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Abstract: Conventional game theory assumes hyper-ratioraleps, while evolutionary game theory
abandons the assumption. This paper studies wipgieha when agents of both profiles co-exist and
get engaged in a series of antagonistic interagtfte Hawk-Dove game). It is shown that if rationa
agents are perfectly informed as to the type ofr tbpponent, they find it optimal to always be
aggressive (that is, always select “Hawk”) whenrgghiwith an irrational player. It is then shownttha
generally, a similar result is also valid whenaaél agents fail to recognise the type of theirammt
with certainty. Finally, a discussion on why it miag fruitful to consider populations heterogeneasis
to the rationality of agents is provided.
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INTRODUCTION of trying to conjure up newer refinements may gasil
distract one from the fact that the rationality theory
Conventional non-cooperative game theoryimposes is generally too restrictive for the thedoy
assumes players who are endowed with admirablguccessfully apply to real-life interactions. Ergait data
mental attributes. The word “rational”, usually frequently contradict even the simplest of gamies-ffor
employed in economics to describe mere ulility-example, the prisoners’ dilemma, leading to questias
maximisers, is expanded in meaning and implies&gen, \what good is the theory for, if the rational migeit
\Ié)vltat?re more than just “reasonable”; they are,uioip o5 1350565 are not really living in the real world
y, overlyintelligent Such players know that they The argument hardly needs a formal treatment; it

are facing equally sophisticated opponents and thigufﬁces to observe people all around to be comdnc

common knowledge of rationality is somewhat that the rationality in question is definitely reotrait of

reminiscent of the infinite reflection that happevisen th y th . | y i d d

two mirrors are placed the one in front of the otiNot € average person. 00sIing peopie at random an
asking them to participate in some game, one wfadtl

unusually, agents are also thought of as ableigm al h | h h bl
their beliefs with those of their opponents anddhible ~ that several among them may even have trouble to

same probabilistic expectations about the strategie Understand the game in the first place, let aleaelr a
be chosen. If this seems as attaching too much iiait decision based on common knowledge of rationality a
the intellectual capacities of real people, onetlpar consistently aligned beliefs. This does not necegsa
satisfying response is to think that resolutionsttic ~ Stand as a claim that people are not intelligémwt; goint
games comes with logical-as opposed to historips-t  here is that players are too diverse to be all /avith
One period in logical time can be conveniently long such a demanding assumption concerning their
allowing players to think through their best repythe  behaviour. Besides, knowledge of game theory itself
opponent’s best reply and hence, it makes no difiee  can make a difference, for it is fair to assert #eing
if some agent is any “slow” to be rational. On tither ~ conscious of a Nash equilibrium would probably make
hand, this is only partly a pleasing answer, begausa player choose it with more confidence than arakgu
there is nothing to guarantee that people will @atju intelligent player who would be unaware of it.
choose what the theory predicts, no matter how much All such issues concerning rationality seemingly
time they are given to think. resolve themselves with evolutionary game theohe T

More often than not, this discussion is overshambw rationality assumption is not just relaxed, it is
by what indisputably is the primary trouble wittgame  abandoned. Agents are thought of as somehow driven
theoretic circles: Most games have multiple equdlib by animal instincts, only trying to get the mostytcan
which reduces the power of the theory for accurate®ut of a game. Reason can no longer guide them into
predictions anyway, regardless of whether indiviglaae  thinking what other players will do and the only
implausibly modelled as being “too rational”. THéogs  criterion on how to play is to see how well thexefhin
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previous rounds and adjust their behaviour accgigin one played with a computer, a 6-year old kid or a
by trial and error. Rational agents are therefemaced skilled opponent. Introducing such “degrees of
by players who try to avoid unsuccessful choiceg anrationality” in the theory seems likely to producere
mimic rewarding strategies, in an attempt to end ugealistic conclusions about games.

being as well off as possible and secure their_ . ! ol q lavi K
“evolutionary fitness”. Apparently, this newer Rational players and automata playing Hawk-Dove

framework no longer uses logical time, for an under certainty: Under study is the symmetric Hawk-

equilibrium unfolds in historical time, as agertatrent ~2CV& game for two players. It is an antagonistimga

decisions are determined by what has happened Mne€ré the two opponents find themselves both
previous period interactions. contending the same good. Each player can either

Given the contrast in the assumptions of the twd100S€ to be aggressive (and be a "hawk") or retrea
theories with regards to how players behave, tioe fa (@nd be a “dove”). If both players are aggresstbe,
that all evolutionary stable equilibria are Nashd00d is eventually destroyed and fighting has both
equilibria but not all Nash equilibria are evolutasy ~ Players suffer some loss. If both retreat, thely steare
stable is rather startling. This implies that, eieane  the good and thus, they both enjoy some benefthef
assumes players only motivated by imitation ofone fights and the other retreats, then the “haye#s all
successful behaviour and their instinct for survitke  the reward, while the “dove” is left with nothinigetting
evolutionary process makes them behave as if thethe payoff for the player who selected “Dove” in a
were overly intelligent. The fact that rational betour  “Hawk-Dove” outcome be zero makes the analytics ta
is not necessary for reaching a sophisticatedasier, without any sacrifice in generality (whaitiers
equilibrium could make some think that the assumeds the relative ordering of the payoffs and hermeg
rationality of conventional game theory is not then  among them may be chosen at random and the regultin
important in the first place; to quote Ken Binmaréhis  payoff matrix will still reflect every possible Haw
foreword to Weibull's ‘Evolutionary Game Theoly’  Dove interaction). Also, psychological considerasio
“...insects can hardly be said to think at all and so(sych as feelings of fairess explored in REbithat
rationality cannot be crucial if game theory someho cqyid potentially alter the payoffs of the gamellshat
manages to predict their behayiorThere is however pa of concern here. In matrix notation, the game a
no r_eaI p’?“adc?x here;_ evolutionary theory may Notig general form, be represented as follows:
require rationality, but it enforces a somewhaictdr

behavioural code than the conventional theory (@her H D
there is nothing to guarantee the players’ “sucyessl H L-L g0
in addition to that, the introduction of historictne D 0,9 v,V
makes the informational setting a lot richer.
If evolutionary game theory addresses the criticis It is assumed that L>0, g>0, v>0. Also, for this

th‘?t th?_tass?rrr:ptions of th? cogventi%r_lal thtecf[ggzn game to be a Hawk-Dove game, it is required that g>

I)ilggaoltzecr) exltjrz];nes' ﬁ{f{‘ hc;c\)/ineT;'?h It?]%tl I; (otherwise, D would always be a dominant strategy).
AT . gl PIYES Tho gne-off version of this game has two Nash

always be sophisticated is one thing, but consideri S .

them to behave like birds or ants is quite anotAsr. equilibria in pure strategies (H,D) and (D,H) anteo

Mailath® put it in an issue of Journal of Economic Nash equilibrium in mixed strategies, where players

Theory devoted to evolutionary game theory in itschoose H with probability p = (g-v)/(g-v+L) and Ottw
entirety, “the [evolutionary] models rely on the probability 1-p. In evolutionary game theory, whbe
players being implausibly stupid. Why are the ptaye population is homogeneous, there is a unique
not able to figure out what the modeler can?”. Theevolutionary stable equilibrium that coincides witlte
suggestion here is that it would be more realitic Nash equilibrium in mixed strategies. This mearat th
consider an “in-between” scenarlo,.that is, to B®SU ejther a fraction of the population equal to p alsa
that both types of agents can co-exist and see thkat jo0se H and the remaining 1-p always choose D, or
theory would have to say for interactions amongrthe that agents in that population choose H and D with

Aiter all, people clearly do not all possess theea probabilities p and 1-p respectively. (Of these two

mental and thinking abilities, which can point teet . .
necessity for modelling agents as an heterogeneodgterpretat'ons’ the former is favoured over thteetaby

population as to their rationality. Real-life gamesresearchers and is often referred to as the “patifin

show that players actually condition their behaviou View", analysed, among others, in Har;éi‘hy'and
on who they think their opponent is; one would notFudenberg and Kreffs The experimental findings of
play a game of, say, backgammon in the same way Friedmaff! are consistent with this view).
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An intuitive interpretation of the evolutionary Nash equilibrium in mixed strategies, then any chaf
stable equilibrium is that in a homogeneous poptat  strategy makes them indifferent and thus, the ehoic
there must exist enough doves for being a hawk tdéhe Nash equilibrium in mixed strategies is as gaed
eventually pay off, which accordingly means that aany other strategay. The bottom line is that armatieur
population consisting of hawks (doves) in its eattiris  of agents of type A in meetings between themsetaes
threatened by invasion by doves (hawks), as thde rationalised and therefore, what happens inethes
intruders shall initially outwin their peers, untihe interactions has to be treated as a “black box".

Nash equilibrium in mixed strategies is reached. In contrast, when players of type B are called to

This equilibrium is valid when the population play the game, their behaviour is known. These tgen
consists of agents whose strategies have lititiotaith ~ are motivated by evolutionary success and thergfore
rationality, but who are only motivated by a wit t their choice of strategy is expected to approash th
secure “evolutionary fitness”, that is, perform Wiel ~ €volutionary stable point, that is, the Nash efuilim
the game, having the outcome of previous rounds as in mixed strategies. The complication here is that
kind of guide. The setting changes when thisdgents of type A know this and they are .able toth@e
assumption is dropped and the population is taken tknowledge in their favour. More precisely, rational
consist of rational agents-in the conventional gamd'@vers know that the more aggressive players jpé ty
theory sense-too. The irrational players are stillfr‘] are a_ﬁamfstt pla%ers of tlypi.e B, fth?n the IessBﬂle
choosing their strategies by adaptation and inoitatf ere will exist In the popuiation of players opg/B. In
successful behaviours, while the rational playeaseh n}ore teAchnlgaI termls, at rpeetmng _l]?etlween oneEIaye
full knowledge of how their opponents form their of type A and one player of type B, if players y¢

) ; ) ) . choose H with probability r, then players of typenl
strategies and can adjust their best replies atagyd choose H with pf)robabilit;q = q(n) gné, dq/dr<gPBase
More precisely, the population is taken to consfst

. ] g g is known by players of type A, they can choose th
a fraction a of rational players and a fraction bfa optimal r = r* such that it generates the resparisthat
assumption of evolutionary game theory. The forwiér Calculation of q(r) is straightforward: given theat
often be referred to as players of “type A", while  fraction r of type A players choose H and thataation
latter will be referred to as “type B". Type A pkag are  q of type B players choose H, then the expectad et
fully rational and they are aware of the fact tiahe  for a player of type B from choosing H is:

population consisted of players of type B only, the

evolutionary process would result in the Nash ERgn= a:-(-Lr+g-(1-n)+(1-a)-(-La+g-(1-q))
equilibrium in mixed strategies. It is also assurtteat

players of type A can recognise what type of playermeetings of type B players with type A players amel
they are interacting with. This last assumptiond$as  gecond term refers to meetings between agents
implausible as it may at first seem: It is common f belonging to type B. Each term has obviously been
people to know who their co-player is and how sfron mytiplied by its relevant population weight, fdralso
an opponent they make. This assumption shall bgtands for the probability for each meeting to heapp
dropped later in the text, where the rational playeill  The implicit assumption here is that the population
be assumed to not know with certainty what type of(denoted N) is sufficiently large so that =N+ 1.
opponent they are interacting with. Players of t¥pe This assumption also ensures that players meet new
are thought of as totally unaware of the heteroigjgne opponents in each round and therefore, no previous
i.e., of the existence of type a players in theypagion.  history between specific agents can possibly attesit

In this newer setting, there are three possibddki choices. As will be seen below, the populationgesi
of interactions: Interactions between one playetypé  do not affect the decisions of rational players #ngb,
A and one player of type B, interactions betweenthis assumption does not cause any analytical gnadl
players of type B and interactions between playdrs In similar fashion, the expected return for a play
type A. Among the aforementioned kinds of meetings©f type B by choosing D is:
only the latter is undetermined; because of thek Fol _
Theorem, there can be no prediction as to an ERep = av:(1-n+(1-a)-v-(1-)
equilibrium when rational agents are engaged in a Equating ER, with ERsp gives the Nash
repeated game that has no definite ending. Neishér  equilibrium in mixed strategies, which is what ey
justified to assume they choose the Nash equilibiitu  of type B shall opt for, given the existence otygre A
mixed strategies, because they simply have nome@so “hawks” in the population. By doing the calculubet
Once one player believes their opponent will chdbse resulting formula is:

3
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g-v-(g-v+L)r
(g-v+L){1-a)

qa(r) = 1)

As was expected, q is a strictly decreasing foncti
of r (for g-v+L is always positive). Also, if a = @hat
is, if there are only type B players in the popoia},
then q expectedly collapses to the formula for \egi
above, which is the evolutionary stable strategytifie

g-v-(g-v+ L)@
(g-v+L){1-a)

qr=q(r) = (4)

Implications: With r* being equal to 1, type B agents
always have to face rational agents who choosedw H
aggressive will type B agents be shall naturallpetel
on the size of type A players’ population. It issgdo
see that the derivative of q with regards to aligags

case of homogeneous populations (and, of course, thegative, which confirms the intuitively obviousaich

Nash equilibrium in mixed strategies).

that the larger the population of rational agetits,less

With q(r) being known as the response of type Baggressive type B players will be. As was said abov

players in equilibrium, type A players can choossor

when a = 0 then g* = p (the homogeneous case); this

as to maximise their own expected returns. Becaus&alue of g* is the largest possible to be attaimed

like it was discussed above, meetings betweennaltio
players have indeterminate resolutions, playersyjoé

A can only maximise expected returns from their
interactions with players of type B. The maximieati
problem can be written as:

max{r [{1 - a)lI- Lq(r)+ gl(1- q())]
+(1- ) 1~ a)lvi(1- q(n)}

The first term of the objective function is the
expected return for a rational player when thewpla
H against a type B player, multiplied with the
probability r that they shall play H. Likewise, the
second term refers to type A players’ expectedrretu

equilibrium. Also, because ¢ — as a— 1 and g*
cannot take negative values, there will be a vafue =

a to minimise g*, that is, to make it zero. Solvitig
equation g*=0 for a, it can easily be found tf@at p.
Evidently, for any & @, g* = 0. Thus, for populations
of rational agents that are larger than the Nash
equilibrium in mixed strategies, type B agents retr
always play D, even in meetings where both plagees
of type B (which is not surprising, since type Bys#rs
do not understand the heterogeneity).

Rational players both favour and dislike their
population getting larger. On the one side, a laugéue
for a means that type B agents are less aggre§xivthe
other side, with a bigger value for a, it becomess|

when they choose D against a type B player. Becausgopaple for a rational player to interact withlaypr of
the non-negative term 1-a appears in both thesgpe B and thus, the aforementioned advantage

terms, it can be omitted from the calculus. Thhe, t
maximisation problem gets written Eq. (2):
max{r [ -Lq(r) +g {1- q(M)]+ A~ r)vi1- q(0)} 2)

By substituting the above equation (1) for q(tp ithe

objective function and doing the calculus,
maximisation problem gets equivalently written gs @):

the

mrax{(L +g-Vv) [+ (2v-g)1} 3)

It is interesting to note that the population faca
(which appears in the q(r) formula) is not presarthe
objective function of maximisation problem (3) and

thus, the solution will not depend on how large the.

population of rational agents is.

It is easy to see that the solution of problemi¢3)
r*=1, which means that agents of type A maximisarth
expected returns in games with players of type Brwh
they always choose H, for any configuration of gs/o
L, g and v and regardless of what their populatias
(a simple proof is provided in Appendix A). Type B
players’ reaction then is:

4

progressively weakens. This suggests that theaevadue
for a, denoted a*, which maximises type A players’
expected returns in meetings with type B opponenten
that the former always play H. To find a*, it issgao
solve the maximisation problem I:fl‘gajn, but with rdgao

a and by setting r = r* = 1. Wherfe® , g* will be zero,
which means that the problem simply becomes:

max{(1- a)Cig} ()

Obviously, in this case, a* = min{a} =a; this
means that once the rational players’ population
becomes larger thar@ = p, any increase in type A
players’ population results in a decrease of exubct
returns. This result confirms the intuition thatyan
increase of a when=aa shall only generate loss for
type A players, for type B players cannot get aagsl
aggressive (g* is kept equal to zero) and at thmesa
time, they become less likely to be encountered.

If a<a, g* = g(r*) is given by Eq. (4) derived
above. With r = r* = 1, the maximisation problem is

max{(1- a)l[~ Lq(r) + g (1~ a(r)} (6)
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By substituting formula (4) for g* and doing some they play D rather than H, because (as can alseée
calculus, the problem comes down to maximising &rom inspection of maximisation problem (2) above),
|inear|y inC_reaSing function of a, which means that their expected returns from p|ay|ng H against aetﬁj
max{a} = @ = p. Because the two cases give identicalagent are less than the expected returns frommnueyi
results, it follows that a* = p for any initial leVof a.  |f therefore, type A players are not persistermugh
When the population of rational agents is less than and willing to suffer some loss now in order torgai
then type A agents favour their population gettingmgre in the future, this shall lead to a decredse o
larger, but once it hits , the rational_players want itto gecause g>r, g will tend to decrease, but because r
stay there. When the former applies, type A playergecreases too, there shall also be a tendency for q
may affect the size of their population by conveJta  j,crease. In other words, if type A players do seg to
fraction of type B agents to type A (for instanty, the problem intertemporally, the evolutionary prexe

making them aware of the heterogeneity and teachin L
them how to be rational)-provided, of course, thatg]at would naturally have q decrease until it isado

mobility across populations is possible. If, howetke p will slow d_own. In the end, the equm_bnum mag b ]
population of type A players surpasses the Nasﬁxgctly the inverse of what was studle_zd preV|01_Jst.
equilibrium in mixed strategies threshold, type A rational players never play H when they interadhva
players have an incentive to keep their advantage ¥Pe B player. There are three remarks to be made h
secret, because if more agents adhere to their o ) )

population, the expected returns shall be loweterAf *  The equilibrium described above is unstable; for

that point, rational agents get engaged in a s$imat
which recalls, in some sense, the prisoners’ dilamm
for each one of them it is individually optimal keep
always playing H when interacting with a type B
opponent, although the payoff everyone gets becomes
progressively smaller as a increases. The phenameno
does not disappear but in the limit, that is, when 1,
which means that the heterogeneity is no longer and
that the whole population consists of rational agen °
only. Naturally, with no type B players, rationdapers
cannot enjoy any advantage and how the interactions
will be carried out is now totally left to the Folk
Theorem and as a consequence, is anyone’s guess.

For the above analysis, it was assumed that ition
agents have perfect information; also, all that waisl
referred to equilibrium behaviour. Before studyimigat
happens when there is uncertainty, a short quabtat
discussion on how the initial conditions might afféhe
equilibrium follows.

A note about out of equilibrium behaviour:
Everything that was said above is relevant with twha
happens in equilibrium. For the analysis to bedyatiis
implicitly assumed that type B agents will respdnd
type A players’ strategy automatically (through tipe
function); nothing, however, has been said aboat th
speed of this process. Type A agents are rationally
expecting that type B players will adopt the préatic
behaviour, but this may take a long while before it
happens (that is, the evolutionary process migimgbr
about the predicted g in the very long run).

In the model studied above, it is immediately clea
that if g>p, then the rational players are bettfrifo

5

when ultimately q = p, then the rational agents wil
be indifferent as to whether they shall play H or D
against a type B opponent. Therefore, even ifya tin
fraction of them start play H, r shall become
positive (from zero that it previously was) and q
will decrease, which means that henceforth, it will
be optimal forall rational agents to play H and r
shall eventually become equal to 1

Even when g>p, type A players may still rationally
choose to play H, if they expect that the
intertemporal gains when q(r) stabilises to q(r*) =
q(1) shall be larger than the losses in the current
and near-future periods. Naturally, it comes down
to the speed of the evolutionary process: if this
process is slow enough, then type A agents shall
not find it worthwhile to suffer the loss now (let
alone if a discount factor is used). Neverthelass,
was said in the previous remark, once q = p,
rational players will take over

The interesting observation here is that type A
players generally have no way of knowing the
initial value of q. If this kind of uncertainty ajigs,
then rational agents’ expectations about current
value of g determines their behaviour. If E(q)>p,
then type A players may or may not want to take
some expected loss now; but once E(q) equals p (or
becomes lower than p), then this will prompt r to
rise. How can E(q) be formulated? The safest way
is by observing how type B agents actually behave
in the games. Thus, the hyper-rational type A
agents may actually have to resort to a pattern of
behaviour that type B players typically adopt:
adjusting their behaviour based on what they
observe to have happened in previous interactions.
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Introducing uncertainty: e A rational player thinks they are playing with a
Rational players and automata playing Hawk-Dove rational opponent, while, in reality, they are fagi
under uncertainty: Uncertainty can have numerous an irrational player

sources; in this particular setting, it only affetgpe A

agents, for type B players are supposed to act on Because the population of rational agents is @, th

instinct and heuristics anyway. Rational playerghhi aforementioned cases happen with probabilitiesaax,

not fully know the payoffs of the game, they may no (1-X), (1-a)-y and (1-a)-(1-y) respectively.

know the size of the population a, or, they may et Rational players choose their strategies according

certain as to what type of player they are inténgct t0 who they think they are playing with. Howevérey

with. More radically, they may not know the dimesrsi are now aware that, in some games (namely, case b

of the heterogeneity, but more complex cases thadbove), the behaviour they intend for irrational

involve more types of agents than just two areafut ©opponents shall actually be received by rational

the scope of this text (a brief comment on moreOpponents and that, in some other games (case d

Compﬁcated scenarios appears |ater)' above), the behaviour they intend for rational Oms
Uncertainty as to L, g and v is of no concern hereshall eventually be directed to irrational opposelttis

It was previously seen that, as long as the interags ~ assumed that rational players choose to be aggeessi

a symmetric Hawk-Dove game (which means that L>0with probability d when they think they are intetiag

g>v>0), type A players’ optimal strategy (r = r*) with rational opponents (that is, in cases a aathai/e)

remains the same, no matter the specific valuds gf  and that they choose to be aggressive with prababil

and v. In cases where rational players are uncedsi \yhen they think they are meeting irrational oppdsen

to the type of their opponent, it will be s_hown ttha (cases b and c). At least two fundamental diffeeenc
uncertainty as to the payoffs is of small imporganc . ) .
from the certainty case can be seen here: for ling,t

(Naturally, if the game is not symmetric, then Wigole i N i imal f 0 b P
setting changes, but the non-symmetric Hawk-Dovd' 'S N0t Ne€cessarily optimal for r fo be equal 1p
game will not be under study here). Similarly, isv because this increases the probability of conf{et

shown that, in the perfect information scenario, Hawk-Hawk” outcome) between two rational players.
knowledge of the size of population a does notcaffe Also, the behaviour that rational players intend fo
rational players’ decision. Even if type A agentsrey  rational co-players shall unavoidably be affectihg
capable of affecting a, this would by no meansrdlie irrational population too, which means that botind d
conclusion that the optimal strategy for type Ayeid  are now needed as control variables (and not juiter
is to always play H against an irrational opponéWt. \yas the case under certainty).
similar result is true even for games when rational T find the reaction function of irrational plager
agents cannot tell with certainty if they are ia®#Mg  the same procedure as above will be followed; it is
with a rational player or not. assumed that irrational players choose H with
When _rat|onal players  are aware of theprobability g. The expected return for an irratibna
heterogeneity but cannot fully recognise what tgpe player from choosing H can be split into three &rm

player their opponent iTQ” the interaction needsbeag for the cases (i) they are meeting a rational playeo
modelled from scratch; it can be assumed thatmatio fails to recognise them as irrational, (i) theye ar

agents recognise rational agents with probabiligng meeting a rational player who correctly recogntbesn
irrational players with probability y. If, in anyopsible 54 jrrational and (i) they are meeting with araiional
game, a rational player thinks they are interactiiy ., jjaver. Given the notation explained aboves:it |
a rational player with the same probability (redesd

of what type the opponent really is), then x = Wfich is I e 1N 1

a special case. In general, for each game, exaityof ERe =ay-( I;rz-lg_g'(r_)l)fi (_1(1{) g) Ld+g-(1-d)+
the following four distinct cases shall apply: a9 d

Similarly, the expected return for a player ofayp
* A rational player successfully recognises theirB by choosing D is:
rational opponent
» A rational player thinks they are playing with an ERg p= ayv-(1-r)+a-(1-y)-v-(1-d)+(1-a)-v-(1-q)
irrational opponent, while, in reality, they are

facing a rational player Equating ERy with ERsp, as before, gives the
» A rational player successfully recognises theirequilibrium response of type B players to type A
irrational opponent, or players’ behaviours d and r:
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q(d,ny=9=v=atg= v+ Lyr+ (A= y)cd] (7) b When 1-x-y>0, then:
(g-v+L)d1-a) b;. If M 2(-v-A)/2A, then d* =1 and r*= 0.
) b,. If M<(-v-A)/2A, then
As it was expected, when d =r or y = 1 (or both), d* = 1 and r* = 1+(vA)/2MA.

q(d.r) collapses to the formula for q(r) (equatid)) ¢ \When 1-x-y<0, then:
found in the certainty case (because the unceytaint ¢ If M>(v-A)/24, then

colllapses gnd, azla resm_JIt, tr)1e control variabdesov is d* = (A-v+2MA)/2-(M+1)-A and r* = 1.
no longer in two dimensions). o -
Switching to rational players, their expected netu Co. IfM<(v-A)/2A, then d* =0 and r* = 1.
from choosing H can again be split into three tertos
capture the situations when a rational player $leic
(i) against a rational opponent who correctly tisitikey
are playing with a rational co-player, (i) agairest
rational opponent who mistook them for an irrationa
co-player and (iii) against an irrational oppondrtus:

It can be seen that the decisions of rationalgrkay
are primarily influenced by x and y. If 1-x-y is gitive
(negative), then a rational agent finds it optimal
always select “Hawk” when they think they are megti
a rational (an irrational) opponent and play “Dowee’a
mixed strategy when they think they are meeting an

ERa y=ax-(-Ld+g-(1-d))+a-(1-x)-( -Lr+g-(1-r))+ irrational (rational) opponent; what of the lattevo

' +(1-a)-( -Lg+g-(1-q)) shall happen in each case depends on the coniigurat
of the payoffs, the population a and x and y. Tdwult

Similarly, the expected return for a player ofgyp confirms that the payoffs of the game and the
A by choosing D is: population are not crucial in determining the teeston

of a rational player; they do not determine whetther

ERnp= axv-(1-d)+a-(1-x)-v-(1-r)+(1-a)-v-(1-q) player will fall into category a, b or ¢ above, loly if

they must choose betweendr b, in the case of b and

Rational players choose H with probability d c, or ¢ inthe case of c.
whenever they think they are facing a rational oyga, The next part of this section analyses and dissuss
that is, with probability ax+(1-a)-(1-y). They also some implications of the above result.
choose H with probability r whenever they thinkythe
are facing a type B player, that is, with probapiti-(1-  Implications of uncertainty: Because x and y are the
X)+(1-a)-y. Thus, H is played with probability f = probabilities of successful recognition of ratiorzaid
d-[ax+(1-a)-(1-y)]+r-[a-(1-x)+(1-a)-y] and D is ydal irrational agents respectively, it is evident thgie A

with probability 1-f. Thus, the maximisation protriés: ~ agents are more able to recognise their opponent
correctly, as the expression 1-x-y becomes lower. |
max{f (ER,, + (1~ )(ER,; } (8) indeed 1-x-y becomes negative, it is optimal fqgretyA

agents to always select “Hawk” against an opponent
whom they think is irrational, which is the samdipo
encountered in the certainty case. On the othed,h&n
successful recognitions are not frequent enoughland
x-y>0, then the optimal thing for type A agentsdtois

After the calculus and after substituting Eq. (7)
found above for q = q(d,r), the maximisation praoble
comes down to:

max{Ar? + Bd? + Cdr+ Dr+ Ed+ F} 9) to always select “Hawk” when they think they are
dr playing with a rational co-player.

Where: It is interesting to focus a bit on the case 149,

A = (1-x-y)-[ -a-(1-x-y) -y]-a:(L+g-v), which reflects a situation where the rational ptaye
B = (1-x-y)[ -a:(1-x-y) -y+1]-a-(L+g-v), recognise other rational players with the same
C = (1-x-y)-[2a-(1-x-y)+2y-1]-a-(L+g-v), probability in every possible meeting, no matteratvh
[E) i::/\/.((ll;(x;/);)énd the opponents truly are. That is, there is no &ttt

F = vL/(L+g-v). information available-like, for example, something

the appearance of the agents signalling differeiiso

The full solution of the maximisation problem is for being either of type A or of type B-to makeioag!

given in Appendix B. The conclusion is reproducedPlayers recognise one of the two types more or less
here; to save on notation, let M = -a-(1-x-y)-y and successfully than the other; if this is the casenft shall

= L+g-v>0: be that x = 1-y and thus, 1-x-y = 0. When this leaqsp
the expected return is always equal to vL/(L+g-vy)>0
a. When 1-x-y = 0, the objective function is awhatever the chosen strategies. Intuitively, thisans
constant. that opposite effects cancel out (for example,
7
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unexpected-or to put it better, unintended-“Hawksda  specific example, these probabilities are 5/8 afgl 3
outcomes are cancelled out by unexpected “Hawk-Doverespectively). For ax+(1-a)-(1-y)+a-(1-x)+(1-a)-yls
outcomes between rational players). there is ultimately no such “information gap”).

With total uncertainty about types and no It is important to underline here that x and y are
asymmetries between them, if the population size obbjective probabilities-as opposed to subjectivieelze
type A players a is known, then rational playens ase Whether a rational pIayer believes, for whatever
it as a probability of successful recognition. Moreidiosyncratic reason, that they are meeting with a
precisely, x = a and y = 1-a. In this case, 1-hglls rational agent with some probability x or y is lereant;
again be zero and rational players will be indéferas Py construction, the maximisation problem involves
to their choice of strategies. Even with populatiize ~ OPjective probabilities for x and y (for if theyeajust
being unknown, rational players can use expectationbased on beliefs and these beliefs are not confirme

Dy = then the maximisation shall fail). Another issuethwi
\?vrr:(ijctr?zsgrr?Zi:/?s,u';j—]i Ilzaé:) p||5y(a>)< neisja)ngp geyE ;r:])es probabilities x and y is that they need not be shme

; : : for all rational agents; type A players might cééte x
across type A players; even .If they formulate aéfe . and y based on different information they have &bou
expectations, the conclusion that they remai

o . o "the population. This means that, unlike the cetyain
indifferent as to the choice of strategies is safe. _casepwr;lere the whole population ’of rational agbgz
For 1-x-y to be non-zero, there must be some trail, ,hiq e best action, strategies here may diffevsac
to distinguish type A and type B agents, known toraiional agents. This makes type A agents’ behaviou
rational players, such that successful recognitibthe  parder to predict, for some of them shall fall witbase
former happens less or more frequently than sufidess ) of the solution presented above, while some sther
recognition of the latter. In other words, ratiopkyers  will fall within case c, which is case b’s starkpmsite
must be able to formulate x and y based on somgot to mention that anything goes if 1-x-y = 0).
information that distinguishes the two possibleetypf  However, except for the special (but nonethelesy ve
their opponents; for example, if a = 1/2 and railon reasonable) case where 1-x-y = 0, any strategiceho
players know that half of the irrational playerse ar of rational players is in fact an attempt to make
black-haired, then when rational players encoumter advantage of type B players’ adaptive behaviouatTh
black-haired opponent, they recognise the oppoasnt the rational players may choose to play always “kfaw
rational with probability 1/2 and as irrational Wit when they think they are playing with a rational
probability 1/4. In this example, 1-x-y = 1/4 andsg¢ b  opponent is in fact an act of aggression towards th
of the conclusions presented in the previous sectioifrational players, for this happens when the retlo
applies. (This situation presents no “informaticapty  Players are not relatively successful in recogujisine
for type A players, as at first might seem. It coble  tyPes of their opponents and as a consequence thes
argued that, in the particular example, rationalypts _Ha\_/vk strategies shall eventually be directed to
are called to play r* in the 1/4 of the interacaand d*  Irational players more frequently than not.
in the 1/2 of the interactions, but what happenshin The probab|l|t|e§ x and y have SO fa_r been tre.at_ed
remaining 1/4? If the randomisation starts aneen i as exogenous. Their values are crucial in detengini

that 25% probability of allegedly having an infortina thebloptimgl ctE]oiceSH of d anq r.inh the rgaximilsation
gap, the rational agents could again think the appb problem (9) above. However, it might not be altbget

is rational with probability 1/2 and irrational Wit true that type A agents cannot change x and . afegr

i : ... all, xand y are formulated by the information #alslie
prob_ab|_llty 1/4. But this \_/voul(_j elevate the probipi to rational agents and as such, they can be alteitad
of thinking the opponent is rational to 5/8 (1/28)1and h . I f i ;
the probability of thinking the opponent is irratid to the (conscious) acquisition of more informatiorevaint

. e to the identification of the opponent’s type.
5/16 (1/4+1/16) and there would still be an infotima P - ; : : :
gap in the 1/16 of the interactions. If the itavas What makes this discussion interesting in this

. likewi h indi £ th particular setting is that a quick inspection of) (9
continue likewise, somehow reminding of the St oeq)s that different configurations of x and elgi

of a fractal, then eventually the information gapuid  ifferent expected returns. It can easily be sdet t
vanish and 1-x-y would become zero. This could be §hen 1-x-y = 0, the expected return for rationareg
tricky argument claiming that it would never make (equal to vLA) is the minimum they can get, if
sense for 1-x-y to be anything else than zero; th@ompared to the other cases where 1-x-y is non-tero
mistake with this logic overlooks the fact that eyp other words, type A players can always do better if
players shall actually play d* not in 1/2 of the and y are such that 1-x-y is not zero. This mehas$ t
interactions, but in ax+(1-a)-(1-y) of the intetams the case where rational agents recognise rational
and play r* in a-(1-x)+(1-a)-y of the interactiqis the  opponents regardless of what the opponents reedly a

8
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(that is, when x = 1-y) is always inferior to a€aghere rationality” and thus, greater heterogeneity witltiie
these recognition probabilities are different. Thus population as to the rationality of the agents.
rational players have an incentive to avoid x =;1-y Modelling such a scenario would inevitably be
whether this will actually entail more success inanalytically hard, but a possible way out would tbe
recognising the type of the opponent correctly dogts implement it with a computer simulation. Such &tas
matter, for anything other than x = 1-y shall befpmed  would, of course, involve making explicit assumpto
to x = 1-y. As a consequence, type A agents shatbt as to the speed of learning and the probabilities o
condition their recognition performance (by acq@ri “mutations” (if positive at all); also, the dimensi of
information) in such a way that 1-x-y is eitheritigs or  the heterogeneity would have to be predetermined.
negative and regardless of whether this will madent A potentially promising way to implement this
better at actually recognising the type of an ogmbn would be to assume arderedrange of populations,
successfully. To put it in a more concrete way,dbleur  each one of them “more rational” than the ones feefo
of an agent’s hair may mean nothing about howmatio them. The population at the top of the rationasicpale
they are, but it pays for rational agents to knbattfor  would behave like type A agents of this study, et
example, more irrational than rational agents Hzsek  the other extreme would lie type B agents. A pojpuia
hair, because this makes x different from 1-y. i between these two extremes would behave like &ype
And if, for instance, it happens (by mere acciflent ygents with probability pand like type B agents with
that there are more irrational agents with bladk thean probability 1-p and therefore, a population k would be
rational agents with black hair, agents with blégkr  -,nsidered as “more rational” than population ni if-
receive different treatment_than others. This happe PSP In the most general case, this rationality space
because type A players enjoy greater expectedn®iur .o, 14 he continuous, with an infinite number ofeiént

when they base their recognition performance on anysnulations. Each population i would acknowledgihiw

plecel t‘?f mfon;]aftlond that ﬂl;n?y d'St'ng.li'Sh ttfl:;mtwo certainty or with probabilities of successful reniign
populations and for doing that, any arbitrary like) the existence of all other populations leatonal

shall stand as yet another heterogeneity will dather than i, but would be “blind” as to the existencetioé

\r,\gt)ir(;jr?éll egcee%ttsfo;a\t/gir he;tg(;%%enr;ellty dilrwqer:?l)onnsa“tg%more rational. A mutation here would be a (randam o
g L . otherwise) accession of an agent belonging to abipul
heterogeneity within the population, because thelp h . : : L . !
. : . : i to a population higher than i in the rationalggale.
them fare better in the interactions. And if such . ) .
Such mutations being possible, a convergence to a

additional dimensions of heterogeneity do not yeall homogeneous population where all agents are of Aype
exist, they might as well be “artificially” sougip by is expected. To revisit the certainty case studiethe

the rational agents themselves, for they are de\tltat Sfjrst part of this text, if type B agents becameagavof

help type A agents increase their expected payoff :
the?e r)llged not %e any correlation betweF()an the é)migu type A. agents’ strategic advantage_, they WO[.JIdt star
one’s hair and if one is actually rational; allttkaffices acting like them gnd the heterogeneity W‘?u'd disapp
is an observation (which may as well be an acciaent (Putat the same time, so would the strategic adg&%’_
that) that instructs rational players on how toogrise A related qurk |n_th|s direction is Camerrral "
rational and irrational players differently. Thisrpaps The authors distinguish agents as to the degretbeof
can explain why people are eager to discriminate offommon knowledg_e of rat_|0nal|ty they can perceive
and offer an empirically driven and dynamic leagnin

one another and are quick to deduce general rhégs t . : i .
are based on one’s characteristics-and then atffjeist model. Aftgr having pa.ramet.erlsed boundepl ratiopall
one of their concerns is to fit the model with datal

behaviou_r accordingly. And i these _beli.efs areoals in down the frequencies of players with different
communicated between agents (that is, if the reaso ationality bounds within populations. Apparentlgeir
why x and y_take some particular values aré COMMOKag it are valuable for identifying plausible iadit
knowledge), it IS then no wonder that social 9rouPSonditions for an evolutionary analysis, should one
usually come with labels attached. want to work with a heterogeneous population aén
model presented in this text.

However, according to what meaning one would
want to attach to rationality (which obviously na&d
involve any kind of maximisation), the task of oridg
different rationality profiles does not seem anyease.
&Generally, the above discussion makes obvious that
there are several decisions to be made while nindell
fa setting like this and that such theoretical

More heterogeneity: Mixing rational with irrational
agents makes sense only partially, for both prefiles
extremes and in-between situations are also litely
exist. A player may not be hyper-rational and dole
arrive at the above maximisation conclusions, hig t
does not necessarily mean that they will have th
behavioural profile of an ant or a bee. A moreistial
scenario would therefore involve more “levels o
9



Am. J. Appl. Sci., 2 (13): 1-13, 2005

pronouncements are bound to have a big impacten thsimplified models can yield interesting and insfght
according conclusions, if social conjectures arsade conclusions, but on the other hand, it is not yeall
sought after. Clearly, an evolutionary setting litkee  fruitful to rest on these models’ ideal settingsl arot
one studied here cannot solely rely on standarbdpyo explore more complicated and realistic scenaridg on
and the need for substantial input from socialrsms,  because the latter may cause analytical problems.
such as sociology, anthropology or even history, is  The discomfort with both the neoclassical paradigm
more than evident. Sugd8rprovides a comprehensive and the evolutionary models lies not so much inttheir
discussion on why it is inadequate for evolutionaryassumptions are implausible on their own right; the
game theory to remain attached to biology-and theproblem is rather that the theories assume a nestpe
relevant mathematics). Can the modeller allow ty1a¢  of economic agents and then consider any deviatoa

B agents can learn from the behaviour of type Anégje special and uninteresting case. Thus, while there
and, if yes, how exactly this learning process ban certainly can be individuals who, for example, act
assumed to work, given that type A agents do nokccordance with rational choice theory, or agertt® w
always have an incentive to support it? What mayfall into the category of bounded rationality (winar its
change if type B agents do not become any morg¢orm), none of these profiles can exclusively beduas
rational but learn to tell if their opponent is &/ or  an assumption for a generic enough framework. Afiler
type B? If type B agents are not just automatareat  piologists themselves never claimed that their
human beings, would it not be more realistic tala®s  evolutionary models apply to all spieces; in a nkce
that mutations in one direction are less or mdkelyi  retrospective article, Smmseems almost hard-pressed
than others? Questions like these come with notshogo actually name species that behave accordindneto t
answers, for it might be appropriate to addresmtite  predictions of the evolutionary models, concludthgt
one way for some social context and then in anothefhese models are good for pronouncing some queditat
should this context change. It seems that an ad'ho@onjectures, which casometimes(as opposed to “in
approach of games is inevitable, a need that waadyf  most cases”) get confirmed.

clear in game-theoretic circles, at least since  The central suggestion here has been that a pngmis

Schelling'$” classic The strategy of conflict” way for putting more realism in evolutionary modisi$o
let different rationality profiles co-exist and nebdthe
CONCLUSION individuals under study as an heterogeneous papulat

consisting of individuals that differ in rationglitin the

The introduction of this text reproduced a commentmodel presented above, the heterogeneity altered th
by MailatH! which expresses the view that portraying predictions of the conventional analysis and, éepes of
individuals as unsophisticated is not too realistihis  type A players, it made the antagonistic interaceem
is not considered to be really problematic; in fact more like a prisoners’ dilemma kind of game. Ndiyra
Mailath'® argues that concerns about EVGT’s realisnthis is not to say that the particular model igiséa to any
are ‘misplaced. He writes that the role of models is to satisfactory degree, but it knowingly seems asep st
improve our intuition and to deepen our understagdi towards acknowledging the need for not taking one
of how particular economic or strategic forces naief.  specific rationality profile for granted. Its grest merit is
[...] The games are intended as examples, experimentisat it began by a more accurate view of the pdioula
and allegories. Modelers do not make assumptions aftionality (albeit the arbitrariness in decidingon the
bounded rationality because they believe players arinitial state) and offered a few findings that webuiot
stupid, but rather that players are not as soph&td occur otherwise. In addition to this, such a ventoan
as our models generally assumeOf course, the obviously trigger fruitful discussions on what catality
modeller is all the way justified to dismiss thepby  really is, in how many different ways one can k@nal
rational agent of conventional game theory, buisit or how this rationality may evolve, let alone letd
quite a whole different thing to replace this plefivith  positive conclusions relevant with emerging coneerst
that of an agent who is clueless about theirand discriminatory phenomena.
surroundings and can learn or imitate only in the  From a methodological perspective, the primary
specific ways suggested by the selection dynamicsotives for suggesting heterogeneity in rationadite
under use. The point here is that, on the way tdlexibilty and generality. Since behaviour of
substitute a lot less demanding profile for the éryp individuals is unarguably context specific, it istiard
rational individual, the theory came up with a sét to find reasons for disagreeing with the prediciafi
presumptions that can be challenged just as easilynost models that presuppose a specific behavioural
Mailath asserts that this is inevitable if the mitate profile and to come up with counterexamples or
wants ‘simple and tractable gamds..] that can be empirical paradoxes. On the contrary, allowing for
solved. To be sure, nobody can deny that simple andoarameterisation of rational behaviour leads to et®d

10
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with broader applicability, that can easily be omsised « (Q<T7<1: This means that the minimum lies

for many games. Of course, there is a trade-off:  gomewhere in the interval [0,1] and hence, the
enabling this kind of interweaving between EvGT and objective function is first decreasing and then

behavioural game theory is bound to increase the j,creasing within this interval. Thus, the objeetiv
theory’s level of abstraction and make the probkEm function is maximised either when r = max{r} = 1
indeterminacy more acute. This is a logical compsem or when r = min{r} = 0. But when r = 1 the

for models that have more explanatory power ang sta objective function gives L+g-v+2v-g = L+v>0.

in line with the findings of experimental studies. hile wh 0 the obiective function b
As its analogies with mechanics have it, economics while when T = € objective Tunction becomes
zero. Therefore, r* = 1.

sees individuals as lifeless particles of mattéeirt = i ) )
actions being directed by preference orderingswitity ~ ©  Case a is invalidated, while both cases b ande giv
functions. The parallel with biology gives economic  the solution that r* = 1.

agents more credit and endows them with a conseien
and instincts, albeit animal-like. This is certgitletter,
but not good enough: fithess for animals canndtyels
translated in terms of fitness for humans, whoséves,
expectations, mental abilities, moral codes andlfeof
sophistication are so variable and ambiguous. énth
follows that the models of biologists are generatly Where:

need of substantial and radical amendments befor® = (1-x-y)-[ -a-(1-x-y) -y]-a-(L+g-v),
claiming to apply to the world of humans. Tractahtel B = (1-x-y)-[ -a-(1-x-y) -y+1]-a-(L+g-v),
simplifying models may have their own theoreticalue ~ C = (1-x-y)-[2a-(1-X-y)+2y-1]-a:(L+g-V),

CAppendix B: This appendix presents the solution for
the following maximisation problem:

rr;ax{Arz +Bd?+ Cdr+ Dr+ Ed+ F}

and mathematical elegance, but for an efficierdysiof D = -av-(1-x-y),
human interactions and evolution, there can beastee E = av-(1-x-y) and
way other than trying to instill to these modelsnsoof  F = vL/(L+g-v).

the complexity of human nature.
The coefficient F can be dropped as a constasb, Al
Appendix A: Problem (3) is an inequality constrained a| other coefficients A, B, C, D, E include thenel-x-y
maximisation problem, the constraints being thmtst lie  and thus this term can be dropped off all coeffisieas
within [0,1]. The problem can be easily solved with |ong as it is not zero. Interestingly, if 1-x-y =tBen the
resorting to the Lagrangian or writing down the W& objective function is a constant, which means tyja¢ A
Kuhn-Tucker conditions: Because the second devevati  players are indifferent as to their choice of d gridr their
the objective function is equal to 2(L+0-v)>0, thest-  expected returns are always the same. Thus, when.-
order condition shall give a minimum rather than ag, or x+y = 1, then there is indeterminacy and strategic
maximum. By writing down the first-order conditi@md  profile can be an equilibrium.
temporarily forgetting about the constraints, this To simplify notation, M is used to denote the
minimum, denoted , is given by the formula: expression -a-(1-x-y)-y and is used to denote L+g-
v>0. By simplifying the term a from all coefficienaind
T S by assuming 1-x-y>0, the maximisation problem
20L+g-V) becomes:
Obviously, if r>F then the objective function is
increasing with r, while, if r¥ then the objective

function is decreasing with r. Becauds [01], one of

max{MAr? + (M +1) [Ad’ - (M + DA dr- v+ ve) (A1)

There are four constraints to this problem, ofalhi

the following three cases shall apply: at most two can be binding:
e T>1: This means that f is decreasing everywhere inr>0,r<1,d> 0, & : (A2)
[0,1], which means that r* = min{r} = 0. Bur >1
means that g-2v>2(L+g-v) or that-g>2L which The associated Lagrangian is:
cannot hold, since both g and L are positive. Thus,
this case is not valid. L =MA&* +(M+1)[Dd”* - (M + 1) (A3)

«  T<0: This means that f is increasing everywhere indr—vr+vd+a,r =2, [{r 1)+ 1 d-i,[{d - 1)
[0,1], which means that r* = max{r} = 1. This
happens when g-2v<0. The first-order conditions are:
11
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aL _ B _ o or M2 (-v-A)/2A. If this condition applies, then r =0 and d
F 2MAr = (2M +1)[Ad = v+2, =2, =0 (A4) = 1 is a candidate solution for being a maximum.
To check the second-order condition, the bordered
‘;—:=2E(M +1)[Dd- (2M+ 1)+ v+, - A, =0 (A5) ~ Hessianis:
0 0 0 -1
Xlr =0 (AG) Az 00 1 0
3, -1)=0 (A7) 0 1 2O0M+1)D —(M+ 1)
-1 0 -(M+1) MA
Ad=0 (A8) _ _ .
whose determinant is |[A| = 1>0, which means that th
2 [{d-1)=0 (A9)  Solutionis a maximum indeed.
rz0,r<1,dz 0, & : (A2)  Case4: Ifr =1 and d = 1, thenA®) and (A8) mean
thatd; =23= 0. Then, (A4) gives:
A, =20,4,20,4,20,1,20 (A10)

2MA-(2M+1)-A-v-X,= 0, ori, = -v-A<0, which
contradicts (A10). Thus,r=1andd=1is nota
solution for (A1)

Case 5. If r = 0 and 0<d<1, thenA7), (A8) and (A9)

Because at most two of the constraints (A2) can be
binding, the following cases can be examined
separately for potentially giving a solution:

: : _ 2 g _ 8 mean that,=A3=A,= 0. Then:

+ r=0,d=1 (A4) = >-(2M+1)Ad-v+i, = 0 and

« r=ld=1 (A5) = > 2-(M+1)Ad+v = 0

e r=0,0<d<1

e r=1,0<d<1 Adding these two last equations by parts yields
e 0O<r<1,d=0 Ad+\; = 0, which can only hold if d = 0 arid = 0,

e O<rl1,d=1 which contradicts the starting assumption. Thus,

» 0<r<1, 0<d<1 (the unconstrained problem) and 0<d<1 is not a solution for (Al).

Before proceeding to each of the above cases, it iCase 6: If r = 1 and 0<d<1, thenA®), (A8) and (A9)
useful to notice that M = -a-(1-x-y)-y can alteimaly =~ mean thak; = A;=24,= 0. Then:
be written as M = -a:(1-x)-(1-a)-y, which obviously
means that: (A4) = > 2MA-(2M+1)-Ad-v-A,= 0 and
(A5) = > 2-(M+1)Ad-(2M+1)A+v =0

-1 M<0,0r0<s M+1<1 All . . .
o * (A1) Adding these two last equations by parts yields d

Casel: Ifr=0and d =0, therA7) and (A9) mean that 1+),/A, which can only satisfy (A2) ik, = 0. This
A=Ay = 0. Then, (A5) giveds= -v<0, which contradicts would however mean that d = 1, which contradicts th

(A10). Thus, r = 0 and d = 0 is not a solution(fst). starting assumption. Thus, r = 1 and 0<d<1 is not a

solution for (Al).
Case 2: If r =1 and d = 0, thenAB) and (A9) mean
thati, = A, = 0. Then, (A4) gives 2M-v-A, = 0, which  Case 7: If 0<r<1 and d = 0, thenA®), (A7) and (A9)
cannot hold, because of (A10) and (All). Thus, = mean thak,;=21,=2x,= 0. Then:

and d = 0 is not a solution for (Al).
(A1) (A4) = > 2MAr-v = 0, which contradicts (A11). Thus, d

Case 3: If r = 0 and d = 1, thenA7) and (A8) mean = 0 and 0<r<1 is not a solution for (A1)
thati,=A3= 0. Then:
Case 8: If O<r<1 and d = 1, thenA®B), (A7) and (A8)
(Ad)=>-(2M+1)A-v+},=0 and mean thak, = A,=A3= 0. Then:

(A5)=> 2:(M+1)A+v—A,=0
(A4) = > 2MAr-(2M+1)-A-v = 0 and

Solving fori,, A4, these two last equations yield= (A5) = > 2-(M+1)A-(2M+1) Ar+v-A,= 0
(2M+1)A+v andi, = 2-(M+1)A+v. Because of (Al1l), the . o _
latter of these expressions satisfies (A10). Ferftinmer First of all, (A4) implies that M is non-zero.

expression to be valid, it is required that 2MAx¥=0,  Solving (A4) for r gives that r = 1+(W)/2MA. For this
12
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result to be valid, (vA)/2MA must be in the interval (-

1,0). The condition that must apply for this to pep is
that M<(-vA)/2A.

To check the second-order conditions, the bordered
Hessian is the same as shown in Case 3, bar #te fir
row and the first column (since there is no bindingX:

constraint on r here). Then, the determinant is=|A|

2MA, which is positive because of (A11l) and becaus¢:

M is non-zero. Thus, again, the solution is a maxim

Case9: If O<r<1 and 0<d<1, themAB), (A7), (A8) and
(A9) mean thak; =2,=23=2,=0. Then:

(A4) = > 2MAr-(2M+1)-Ad-v = 0 and
(AB) = > 2-(M+1)Ad-(2M+1)Ar+v =0

A:

M:

Summing these last two equations by parts yields d

= r. By substituting d = r into any of these ecoasi

gives thatAr = -v, which cannot hold. Thus, 0<r<1 and 1.

0<d<1 is not a solution for (Al).

If 1-x-y<0, the problem must be resolved anew,

with the signs of (Al) reversed. If the same praced 2.

is used, it is easy to find, that there is, agaimnique
solution,

featuring (not unexpectedly) a kind of

symmetry if compared with the solution found above:3-

More specifically, in the case where 1-x-y<0, if (>
A)2A, then r* = 1 and d* = A-v+2MA)/2-(M+1)A,
while if M < (v-A)/2A, then r* = 1 and d* = 0.

Thus, to sum it all up:

constant.
When 1-x-y>0, then:
b If M=(-v-A)/2A, then d* =1 and r*=0.
b,. If M<(-v-A)/2A, then
d*=1 and r* = 1+(vA)/2MA.
When 1-x-y<0, then:

¢ If M>(v-A)/2A, then
d* = (A-v+2MA)/2-M+1)-A and r* = 1.
. IfM<(v-A)/2A,thend*=0and r*=1.

When 1-x-y = 0, the objective function is a

Appendix C: What follows is a list of the symbols used

in the text, for quick reference.

-L: the payoff for player i when i selects H and |
selects H

g: the payoff for player i when i selects H and j
selects D

v: the payoff for player i when i selects D and |
selects D

p: the Nash equilibrium in mixed strategies

g: the probability with which an irrational player

chooses H
r. the probability with which a rational

player

chooses H when they think they are playing with
an irrational player (or when, in fact, they are
13

4.

8.

10.

11.

actually playing with an irrational player, when
there is no uncertainty)

the probability with which a rational player
chooses H when they think they are playing with a
rational player

the probability with which a rational player
successfully recognises a rational opponent

the probability with which a rational player
successfully recognises an irrational opponent

the fraction of rational agents within the whole
population

introduced for notation purposes; it is definasd\a
=g-v+L

introduced for notation purposes; it is definsdva
=-a-(1-x-y)-y
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