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Simulation and Visualization of Safing Sensor
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Abstract: Numerical simulations of Maxwell’'s equations havéiraxted attention of several
mathematicians and engineers in the recent pash &alutions are required for proper understanding
of industrial problems. In this paper we focus attention on numerical simulation of safing sensor
required by a car industry. Maxwell's equation systmodels this industrial problem. We discuss
numerical simulation by the fastful developed ia ISRO, Australia and released by NAG, Oxford.
We take eddy current into consideration in the rlindeprocess of saving sensor and show that
finding the solution is equivalent to the numerisahulation of the Helmholtz equation. We present
numerical simulation of the Helmholtz equation by fistful. We also discuss certain results which
may prove useful for further investigation of tledisg sensor problem.
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INTRODUCTION

Maxwell's equations for static fields take thenfo

Field quantities are denoted as follows: OxE=0 (1.5)
denote electric field intensity (V1)
denote electric flux density (Cfn OxH=J

denote magnetic field intensity (A H

denote electric current density (A3n

T CmITOMm

Let C denote any closed path, S a surface and V a
region. The constitutive relationships for lineanda

denote magnetic flux density (Wb O =p

denote electric charge density ( Cm OB =0.

A nonlinear medium is characterized by the
following

isotropic media are:

J=0oE
B=pH
D =¢E,

where,o is the conductivity (siemens/metre, Shn&

is the permittivity (farad/meter, F ™ and u is the
permeability (henry/meter, H).

Maxwell's equations for isotropic,
homogeneous medium are given as follows:
oH

OxE=—p— 1.1

o (1.1)
I]><H=0E+sa—E (1.2)

ot
nE=P (1.3)
€

OH=0 (1.4)

J=J(E), B= B(H), D= D(E). An anisotropic medium is

a medium for which either J and E are parallel @@

H are not parallel or D and E are not parallel; and
scalars o,u,e become tensors. The properties of an

inhomogeneous medium are different at different
points; that is, the material constants becometiomns

of the spatial coordinates. For more details of
Maxwell's equations, we refer'td!.

Numerical simulation of safing sensor: In the
airbag system of a car, there are two sensorsaibmgy
the blowing up of the airbag. The first sensor pugely
electronic sensor. This sensor may also react to
electromechanical influences not caused by a @ahcr
To avoid the blowing up of the airbag in the noastr
cases, a second sensor is used. This is the sulcall
safing sensor. It is built on an electromagnetisida
The airbag will blow up only if both sensors react.
Safing sensor consists of a canonical magnet in a
cylindrical form. Around this cylinder, there is a
metallic ring that can move along the cylinder. Axe
Klar, presently a Professor at the Technical Ursier
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Darmstadt, Germany, had investigated this problem & =0xA. (2.6)

couple of years ago while working on an industrial

project of the Frauenhofen Institute of Industréeld SinceB=pH , by (2.5):

Business Mathematics, Kaiserslautern, Germany.

Neunzert [Neunzert and SiddRji has proposed an xg=o. 2.7)

advanced model of this study through Maxwell's

equations where he is mainly interested in macasco By (2.6) and (2.7), we obtain:

effects, that is in the magnetization and the ferce

induced by it. OxOxA =0. (2.8)
It has been indicaté¥ that in order to solve this

problem one has to solve the following form of the Applying the formul&!;

Maxwell's equations:

div H = - div M, - div M, 1)  OxHOxA=00BR) -0A (2.9)

B=pH + (M, +M,) 2.2) ﬁg\(j;mposingm [A =0 (Coulomb's gauge) by (2.8), we

My =18, (23)  aa=o. (2.10)

where, H is a magnetic field, B is magnetic indoicti Since;

is well known constant called permeability, M ieth

magnetization of the cone K (magnetizati (n is et@e  divH=0OMH =0, (2.11)
field M(x)) denoted by M and M; the induced

magnetization of the ring R. Mis known while M is  employing the formulaOxOxH =0 H)-AH, we
unknown. M is constant in K and it is in the direction obtain by (2.5) and (2.11) that:

of the axis of the magnet, that is, of the x-axis: ' ' '

M (%, Yy, 2)=(M,, 0, 0). AH=0. (2.12)

By solving (2.12), we get H and so B and

The stationary Maxwell equation is given as: consequently (2.3) gives usaMSimulation of (2.12) by
fastflo is given in Appendix-A for a metallic cirlau
divB=0 (2.4) ring.
Or: 3. Numerical solution of safing sensor when the
sour ce of the field varies sinusoidally with time: An
divH=-divM electric current induced within the body of the

conductor, when the conductor either moves thraaigh
non-uniform magnitude field or is in a region where
there is a change in magnetic flux, is known asetiaty
current. Since iron is a conductor, there will Inecaldy
B now generates the magnetization of the ring and:cUrrent in it, when the flux is changed. In thistsen
we take into account in the airbag sensor the eddy
Mg =B, current and carry out numerical simulation usingjffa
where the metallic ring is replaced by metallic

From (1.6) it is clear that in a region free afattic ~ Cylindrical cavity.

If we could determine H, we would get:

B =pH + M.

currents we have: When the source of the field varies sinusoidally
with time, the magnetic field intensity will be
OxH=0 represented by the phaser:
1 . .
divH —a div B-u(div M, +div M) H=Hoexp(jot)

- _ (2.5)
=0as M= (M.0,0) where, ® is the angular frequency andoHs the
div M, =div[lBRJ=0- amplitude of the magnetic field intensity. The
corresponding time-varying physical quantity is thel
part of the phaser.
In view of Theorem 3.38, there is a magnetic In the present case, the safing sensor is governed
vector potential A such that by Maxwell's equations:

126:
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0B 0A _

UxE=-— 3.1 E+—=-0 3.8
T (3.1) +o5p =0 (3.8)
Om=0 (3.2) Therefore the current density J is:

OxH=J, (3.3 J:oEzo[—Dq)—%—?j (3.9)

where, J=0E, H=vB { =1/u), time-varying currents
are distributed with density J. The medium is
characterized by a permittivity, a reluctivity vand a
conductivityo.

Let us also assume thawdries with time but that
the time variations are small; more precisely,irifie
harmonic variations occur, the angular frequencis oA

much lower tharo/e. OxH=0xvB=0xvOxA :o’(—D(p——J (3.10)

The current expressed by equation (3.9) has two
terms: a source term and an induced term. By
substituting the value of H in the term of (B =vB) in
(2.8) and taking into accourB=0xA and (3.3), we
obtain:

It is clear that: ot
OxH=0oE. (3.4) SinceOxOxA =0(0MR) -MA, (3.10) gives:
Evaluating E from (3.4) and substituting it into _ 9A
(3.1) and using H=vB yields: VO(DIA) — VDA = 0[‘D‘P‘Ej (3.11)
DXE:DX(EDXHJ:DX[EXVBJ Or:
o o
VAA —oa—A =vJ(O@) +cle (3.12)
or: ot '
Oxg=_98 (3.5) By introducing Coulomb's gaugeltA =0, and
ot denoting the source current density by=-oOgp, we
. . . finally arrive at:
By applying the identits:
0A
Ox(0xB) =0(0B) -AB, 0 TVAA =Y, (3.13)

and (1.8), we obtain from (eq: 3.5) for a homogerseo (3.13) is a parabolic differential equation for

medium: describingA the so-called eddy-current phenomena in
9B conducting media subject to variable magnetization.
AB:WE' (3.6) One should add boundary and initial conditions in

(3.13).
If the domain Q is two-dimensional and

(3.6) is a diffusion equation and governs the mégne rectangular coordinates are used, then as we know:

field in conductive media.

Now we describe the same phenomena in terms
a vector potential A. In view of (2.4), B is solédal (it
has zero divergence), and we can introduce a vector
potential A (when it exists) by: As a consequence, (3.13) reduces to:

% =(0.0,a), = (0.0,]

B=0xA. o%_\—vAAq. (3.14)

By (3.5), we have:
When the sources of the field vary sinusoidally

with time, so do the quantities describing thedfiélhe
magnetic field intensity will be represented by the
phaser:

DX[E+%—?j=O (3.7

This implies that it is possible to express thetoe _
as the gradient of a scalar potential e by: H =H, exp(jwt),
126:
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where, w is the angular frequency andgHs the experime_ntsi In 2004, Gopalkrishnan, Pasciak and
amplitude of the magnetic field intensity. The DemkowicZ!! have studied a multigrid algorithm
corresponding time-varying physical quantity is tael suitable for the efficient solution of indefiniténéar
part of this phaser. As a result, Maxwell's equa(d1)  Systems arising from finite element discretizatioh

and (3.3) become: time harmonic Maxwell equations. Efficient solutioh
the system of linear equations obtained by finite
OXE = —jcoB element discretization was a challenging problemafo

long time, mainly due to the fact that linear sysdeare
indefinite, and the differential operator curl letarge

i ) null space. In this paper a multigrid algorithm fars
and correspondingly equations (3.6) and (3.13)dedu roplem is developed. Smoothers are defined and

UxH=1J,

respectively, toAB = jwpoB and: analyzed. Convergence estimates for the multigrid
algorithm are given and the results are tested by
—-VAA +jwoA =] (3.15) numerical experiments. Smoothing operators aredbase

on a generalized block Jacobi or block Gauss-Seidel

(3.15) is a Helmholtz equation. Simulation of (3.by  iteration. Lowest order Nedelec elements on cubes a
fastflo is given in Appendix-B. used for numerical experiments.

4. A review of current results useful for safing ACKNOWLEDGMENT

sensor simulation: Monk and Zhan§ have analyzed
the use of edge finite elements and the multigri
method to approximate the problem of computing
static magnetic field in a cavity. Arnold, Falk and
Wintef® have constructed domain decomposition
preconditioners for a positive-definite symmetric

operatgr, yvhich arises from the finite elementAppendix A: Simulation of Safing Sensor with

discretizatgion of the boundary value problemyeaiiic Ringfastfio is a finite element package for the

associated with the saﬁ]ng sensor model. numerical solution of partial differential equation
In 1998, H!ptma}ﬁ adapted multigrid ideas 10 (ppgg) |t js developed in collaboration betweea th

Maxwell's equations in general form for edge elet®en ~q\rRo  Mathematical and Information Sciences,

and in the case of discontinuous coefficients. s h Compumod, and BHP Research. SimulationAbl=0

studied in the cited paper solution of dis_,(_:rete'eatmnal for metallic ring. We solve the Laplace equationan

problems  related  to ~the  bilinear  form i circle where the value of the boundary is et

(eurl, curly o +(0B , defined orHy(cur,Q). A X242

multigrid method for the fast iterative solution tife

resulting linear system has been constructed. Arnol

Falk, Wintef? have considered the solution of the

linear algebraic equations which arise from thetdin

element discretization of variational problems mbse

the Hilbert spacesH(div) and H(curl) in three

dimensions. It is shown that under appropriate
conditions the multigridv-cycle is an efficient solver

and preconditioner for the discrete operator. Tidgel

has developed two iterative subtracting methods for
Maxwell's equations with discontinuous coefficieits

two dimensions. For comprehensive properties ofesh:
Hilbert spaces H(div;Q) and H(cur;Q) and their

bilinear forms, we refer {6°.. Ammari and Nédélé
have given a simple new variation proof of the
convergence of the electric and magnetic field tsarhg

of the scattering problem for the Maxwell equati@ss
the frequency goes to zero.

Edlund, Lotsted, Straffd has developed a hybrid
method for the solution of Maxwell's equations fire t
frequency domain. The equations are discretized by
Galerkin method and solved by an iterative block
Gauss-Seidel method. They have studied convergence
of the iterations theoretically and through the sdoal ~ Solution contour

126¢
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Appendix B: Simulation of safing sensor with metallic 2.

cylindrical cavity taking eddy current into considgéon

We solve the Helmholtz equation on the unit

square where we set J, v,q, o to 1 and for the

boundary conditions we set the bottom to 1 , the to

side to 3 and the two sides in 2 .

Mesh

Solution contour

3.

10.

11.
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