β  and ( )g ⋅  for each sample. We here use 

the uniform knots. According to[24] uniform knots are 
usually sufficient when the function ( )g ⋅  does not 

exhibit dramatic changes in its derivatives. Thus, we 
just need to determine the number of knots to use. We 
use the method in[24] to do so. Biases and sample 
variances (Var) of the simulated estimates are given in 

Tables 1 and 2, where ˆ ( )ng t , ˆ ( )Gg t  and ( )Gg tɶ  are 

based on ̂ nβ , ˆ
Gβ  and  Gβɶ  respectively. 
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Table 1:  Simulated biases and variances of the estimators for φ  andβ  

φ     Bias( n̂φ ) Var( n̂φ ) Bias( ˆ
nβ ) Var( ˆ

nβ ) Bias( ˆ
Gβ ) Var( ˆ

Gβ ) Bias( Gβɶ ) Var( Gβɶ ) 

0.2 -0.0059 0.0009 0.1228 0.0178 0.1019 0.0130 0.1014 0.0127 
0.3 -0.0095 0.0014 0.1154 0.0161 0.0839 0.0095 0.0829 0.0092 
0.4 -0.0181 0.0019 0.1089 0.0152 0.0723 0.0082 0.0689 0.0076 
0.5 -0.0204 0.0024 0.1181 0.0196 0.0688 0.0082 0.0631 0.0071 
0.6 -0.0217 0.0029 0.1138 0.0189 0.0466 0.0053 0.0396 0.0046 
0.7 -0.0229 0.0034 0.1198 0.0240 0.0455 0.0051 0.0336 0.0043 
0.8 -0.0270 0.0039 0.1195 0.0289 0.0304 0.0048 0.0200 0.0042 
 

Table 2: Simulated biases and variances of the estimators for ( )g ⋅  

T g(t)  Bias( ˆng ) Var( ˆng ) Bias( ˆGg ) Var( ˆGg ) Bias( Ggɶ ) Var( Ggɶ ) 

(30-0.5)/200 -0.6064 -0.0319 0.0144 -0.0277 0.0140 -0.0269 0.0140   
(60-0.5)/200 -0.2940 -0.0308 0.0095 -0.0188 0.0088 -0.0184 0.0087   
(90-0.5)/200 -0.9460 -0.0856 0.0239 -0.0502 0.0182 -0.0498 0.0179   
(120-0.5)/200 -0.8181 -0.0712 0.0392 -0.0661 0.0358 -0.0659 0.0356   
(150-0.5)/200  -0.0157 -0.0352 0.0612 -0.0339 0.0539 -0.0338 0.0535   
(170-0.5)/200 0.5750 0.0613 0.1113 -0.0009  0.0897 -0.0014 0.0897   

 
 From Table 1 we can see that in all cases the 
semiparametric generalized least squares estimator β̂G  

has smaller biassemiparametrices than the 
semiparametric ordinary least squares estimator β̂n . 

The advantage of ̂βG  over β̂n  is more significant when 

φ is large (high serial correlation), as one would expect 
since β̂G  takes the serial correlation into account 

whereas ̂βn  does not. 

 Moreover, as φ increases, the bias and variance of 
β̂G  decrease, but this is not the case for β̂n . In addition, 

the performance of ̂βG  is close to that of the φ-known 

semiparametric generalized least squares estimator β̂G  

across the values of φ. Table 1 also shows that the 

estimator n̂φ  of φ  is adequate. 

 From Table 2 we can see that the nonparametric 
estimator ˆGg  based on the semiparametric generalized 

least squares estimator ̂βG  is better than the 

nonparametric estimator ˆng  based on the 

semiparametric ordinary least squares estimator β̂n  in 

terms of bias and variance. 
 

CONCLUSION 
 
 In this article we have studied the estimation 
problem of a partly linear regression model with 
bilinear time series errors. Using B-splines to 
approximate the nonparametric component, we have 
constructed the semiparametric ordinary and 
generalized least squares estimators of the parametric 
component, the least squares estimator of the 
autoregressive parameter, and the B-spline series 
estimator of the nonparametric component. We have 
also derived the asymptotic normality for these 
estimates. In both theory and simulation, we have 

demonstrated that the semiparametric generalized least 
squares estimator is more efficient than the 
semiparametric ordinary least squares estimator.  
 
Appendix: Proofs of Theorems: In order to prove the 
theorems presented earlier we first introduce several  
lemmas.  
 
Lemma 1: Suppose that a function ( )f ⋅ satisfies 

Assumption 2. Then we have: 
 

1
( ) ( ) ( ) ( )

[0,1]

1

sup ( ) ( ' ) '

( ( )) ( ( ) )

−

∈

− −

− =

+ ν

k n k n k n k n
t

f t B B B B f

O n k n O k n

 

 
where f = (f(t1),…, f(tn))'.  
 

Lemma 2: For the basis of B-splines in ( ),k nS ν  we 

have: 
 

i. 
( )

2
( ),

1

1
k n

k n i
i

B
ν+

=
≤∑   for all t; and 

ii. All eigenvalues of 1
( ) ( )'k n k nn B B−  are between 

1
1 ( )c k n− and 1

2 ( )c k n−  for some constants 

1 20 c c< < < ∞ .  

 The proofs of Lemmas 1 and 2 can be found[25]. 
 
Lemma 3: Suppose that Assumptions 1 and 2 hold. 
Then as n → ∞ ,  

( )

1 '
k nBn X M X B− →    and   

( ) ( )

1 1
( ) 2' ( )

k n k nB k n Bn X M B M X Gφ− −Ω → . 

 
Proof: Applying Lemmas 1 and 2, the proof of Lemma 
3 is simple. We here omit the detail.  
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 Consider the normalized weighted sum of random 

variables { iε } defined in (1.2), namely, 
1/ 2

2

1 1

n n

i i i
i i

a a ε
−

= =

 
 
 
∑ ∑

, where {ai} is a sequence of real 

constants.   It   has   the   following  asymptotic 
property. 
 
Lemma 4: If 1

| |
1

 for 1, 2, ,α
−

−
+

=
→ = ± ±∑ …

n h

i i h h
k

n a a h
 {ai}  is 

bounded, and Assumption 3 holds,  then:  
 

1/ 2

2 2

1 1

(0, )   ,
n n

i i i D
i i

a a N as nε σ
−

= =

 
→ → ∞ 
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 where 

2  ( )h
h

hσ α γ
∞

=−∞
∑  and 2 | | 2 2 2 1( ) (1 )h

e ehγ σ φ φ θ σ −= − −  is the 

autocovariance function of { }iε .  

 
Proof: According to the property of { }iε  and 

Lemmdifficult[26], it is not difficulty to complete the 
proof. 
 We are now ready to prove the main results.  
 
Proof of Theorem 3.1:  By (2.1) it is easy to see that 

( ) ( ) ( )

*' *' *' ' ( ) , 1, , ,
k n k n k ni B i i B i Bu M u u P h I P i nε ε ε ε= − + − = …  

where 
1( ( ), , ( )) 'i i p ih h t h t= … .  Let  

2 2 2 2 1
0 (1 )e ec σ φ θ σ −= − − . Since 

( ) ( ) ( ) ( )

*' *' * *' *
0 0 max( ) ( ) [ ( )] ( ( ) ) ( ),

k n k n k n k ni B i B B i i B iVar u P c u P P u c u P u O k n o nε φ λ φ ν= Ω ≤ Ω = + =

where, max( )λ ⋅  denotes the maximum eigenvalue of a 

matrix, we have 
( )

*' 1/ 2( )
k ni B pu P o nε = . 

Moreover, by Lemma 1, there exists a real vector η  

such that: 
  

1
( )

1
max ' ( ( )) ( ( ) ).i k n

i n
h B O n k n O k n νη − −

≤ ≤
− = +  

 
This implies: 
  

( ) ( ) ( ) ( )

' ' '
0 0 max

2 2 2

( ) ( ) [ ( )]

( ( ) ) ( ( ) ).ν

ε φ λ φ
− −
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Hence 

( )

' 1/ 2( )
k ni B ph M o nε = . It follows that 

( )

1/ 2' ' ( )
k nB pX M U o nε ε= + . 

 
 Next, by Lemma 1, there exists a real vector π  
such that:  
 

1
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1
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( )
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Consequently: 
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 The conclusion of Theorem 3.1 then follows from 
Lemma 3 and Assumption 1.  
 
Proof of Theorem 3.2: It is easy to see that the 
following equation holds:  
 

1 1 1 1
2 2 2

1 1 1
2 2

ˆ ˆ ˆ ˆ( )( )
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− = − − +
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∑ ∑
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i i i i i i i i
i i i
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i i i i i i
i i

 (A.1) 

 
 According to the definition of ̂ε i  in (2.3), we have: 
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 By the root-n consistency of ̂βn  and the proof of 

Theorem 3.1, we have 1 (1)= pI O .  Next, let *
( )k nB  = 

( ) 2 ( )( ( ), , ( )) '…k n k n nB t B t , *
1 1( , , ) '−= …ε ε εn

, and 
*

1( ) ( )n Varφ ε−Ω = . Then the Cauchy-Schwarz 

inequality gives 
( )

*' * 1 * *
 2 ( ) ( ) ( ) ( ) 21 22
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Lemma 1 yields 2 2 1 2
3[ ] ( ( ) ) ( ( ) )E I O nk n O n k nν− −= +  so 

that 1/ 2 1/ 2
3 ( ( ) ) ( ( )).I O n k n O n k nν− −= +   The proof of 

4 ( ( ))pI O k n=  is similar to that for 21I . Therefore, 

by (A.2), the middle term in the right hand side of (A.1) 
is op(n

1/2), and similar arguments show that the other 
two terms are op(n

1/2) as well. Consequently, 
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 Combining this with the result of[27], we complete 
the proof. 
 
Proof of Theorem 3.3: By the definition of β̂G , 

Lemmas 1 to 3 and Theorem 3.1 we have: 
 

1 1 1ˆ( ) ( ' ( ) ) ' ( ) (1).− − −− = Ω Ω +β β φ φ εG pn n U U U o  

 
 Moreover, similar  to the proof of Theorem 4.3 
in[10], we have: 
 

1 1 1

2 2
1 1

22 2 2

( ' ( ) ) ' ( )

(1 )
0,  .

1

− − −

− −

Ω Ω →

 − → ∞ − − 

φ φ ε

φ σ
φ θ σ

e
D

e

n U U U

N B G B as n
 

 
 Thus the proof is complete. 
 
Proof of Theorem 3.4: Combining the root-n 
consistency of ̂βG  with Theorem 2.1 in[28] we can easily 

complete the proof. 
 
Proof of Theorem 3.5: This theorem follows from 
Lemma 2 and the proofs of Theorems 3.2–3.3.  
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