
American Journal of Applied Science 2 (8): 1218-1221, 2005
ISSN 1546-9239
© 2005 Science Publications

Corresponding Author: K. Mustafa, Department of Information Technology, Al-Hussein Bin Talal University, Ma’an, Jordan
1218

Measuring the Function Points for Migration Project: A Case Study

1K. Mustafa, 2K. Gowthaman and 2R.A. Khan

1Department of Information Technology, Al-Hussein Bin Talal University, Ma'an, Jordan
2Department of Computer Science, Jamia Millia Islamia (A Central University), New Delhi, India

Abstract: In this study, we extend the study of Function Point Analysis (FPA) for the measurement of
source code based migration project using the migration tooling options. FPA is an objective and
structured technique to measure software size by quantifying its functionality provided to the user,
based on the requirements and logical design. It is noticed that the procedure for the above
measurement is not fully described in FPA method. Hence, the same estimation concept has been
applied to an in-house project on an experimental basis at a leading software development
organization. The yielded results are compared with FPA for the re-engineering project.

Key words: Function point analysis, source code migration, software estimation, re-engineering

INTRODUCTION

 One of the most important activities in the early
stages of software development is estimation. The size
of the software[1], be it Function Points or Lines of
Code, plays a pivotal role in this process and forms the
base for deriving a number of metrics to measure
various aspects of the software throughout the
development cycle. Hence, measuring the size of the
software becomes critical though many other sizing
measures such as objects, classes, modules, screens,
programs and so on. Accurately predicting the size of
the software has always troubled the software industry
over the years. Function Points are becoming widely
accepted as the standard metric for measuring
software size.
 We sketch briefly for existing software systems[2]
and in particular legacy systems, where the functional
documentation is often missing or obsolete. Hence, the
standard Function Point Analysis (FPA) is not
applicable for the sizing of enhancement projects (the
implementation of change requests) as back firing is
not applicable either it only refers to the complete
software system and its precision is not sufficient to
size individual enhancement projects. A method to
perform FPA based on the source code is proposed.
This method is instantiated for COBOL and JCL (Job
Control Language). It can be integrated into the
maintenance process such that each change request is
defined in terms of the objects from the Function Point
(FP) conceptual model. In this way, the sizing of a
change request is obtained for free.
 It is demonstrated that simplified way of the
IFPUG (International Function Point Users Group)
function points based on the simplification ideas
suggested by NESMA (Netherlands Software Metrics
Association) to estimate the size of management
information systems[3]. He analyzed nearly twenty web

applications using the simplified method, whose result
was very close to the ones using the IFPUG detailed
method. The simplified method is based on assigned
low complexity to all the data and transactional
functions. Thus, when data and transactional functions
are identified, their complexity is determined
automatically for Web based applications[4].

Function points analysis: Function Point Analysis is a
well-known method to estimate the size of software
systems and software projects[5]. This technique breaks
the system into smaller components so that they can be
better understood and analyzed. The function point
count can be applied to development projects,
enhancement projects and existing applications as well.
Function Point Analysis is expected to obtain the
following objectives[6]:

* Determine the type of Function Point count.
* Determine the application boundary
* Identify and rate transactional function types to

calculate their contribution to the Unadjusted
Function Point count (UFP).

* Identify and rate the data function types to
calculate their contribution to the UFP.

* Determine the Value Adjustment Factor (VAF) by
using General System Characteristics (GSCs).

* Finally, calculate the adjusted Function Point
count.

 There are 5 major components of Function Point
Analysis which capture the functionality of the
application. These are External Inputs (EIs), External
Outputs (EOs), External Inquiries (EQs), Internal
Logical Files (ILFs) and External Interface Files (EIFs).
First three are treated as Transactional Function Types
and the last two are called Data Function Types. Each

Am. J. Applied Sci., 2 (8): 1218-1221, 2005

 1219

of the components of Function Point Analysis is
explained in brief in the following sub-sections[6-8].

External input (EI): External Input is an elementary
process in which data crosses the boundary from
outside to inside. This data may come from a data input
screen or another application. The data may be used to
maintain one or more internal logical file. The data can
be either control information or business information.

External output (EO): External Output is an
elementary process in which derived data passes
through the boundary from inside to outside.
Additionally, an EO may update an internal logical file.
The data creates reports or output files sent to other
applications. These reports and files are created from
information contained in one or more internal logical
files and external interface files. The derived data is
processed beyond direct retrieval and editing of
information from internal logical files or external
interface files.

External inquiry (EQ): External Inquiry is an
elementary process with both input and output
components that results in data retrieval from one or
more internal logical files and external interface files.
The input process does not update or maintain any
FTRs (Internal Logical Files or External Interface Files)
and the output side does not contain derived data.

 Internal logical file (ILF): Internal Logical File is a
user identifiable group of logically related data that
resides entirely within the application boundary and is
maintained through External Inputs. Even though it is
not a rule, at least one external output and/or external
inquiry should include the ILF as an FTR.

External interface file (EIF): External Interface File is
a user identifiable group of logically related data that is
used for reference purposes only. The data resides
entirely outside the application boundary and is
maintained by external inputs of another application. In
other words, the external interface file is an internal
logical file in another application. At least one
transaction, external input, external output or external
inquiry should include the EIF as a File Type
Referenced.
 This FPA model, developed by Albrecht[9,10] is
widely used in the software industry. The model
estimates software size by counting “function points”.
This is done using three steps[11]:

Step 1: Computing an Unadjusted Function Count

(UFC): Using the above five types of
components (EI, EO, EQ, ILF and EIF), the
number of items in the system is counted and
the level of complexity is determined
(distinguishing between simple, medium and

complex). Thus the total number of items are 5
components multiply with 3 levels of
complexity. Each level has a weight (provided
by the model). The UFC is computed as
follows[9-11]:

() ()
15

i 1

UFC No.of items of types i * weight i
=

=∑

Step 2: Value Adjustment Factor (VAF): The value

adjustment factor (VAF) is calculated based on
14 General System Characteristics (GSC) that
rate the general functionality of the application
being counted. The 14 General System
Characteristics are: Data communications,
Distributed data processing, Performance,
Heavily used configuration, Transaction rate,
On-line data entry, End-user efficiency, On-
line update, Complex processing, Reusability,
Installation ease, Operational ease, multiple
sites and Facilitate change. The degree of
influence of each characteristic has to be
determined as a rating on a scale of 0 to 5 as
defined below.

0: Not present, or no influence
1: Incidental influence
2: Moderate influence
3: Average influence
4: Significant influence
5: Strong influence throughout

 Once all the GSCs have been rated, Total Degrees
of Influence (TDI) are obtained by summing up all the
ratings[11].

14

i
I 1

TDI F
=

=∑

where, Fi is the weight of attribute I
 Now, Value Adjustment Factor is calculated using
the formula[10]:

VAF = 0.65 +TDI/100

Step 3: After determining the Unadjusted Function

Point count (UFP) out of transactions and data
function types and calculating the Value
Adjustment Factor (VAF) by rating the general
system characteristics, the final Function Point
count can be calculated using the
formula[7,8,10]:

FP = UFC * VAF

 To use this model, the software development
organization has to maintain a database of its projects,

Am. J. Applied Sci., 2 (8): 1218-1221, 2005

 1220

including duration, cost, manpower effort and function
points (FE). Based on this database, the cost (in terms
of time and money) of one FP can be computed.
Henceforth, the FP of any new project can be computed
as described above and the cost estimates derived.

Re-engineering case study: To measure the Function
Point for re-engineering application, we apply the FPA
method for the in-house re-engineering project at one of
the leading software organizations. Identity is not
disclosed honoring the industry sentiments.

About the project: The Project is an application
namely Resource Requirement Form (RRF) which is
basically developed for associates who are working for
the organization. The Project has the following features:

* Each request form has a unique ID, which is used

for tracking and status viewing.

Table 1: FP count for normal re-engineering process (without using

migration tool)
Function Complexity Function Type
Type Functional Total Total
ILFs 2 Low x7 14 49
 2 Avg x10 20
 1high x15 15
EIFs 2 Low x5 10 51
 3 Avg x7 21
 1 high x10 10
EIs 10 Low x3 30 52
 4 Avg x4 16
 1 high x6 6
Eos 5 Low x4 20 44
 2 Avg x5 10
 1 high x7 14
EQs 6 Low x3 18 36
 3 Avg x4 12
 1 high x6 6
Total UFC 232
Total TDI 53
VAF 1.18
Total Adjusted FP 273
Source code based FP count using MMLC

Table 2: Migration tool based FP count using MMLC
Function Complexity Function Type
Type Functional Total Total
ILFs 3 Low x 7 21 56
 2 Avg x10 20
 1high x15 15
EIFs 3 Low x5 15 32
 1 Avg x7 7
 1 high x10 10
Eis 6 Low x3 18 44
 5 Avg x4 20
 1 high x6 6
Eos 5 Low x4 20 51
 2 Avg x5 10
 3 high x7 21
EQs 3 Low x3 9 27
 3 Avg x4 12
 1 high x6 6
Total UFC 210
Total TDI 58
VAF 1.23
Total Adjusted FP 258.3

* It automates all functions of the workflow
pertaining to hardware and software installation
processing.

* Generates automatic mail between users to draw
their attention.

* Approving Authority's name, time and date are
endorsed from the terminal.

* When the form is accepted /submitted by higher
authorities, the associate receives feedback on e-
mail with date and time of the approval of the
request.

* E-mail notification is sent at every transition of the
flow of the process.

 The Project was developed in VB, ASP with SQL
server environment and is being used successfully by

the associates. Over the period, the higher authorities
decided to redesign and redevelop this in .Net
environment with some additional requirements. We
measured the FP as per given requirements documents.
Detail is given in Table 1.

 We also estimate the FP count for the same project
which was developed using Migration Model for
Legacy Source (MMLC)[12]. Using this model, the
legacy source codes are loaded into. Net migration tool.
The tool converts 45 % of source code into the target
environment successfully. A migration tool cannot
resolve the remaining compatibility issue and the
developer need to fix the issues[13]. The developer
needs to pay attention to the following activities in this
regard:

1. The development team will have to rewrite the

code before using the migration tool as and when
the target environment does not support certain
features[14].

2. The duplicate code removal, implementing coding
standards, upgrading the problematic syntax and
controls should be done[15].

3. Once the migration tool is loaded, the development
team needs to take care of certain editing like
syntax changes, changes in control object models,
unsupported functions requiring complete redesign,
etc.[16].

4. Another important factor is knowledge transfer
related to Focus on Future Re-engineering (FFR).
In this stage, the developer, should share
knowledge and train the co-developers for
transparency leading to be better understanding and
an accurate and fast achievement of the desired
objectives of the project.

 The FP count as per MMLC is given in Table 2.

DISCUSSION

 Variances of Functional Count of normal re-
engineering process and in using migration model were
very less. To be advantageous for the customer

Am. J. Applied Sci., 2 (8): 1218-1221, 2005

 1221

Function Points can be used to help specify to a vendor
the key deliverables, so as to ensure that appropriate
levels of functionality will be delivered and to develop
objective measures of cost-effectiveness and quality.
They are most effectively used with fixed price
contracts as a means of specifying exactly what will be
delivered. From a vendor perspective, successful
management of fixed price contracts depends absolutely
on accurate representations of effort. Function Points
offer a vast number of benefits by capturing the size of
the software from its functionality standpoint. FPA does
have some disadvantages as follows, Kitchenham[17].

Developers’ experience: Implementation of a specific
logic differs based on the level of experience of the
developer. Hence, the number of lines of code differs
from person to person. An experienced developer may
implement certain functionality in fewer lines of code
than another developer with relatively less experience
does, though they use the same language.

Advent of GUI tools: With the advent of GUI-based
languages/tools such as Visual Basic, much of the
development work is done by drag-and-drops and a few
mouse clicks, where most of the time the programmer
virtually writes no piece of code. It is not possible to
account for the code that is automatically generated in
this case. This difference invites huge variations in
productivity and other metrics with respect to different
languages, making the lines of code more and more
irrelevant in the context of GUI-based languages/tools,
which are prominent in the present software
development arena.

CONCLUSION

 This study has taken the critical view of Function
point estimation issues with a migration tool related to
re-engineering software perspective. The estimated
result is close to the normal FPA estimation process,
but it specifies a particular migration tool. This method
must be validated by applying a number of re-
engineering applications with a known FPA model. The
results have to be discussed with the team of software
engineers for further enhancement.

REFERENCES

1. Hastings, T.E. and A.S.M. Sajeev, 2001. A vector

based approach to software size measurement and
effort estimation. IEEE Trans. Software Eng., pp:
337-350.

2. Steven Klusener, 2002. Source code based function
point analysis for enhancement projects. Proc. Intl.
Conf. Software Engg., pp: 001-004.

3. Edilson, J.D. Candido and Rosely Sanches, 2004.
Estimating the size of web applications by using a
simplified function point method. Proc. Web Media
and Latin American Web Congress, pp: 98-105.

4. Ruhe, M., R. Jeffery and I. Wieczorek, 2003. Using
web objects for estimating software development
effort for web applications. Proc. 9th Intl.
Software Metrics Symp., pp:30-39.

5. Roger S. Pressman, 2001. Software Engineering: A
practitioner’s Approach., pp: 89-94.

6. International Function Point Users Group, 1999.
Function Point Counting Practices Manual. IFPUG,
4.1.1 Edn.

7. IFPUG., 2004. International function point users
group.http://www.ifpug.org. Accessed on Dec.,
2004.

8. NESMA., 2005. Netherlands software metric
association.
http://www.nesma.org/english/index.htm. Accessed
on Jan., 2005.

9. Albrecht, A.J., 1979. Measuring application
development productivity. Proc. IBM Applications
Development Symp., pp: 83-92

10. Albrecht, A.J and J. E. Gaffney, Software
Function: Source Lines of Code and Development
Effort Prediction: A Software Science Validation,
IEEE Trans. Software Engineering, Nov 1983, pp.
639-648.

11. Peretz Shoval and Ofer Feldman, 1996. Combining
function points software estimation model with a
Odessa methodology for systems analysis and
design. Proc. 7th Israeli Conf. Computer based
System and Software Engg., pp: 03-08.

12. Gowthaman, K., K. Mustafa and R.A. Khan,
2005. Source code migration to DOT NET
Framework: A Re-engineering application
perspective. Inform. Technol. J., Vol. 4.

13. Katre, D., P. Halari, N.R. Surapaneni, M. Gupta
and M. Deshpande, 2002. Migrating to .NET: A
Pragmatic Path to Visual Basic .NET, Visual C++
.NET and ASP.NET. Prentice Hall PTR., pp: 35-
125.

14. MSDN Library, 2000. Preparing Your Visual Basic
6.0 Applications for the Upgrade to Visual Basic
.NET. Microsoft Corp.,
http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/dnvb600/html/vb6tovbdotnet.asp

15. Mens, K., B. Poll and S. Gonzalez, 2003. Using
intentional source-code views to aid software
maintenance. Intl. Conf. Software Maintenance,
pp: 169-174.

16. Bergey, J., D. Smith and N. Weiderman, 1999.
DOD Legacy System Migration Guidelines.
Software Engineering Institute, Technical Report:
CMU/SEI-99-TN-013, pp: 2- 25.

17. Kitchenham, B., 1997. The problem with function
points. IEEE Software, pp: 29-31.

