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Abstract: Conventional game theory assumes hyper-rational players, while evolutionary game theory 
abandons the assumption. This paper studies what happens when agents of both profiles co-exist and 
get engaged in a series of antagonistic interactions (the Hawk-Dove game). It is shown that if rational 
agents are perfectly informed as to the type of their opponent, they find it optimal to always be 
aggressive (that is, always select “Hawk”) when paired with an irrational player. It is then shown that, 
generally, a similar result is also valid when rational agents fail to recognise the type of their opponent 
with certainty. Finally, a discussion on why it may be fruitful to consider populations heterogeneous as 
to the rationality of agents is provided. 
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INTRODUCTION 

 
 Conventional non-cooperative game theory 
assumes players who are endowed with admirable 
mental attributes. The word “rational”, usually 
employed in economics to describe mere utility-
maximisers, is expanded in meaning and implies agents 
who are more than just “reasonable”; they are, to put it 
bluntly, overly intelligent. Such players know that they 
are facing equally sophisticated opponents and this 
common knowledge of rationality is somewhat 
reminiscent of the infinite reflection that happens when 
two mirrors are placed the one in front of the other. Not 
unusually, agents are also thought of as able to align 
their beliefs with those of their opponents and hold the 
same probabilistic expectations about the strategies to 
be chosen. If this seems as attaching too much faith in 
the intellectual capacities of real people, one partly 
satisfying response is to think that resolution of static 
games comes with logical-as opposed to historical-time. 
One period in logical time can be conveniently long, 
allowing players to think through their best reply to the 
opponent’s best reply and hence, it makes no difference 
if some agent is any “slow” to be rational. On the other 
hand, this is only partly a pleasing answer, because 
there is nothing to guarantee that people will actually 
choose what the theory predicts, no matter how much 
time they are given to think. 
 More often than not, this discussion is overshadowed 
by what indisputably is the primary trouble within game 
theoretic circles: Most games have multiple equilibria, 
which reduces the power of the theory for accurate 
predictions anyway, regardless of whether individuals are 
implausibly modelled as being “too rational”. The efforts 

of trying to conjure up newer refinements may easily 
distract one from the fact that the rationality the theory 
imposes is generally too restrictive for the theory to 
successfully apply to real-life interactions. Empirical data 
frequently contradict even the simplest of games-like, for 
example, the prisoners’ dilemma, leading to questions as 
to what good is the theory for, if the rational agents it 
presupposes are not really living in the real world. 
 The argument hardly needs a formal treatment; it 
suffices to observe people all around to be convinced 
that the rationality in question is definitely not a trait of 
the average person. Choosing people at random and 
asking them to participate in some game, one would feel 
that several among them may even have trouble to 
understand the game in the first place, let alone reach a 
decision based on common knowledge of rationality and 
consistently aligned beliefs. This does not necessarily 
stand as a claim that people are not intelligent; the point 
here is that players are too diverse to be all covered with 
such a demanding assumption concerning their 
behaviour. Besides, knowledge of game theory itself 
can make a difference, for it is fair to assert that being 
conscious of a Nash equilibrium would probably make 
a player choose it with more confidence than an equally 
intelligent player who would be unaware of it. 
 All such issues concerning rationality seemingly 
resolve themselves with evolutionary game theory. The 
rationality assumption is not just relaxed, it is 
abandoned. Agents are thought of as somehow driven 
by animal instincts, only trying to get the most they can 
out of a game. Reason can no longer guide them into 
thinking what other players will do and the only 
criterion on how to play is to see how well they fared in 
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previous rounds and adjust their behaviour accordingly, 
by trial and error. Rational agents are therefore replaced 
by players who try to avoid unsuccessful choices and 
mimic rewarding strategies, in an attempt to end up 
being as well off as possible and secure their 
“evolutionary fitness”. Apparently, this newer 
framework no longer uses logical time, for an 
equilibrium unfolds in historical time, as agents’ current 
decisions are determined by what has happened in 
previous period interactions.   
 Given the contrast in the assumptions of the two 
theories with regards to how players behave, the fact 
that all evolutionary stable equilibria are Nash 
equilibria but not all Nash equilibria are evolutionary 
stable is rather startling. This implies that, even if one 
assumes players only motivated by imitation of 
successful behaviour and their instinct for survival, the 
evolutionary process makes them behave as if they 
were overly intelligent. The fact that rational behaviour 
is not necessary for reaching a sophisticated 
equilibrium could make some think that the assumed 
rationality of conventional game theory is not then too 
important in the first place; to quote Ken Binmore in his 
foreword to Weibull’s ‘Evolutionary Game Theory’[1] 
“…insects can hardly be said to think at all and so 
rationality cannot be crucial if game theory somehow 
manages to predict their behavior”. There is however 
no real paradox here; evolutionary theory may not 
require rationality, but it enforces a somewhat stricter 
behavioural code than the conventional theory (where 
there is nothing to guarantee the players’ “success”) and 
in addition to that, the introduction of historical time 
makes the informational setting a lot richer.    
 If evolutionary game theory addresses the criticism 
that the assumptions of the conventional theory on the 
rationality of humans are too demanding, it itself lies 
on an other extreme; not having faith that players can 
always be sophisticated is one thing, but considering 
them to behave like birds or ants is quite another. As 
Mailath[2] put it in an issue of Journal of Economic 
Theory devoted to evolutionary game theory in its 
entirety, “the [evolutionary] models rely on the 
players being implausibly stupid. Why are the players 
not able to figure out what the modeler can?”. The 
suggestion here is that it would be more realistic to 
consider an “in-between” scenario, that is, to assume 
that both types of agents can co-exist and see what the 
theory would have to say for interactions among them. 
After all, people clearly do not all possess the same 
mental and thinking abilities, which can point to the 
necessity for modelling agents as an heterogeneous 
population as to their rationality. Real-life games 
show that players actually condition their behaviour 
on who they think their opponent is; one would not 
play a game of, say, backgammon in the same way if 

one played with a computer, a 6-year old kid or a 
skilled opponent. Introducing such “degrees of 
rationality” in the theory seems likely to produce more 
realistic conclusions about games. 
 
Rational players and automata playing Hawk-Dove 
under certainty: Under study is the symmetric Hawk-
Dove game for two players. It is an antagonistic game 
where the two opponents find themselves both 
contending the same good. Each player can either 
choose to be aggressive (and be a “hawk”) or retreat 
(and be a “dove”). If both players are aggressive, the 
good is eventually destroyed and fighting has both 
players suffer some loss. If both retreat, then they share 
the good and thus, they both enjoy some benefit. If the 
one fights and the other retreats, then the “hawk” gets all 
the reward, while the “dove” is left with nothing. Letting 
the payoff for the player who selected “Dove” in a 
“Hawk-Dove” outcome be zero makes the analytical task 
easier, without any sacrifice in generality (what matters 
is the relative ordering of the payoffs and hence, one 
among them may be chosen at random and the resulting 
payoff matrix will still reflect every possible Hawk-
Dove interaction). Also, psychological considerations 
(such as feelings of fairness explored in Rabin[3]) that 
could potentially alter the payoffs of the game shall not 
be of concern here. In matrix notation, the game can, in 
its general form, be represented as follows:  
 
  H D 
 H –L, –L g,0 
 D 0,g v,v 
 
 It is assumed that L>0, g>0, v>0. Also, for this 
game to be a Hawk-Dove game, it is required that g>v 
(otherwise, D would always be a dominant strategy). 
The one-off version of this game has two Nash 
equilibria in pure strategies (H,D) and (D,H) and one 
Nash equilibrium in mixed strategies, where players 
choose H with probability p = (g-v)/(g-v+L) and D with 
probability 1-p. In evolutionary game theory, when the 
population is homogeneous, there is a unique 
evolutionary stable equilibrium that coincides with the 
Nash equilibrium in mixed strategies. This means that 
either a fraction of the population equal to p always 
choose H and the remaining 1-p always choose D, or 
that agents in that population choose H and D with 
probabilities p and 1-p respectively. (Of these two 
interpretations, the former is favoured over the latter by 
researchers and is often referred to as the “purification 
view”, analysed, among others, in Harsanyi[4] and 
Fudenberg and Kreps[5]. The experimental findings of 
Friedman[6] are consistent with this view). 
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 An intuitive interpretation of the evolutionary 
stable equilibrium is that in a homogeneous population, 
there must exist enough doves for being a hawk to 
eventually pay off, which accordingly means that a 
population consisting of hawks (doves) in its entirety is 
threatened by invasion by doves (hawks), as the 
intruders shall initially outwin their peers, until the 
Nash equilibrium in mixed strategies is reached.  
 This equilibrium is valid when the population 
consists of agents whose strategies have little to do with 
rationality, but who are only motivated by a will to 
secure “evolutionary fitness”, that is, perform well in 
the game, having the outcome of previous rounds as a 
kind of guide. The setting changes when this 
assumption is dropped and the population is taken to 
consist of rational agents-in the conventional game 
theory sense-too. The irrational players are still 
choosing their strategies by adaptation and imitation of 
successful behaviours, while the rational players have 
full knowledge of how their opponents form their 
strategies and can adjust their best replies accordingly. 
 More precisely, the population is taken to consist of 
a fraction a of rational players and a fraction 1-a of 
“automata”, that is, agents who fulfill the non-rationality 
assumption of evolutionary game theory. The former will 
often be referred to as players of “type A”, while the 
latter will be referred to as “type B”. Type A players are 
fully rational and they are aware of the fact that if the 
population consisted of players of type B only, the 
evolutionary process would result in the Nash 
equilibrium in mixed strategies. It is also assumed that 
players of type A can recognise what type of player 
they are interacting with. This last assumption is not as 
implausible as it may at first seem: It is common for 
people to know who their co-player is and how strong 
an opponent they make. This assumption shall be 
dropped later in the text, where the rational players will 
be assumed to not know with certainty what type of 
opponent they are interacting with. Players of type B 
are thought of as totally unaware of the heterogeneity, 
i.e., of the existence of type a players in the population.
 In this newer setting, there are three possible kinds 
of interactions: Interactions between one player of type 
A and one player of type B, interactions between 
players of type B and interactions between players of 
type A. Among the aforementioned kinds of meetings, 
only the latter is undetermined; because of the Folk 
Theorem, there can be no prediction as to an 
equilibrium when rational agents are engaged in a 
repeated game that has no definite ending. Neither is it 
justified to assume they choose the Nash equilibrium in 
mixed strategies, because they simply have no reason to: 
Once one player believes their opponent will choose the 

Nash equilibrium in mixed strategies, then any choice of 
strategy makes them indifferent and thus, the choice of 
the Nash equilibrium in mixed strategies is as good as 
any other strategay. The bottom line is that any behaviour 
of agents of type A in meetings between themselves can 
be rationalised and therefore, what happens in these 
interactions has to be treated as a “black box”. 
 In contrast, when players of type B are called to 
play the game, their behaviour is known. These agents 
are motivated by evolutionary success and therefore, 
their choice of strategy is expected to approach the 
evolutionary stable point, that is, the Nash equilibrium 
in mixed strategies. The complication here is that 
agents of type A know this and they are able to use this 
knowledge in their favour. More precisely, rational 
players know that the more aggressive players of type 
A are against players of type B, then the less “hawks” 
there will exist in the population of players of type B. In 
more technical terms, at meetings between one player 
of type A and one player of type B, if players of type A 
choose H with probability r, then players of type B will 
choose H with probability q = q(r) and dq/dr<0. Because 
q is known by players of type A, they can choose the 
optimal r = r* such that it generates the response q* that 
will maximise type A players’ expected returns. 
 Calculation of q(r) is straightforward: given that a 
fraction r of type A players choose H and that a fraction 
q of type B players choose H, then the expected return 
for a player of type B from choosing H is: 
 

ERB,H = a·(-Lr+g·(1-r))+(1-a)·(-Lq+g·(1-q)) 
 
 The first term of the above equation is relevant to 
meetings of type B players with type A players and the 
second term refers to meetings between agents 
belonging to type B. Each term has obviously been 
multiplied by its relevant population weight, for it also 
stands for the probability for each meeting to happen. 
The implicit assumption here is that the population 
(denoted N) is sufficiently large so that aN≈aN± 1. 
This assumption also ensures that players meet new 
opponents in each round and therefore, no previous 
history between specific agents can possibly affect their 
choices. As will be seen below, the populations’ sizes 
do not affect the decisions of rational players and thus, 
this assumption does not cause any analytical problems.
 In similar fashion, the expected return for a player 
of type B by choosing D is: 
 

ERB,D = av·(1-r)+(1-a)·v·(1-q) 
 
 Equating ERB,H with ERB,D gives the Nash 
equilibrium in mixed strategies, which is what players 
of type B shall opt for, given the existence of ar type A 
“hawks” in the population. By doing the calculus, the 
resulting formula is: 
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g v (g v L) ar
q(r)

(g v L) (1 a)

− − − + ⋅=
− + ⋅ −

 (1) 

 
 As was expected, q is a strictly decreasing function 
of r (for g-v+L is always positive). Also, if a = 0 (that 
is, if there are only type B players in the population), 
then q expectedly collapses to the formula for p given 
above, which is the evolutionary stable strategy for the 
case of homogeneous populations (and, of course, the 
Nash equilibrium in mixed strategies).  
 With q(r) being known as the response of type B 
players in equilibrium, type A players can choose r so 
as to maximise their own expected returns. Because, 
like it was discussed above, meetings between rational 
players have indeterminate resolutions, players of type 
A can only maximise expected returns from their 
interactions with players of type B. The maximisation 
problem can be written as: 
 

r
max{r (1 a) [ Lq(r) g (1 q(r))]

(1 r) (1 a) v (1 q(r))}

⋅ − ⋅ − + ⋅ −

+ − ⋅ − ⋅ ⋅ −
 

 
 The first term of the objective function is the 
expected return for a rational player when they play 
H against a type B player, multiplied with the 
probability r that they shall play H. Likewise, the 
second term refers to type A players’ expected return 
when they choose D against a type B player. Because 
the non-negative term 1-a appears in both these 
terms, it can be omitted from the calculus. Thus, the 
maximisation problem gets written Eq. (2): 
 

r
max{r [ Lq(r) g (1 q(r))] (1 r)v (1 q(r))}⋅ − + ⋅ − + − ⋅ −  (2) 

 
 By substituting the above equation (1) for q(r) into the 
objective function and doing the calculus, the 
maximisation problem gets equivalently written as Eq. (3): 
 

2

r
max{(L g v) r (2v g) r}+ − ⋅ + − ⋅   (3) 

 
 It is interesting to note that the population factor a 
(which appears in the q(r) formula) is not present in the 
objective function of maximisation problem (3) and 
thus, the solution will not depend on how large the 
population of rational agents is. 
 It is easy to see that the solution of problem (3) is 
r*=1, which means that agents of type A maximise their 
expected returns in games with players of type B when 
they always choose H, for any configuration of payoffs 
L, g and v and regardless of what their population a is 
(a simple proof is provided in Appendix A). Type B 
players’ reaction then is:   

g v (g v L) a
q* q(r*)

(g v L) (1 a)

− − − + ⋅= =
− + ⋅ −

 (4) 

 
Implications: With r* being equal to 1, type B agents 
always have to face rational agents who choose H. How 
aggressive will type B agents be shall naturally depend 
on the size of type A players’ population. It is easy to 
see that the derivative of q with regards to a is always 
negative, which confirms the intuitively obvious claim 
that the larger the population of rational agents, the less 
aggressive type B players will be. As was said above, 
when a = 0 then q* = p (the homogeneous case); this 
value of q* is the largest possible to be attained in 
equilibrium. Also, because q* −∞→  as a 1→  and q* 
cannot take negative values, there will be a value of a = 
a  to minimise q*, that is, to make it zero. Solving the 
equation q*=0 for a, it can easily be found that a = p. 
Evidently, for any a a≥ , q* = 0. Thus, for populations 
of rational agents that are larger than the Nash 
equilibrium in mixed strategies, type B agents learn to 
always play D, even in meetings where both players are 
of type B (which is not surprising, since type B players 
do not understand the heterogeneity).   
 Rational players both favour and dislike their 
population getting larger. On the one side, a larger value 
for a means that type B agents are less aggressive. On the 
other side, with a bigger value for a, it becomes less 
probable for a rational player to interact with a player of 
type B and thus, the aforementioned advantage 
progressively weakens. This suggests that there is a value 
for a, denoted a*, which maximises type A players’ 
expected returns in meetings with type B opponents, given 
that the former always play H. To find a*, it is easy to 
solve the maximisation problem again, but with regards to 
a and by setting r = r* = 1. When aa≥ , q* will be zero, 
which means that the problem simply becomes: 
 

a
max{(1 a) g}− ⋅  (5) 

 
 Obviously, in this case, a* = min{a} = a ; this 
means that once the rational players’ population 
becomes larger than a = p, any increase in type A 
players’ population results in a decrease of expected 
returns. This result confirms the intuition that any 
increase of a when aa≥  shall only generate loss for 
type A players, for type B players cannot get any less 
aggressive (q* is kept equal to zero) and at the same 
time, they become less likely to be encountered. 
 If a a≤ , q* = q(r*) is given by Eq. (4) derived 
above. With r = r* = 1, the maximisation problem is: 
 

a
max{(1 a) [ Lq(r*) g (1 q(r*))]}− ⋅ − + ⋅ −  (6) 
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 By substituting formula (4) for q* and doing some 
calculus, the problem comes down to maximising a 
linearly increasing function of a, which means that a* = 
max{a} = a  = p. Because the two cases give identical 
results, it follows that a* = p for any initial level of a. 
When the population of rational agents is less than p, 
then type A agents favour their population getting 
larger, but once it hits a , the rational players want it to 
stay there. When the former applies, type A players 
may affect the size of their population by converting a 
fraction of type B agents to type A (for instance, by 
making them aware of the heterogeneity and teaching 
them how to be rational)-provided, of course, that 
mobility across populations is possible. If, however, the 
population of type A players surpasses the Nash 
equilibrium in mixed strategies threshold, type A 
players have an incentive to keep their advantage a 
secret, because if more agents adhere to their 
population, the expected returns shall be lower. After 
that point, rational agents get engaged in a situation 
which recalls, in some sense, the prisoners’ dilemma: 
for each one of them it is individually optimal to keep 
always playing H when interacting with a type B 
opponent, although the payoff everyone gets becomes 
progressively smaller as a increases. The phenomenon 
does not disappear but in the limit, that is, when a = 1, 
which means that the heterogeneity is no longer and 
that the whole population consists of rational agents 
only. Naturally, with no type B players, rational players 
cannot enjoy any advantage and how the interactions 
will be carried out is now totally left to the Folk 
Theorem and as a consequence, is anyone’s guess. 
 For the above analysis, it was assumed that rational 
agents have perfect information; also, all that was said 
referred to equilibrium behaviour. Before studying what 
happens when there is uncertainty, a short qualitative 
discussion on how the initial conditions might affect the 
equilibrium follows. 
 
A note about out of equilibrium behaviour: 
Everything that was said above is relevant with what 
happens in equilibrium. For the analysis to be valid, it is 
implicitly assumed that type B agents will respond to 
type A players’ strategy automatically (through the q 
function); nothing, however, has been said about the 
speed of this process. Type A agents are rationally 
expecting that type B players will adopt the predicted 
behaviour, but this may take a long while before it 
happens (that is, the evolutionary process might bring 
about the predicted q in the very long run). 
 In the model studied above, it is immediately clear 
that if q>p, then the rational players are better off if 

they play D rather than H, because (as can also be seen 
from inspection of maximisation problem (2) above), 
their expected returns from playing H against a type B 
agent are less than the expected returns from playing D. 
If, therefore, type A players are not persistent enough 
and willing to suffer some loss now in order to gain 
more in the future, this shall lead to a decrease of r. 
Because q>r, q will tend to decrease, but because r 
decreases too, there shall also be a tendency for q to 
increase. In other words, if type A players do not see to 
the problem intertemporally, the evolutionary process 
that would naturally have q decrease until it is equal to 
p will slow down. In the end, the equilibrium may be 
exactly the inverse of what was studied previously: 
rational players never play H when they interact with a 
type B player. There are three remarks to be made here: 
 
• The equilibrium described above is unstable; for 

when ultimately q = p, then the rational agents will 
be indifferent as to whether they shall play H or D 
against a type B opponent. Therefore, even if a tiny 
fraction of them start play H, r shall become 
positive (from zero that it previously was) and q 
will decrease, which means that henceforth, it will 
be optimal for all rational agents to play H and r 
shall eventually become equal to 1 

• Even when q>p, type A players may still rationally 
choose to play H, if they expect that the 
intertemporal gains when q(r) stabilises to q(r*) = 
q(1) shall be larger than the losses in the current 
and near-future periods. Naturally, it comes down 
to the speed of the evolutionary process: if this 
process is slow enough, then type A agents shall 
not find it worthwhile to suffer the loss now (let 
alone if a discount factor is used). Nevertheless, as 
was said in the previous remark, once q = p, 
rational players will take over 

• The interesting observation here is that type A 
players generally have no way of knowing the 
initial value of q. If this kind of uncertainty applies, 
then rational agents’ expectations about current 
value of q determines their behaviour. If E(q)>p, 
then type A players may or may not want to take 
some expected loss now; but once E(q) equals p (or 
becomes lower than p), then this will prompt r to 
rise. How can E(q) be formulated? The safest way 
is by observing how type B agents actually behave 
in the games. Thus, the hyper-rational type A 
agents may actually have to resort to a pattern of 
behaviour that type B players typically adopt: 
adjusting their behaviour based on what they 
observe to have happened in previous interactions. 
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Introducing uncertainty: 
Rational players and automata playing Hawk-Dove 
under uncertainty: Uncertainty can have numerous 
sources; in this particular setting, it only affects type A 
agents, for type B players are supposed to act on 
instinct and heuristics anyway. Rational players might 
not fully know the payoffs of the game, they may not 
know the size of the population a, or, they may not be 
certain as to what type of player they are interacting 
with. More radically, they may not know the dimension 
of the heterogeneity, but more complex cases that 
involve more types of agents than just two are out of 
the scope of this text (a brief comment on more 
complicated scenarios appears later).  
 Uncertainty as to L, g and v is of no concern here. 
It was previously seen that, as long as the interaction is 
a symmetric Hawk-Dove game (which means that L>0, 
g>v>0), type A players’ optimal strategy (r = r*) 
remains the same, no matter the specific values of L, g 
and v. In cases where rational players are uncertain as 
to the type of their opponent, it will be shown that 
uncertainty as to the payoffs is of small importance. 
(Naturally, if the game is not symmetric, then the whole 
setting changes, but the non-symmetric Hawk-Dove 
game will not be under study here). Similarly, it was 
shown that, in the perfect information scenario, 
knowledge of the size of population a does not affect 
rational players’ decision. Even if type A agents were 
capable of affecting a, this would by no means alter the 
conclusion that the optimal strategy for type A players 
is to always play H against an irrational opponent. A 
similar result is true even for games when rational 
agents cannot tell with certainty if they are interacting 
with a rational player or not.  
 When rational players are aware of the 
heterogeneity but cannot fully recognise what type of 
player their opponent is, the interaction needs to be 
modelled from scratch; it can be assumed that rational 
agents recognise rational agents with probability x and 
irrational players with probability y. If, in any possible 
game, a rational player thinks they are interacting with 
a rational player with the same probability (regardless 
of what type the opponent really is), then x = 1-y, which is 
a special case. In general, for each game, exactly one of 
the following four distinct cases shall apply: 
 
• A rational player successfully recognises their 

rational opponent 
• A rational player thinks they are playing with an 

irrational opponent, while, in reality, they are 
facing a rational player 

• A rational player successfully recognises their 
irrational opponent, or 

• A rational player thinks they are playing with a 
rational opponent, while, in reality, they are facing 
an irrational player 

 
 Because the population of rational agents is a, the 
aforementioned cases happen with probabilities ax, a· 
(1-x), (1-a)·y and (1-a)·(1-y) respectively.  
 Rational players choose their strategies according 
to who they think they are playing with. However, they 
are now aware that, in some games (namely, case b 
above), the behaviour they intend for irrational 
opponents shall actually be received by rational 
opponents and that, in some other games (case d 
above), the behaviour they intend for rational opponents 
shall eventually be directed to irrational opponents. It is 
assumed that rational players choose to be aggressive 
with probability d when they think they are interacting 
with rational opponents (that is, in cases a and d above) 
and that they choose to be aggressive with probability r 
when they think they are meeting irrational opponents 
(cases b and c). At least two fundamental differences 
from the certainty case can be seen here: for one thing, 
it is not necessarily optimal for r to be equal to 1, 
because this increases the probability of conflict (a 
“Hawk-Hawk” outcome) between two rational players. 
Also, the behaviour that rational players intend for 
rational co-players shall unavoidably be affecting the 
irrational population too, which means that both r and d 
are now needed as control variables (and not just r, like 
was the case under certainty).      
 To find the reaction function of irrational players, 
the same procedure as above will be followed; it is 
assumed that irrational players choose H with 
probability q. The expected return for an irrational 
player from choosing H can be split into three terms, 
for the cases (i) they are meeting a rational player who 
fails to recognise them as irrational, (ii) they are 
meeting a rational player who correctly recognises them 
as irrational and (iii) they are meeting with an irrational 
co-player. Given the notation explained above, it is: 
 

ERB,H=ay·(–Lr+g·(1–r))+a·(1–y)·(–Ld+g·(1–d))+ 
+(1–a)·(–Lq+g·(1–q)) 

 
 Similarly, the expected return for a player of type 
B by choosing D is: 
 

ERB,D= ayv·(1–r)+a·(1–y)·v·(1–d)+(1–a)·v·(1–q) 
 
 Equating ERB,H with ERB,D, as before, gives the 
equilibrium response of type B players to type A 
players’ behaviours d and r: 



Am. J. Appl. Sci., 2 (13): 1-13, 2005 
 

 7

g v a (g v L) [yr (1 y) d]
q(d,r)

(g v L) (1 a)

− − ⋅ − + ⋅ + − ⋅=
− + ⋅ −

 (7) 

 
 As it was expected, when d = r or y = 1 (or both), 
q(d,r) collapses to the formula for q(r) (equation (1)) 
found in the certainty case (because the uncertainty 
collapses and, as a result, the control variables vector is 
no longer in two dimensions).   
 Switching to rational players, their expected return 
from choosing H can again be split into three terms, to 
capture the situations when a rational player selects H 
(i) against a rational opponent who correctly thinks they 
are playing with a rational co-player, (ii) against a 
rational opponent who mistook them for an irrational 
co-player and (iii) against an irrational opponent. Thus: 
 

ERA,H=ax·(-Ld+g·(1-d))+a·(1-x)·( -Lr+g·(1-r))+ 
+(1-a)·( -Lq+g·(1-q)) 

 
 Similarly, the expected return for a player of type 
A by choosing D is: 
 

ERA,D= axv·(1–d)+a·(1–x)·v·(1–r)+(1–a)·v·(1–q) 
 
 Rational players choose H with probability d 
whenever they think they are facing a rational opponent, 
that is, with probability ax+(1-a)·(1-y). They also 
choose H with probability r whenever they think they 
are facing a type B player, that is, with probability a·(1-
x)+(1-a)·y. Thus, H is played with probability f = 
d·[ax+(1-a)·(1-y)]+r·[a·(1-x)+(1-a)·y] and D is played 
with probability 1-f. Thus, the maximisation problem is: 
 

A,H A,D
d,r

max{f ER (1 f) ER }⋅ + − ⋅  (8) 

 
 After the calculus and after substituting Eq. (7) 
found above for q = q(d,r), the maximisation problem 
comes down to: 
 

2 2

d,r
max{Ar Bd Cdr Dr Ed F}+ + + + +  (9) 

Where: 
A = (1-x-y)·[ -a·(1-x-y) -y]·a·(L+g-v), 
B = (1-x-y)·[ -a·(1-x-y) -y+1]·a·(L+g-v), 
C = (1-x-y)·[2a·(1-x-y)+2y-1]·a·(L+g-v), 
D = -av·(1-x-y), 
E = av·(1-x-y) and 
F = vL/(L+g-v). 
 
 The full solution of the maximisation problem is 
given in Appendix B. The conclusion is reproduced 
here; to save on notation, let M = -a·(1-x-y)-y and ∆ 
= L+g-v>0: 
 
a. When 1-x-y = 0, the objective function is a 

constant.  

b. When 1-x-y>0, then: 
 b1. If M ≥ (-v-∆)/2∆, then d* = 1 and r* = 0. 
 b2. If M<(-v-∆)/2∆, then  
  d* = 1 and r* = 1+(v+∆)/2Μ∆.  
c. When 1-x-y<0, then: 
 c1. If M>(v-∆)/2∆, then  
  d* = (∆-v+2M∆)/2·(Μ+1)·∆ and r* = 1. 
 c2. If M ≤ (v-∆)/2∆, then d* = 0 and r* = 1. 
 
 It can be seen that the decisions of rational players 
are primarily influenced by x and y. If 1-x-y is positive 
(negative), then a rational agent finds it optimal to 
always select “Hawk” when they think they are meeting 
a rational (an irrational) opponent and play “Dove” or a 
mixed strategy when they think they are meeting an 
irrational (rational) opponent; what of the latter two 
shall happen in each case depends on the configuration 
of the payoffs, the population a and x and y. The result 
confirms that the payoffs of the game and the 
population are not crucial in determining the best action 
of a rational player; they do not determine whether the 
player will fall into category a, b or c above, but only if 
they must choose between b1 or b2 in the case of b and 
c1 or c2 in the case of c. 
 The next part of this section analyses and discusses 
some implications of the above result.  
 
Implications of uncertainty: Because x and y are the 
probabilities of successful recognition of rational and 
irrational agents respectively, it is evident that type A 
agents are more able to recognise their opponent 
correctly, as the expression 1-x-y becomes lower. If 
indeed 1-x-y becomes negative, it is optimal for type A 
agents to always select “Hawk” against an opponent 
whom they think is irrational, which is the same policy 
encountered in the certainty case. On the other hand, if 
successful recognitions are not frequent enough and 1-
x-y>0, then the optimal thing for type A agents to do is 
to always select “Hawk” when they think they are 
playing with a rational co-player. 
 It is interesting to focus a bit on the case 1-x-y = 0, 
which reflects a situation where the rational players 
recognise other rational players with the same 
probability in every possible meeting, no matter what 
the opponents truly are. That is, there is no additional 
information available-like, for example, something in 
the appearance of the agents signalling different odds 
for being either of type A or of type B-to make rational 
players recognise one of the two types more or less 
successfully than the other; if this is the case, then it shall 
be that x = 1-y and thus, 1-x-y = 0. When this happens, 
the expected return is always equal to vL/(L+g–v)>0, 
whatever the chosen strategies. Intuitively, this means 
that opposite effects cancel out (for example, 
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unexpected-or to put it better, unintended-“Hawk-Hawk” 
outcomes are cancelled out by unexpected “Hawk-Dove” 
outcomes between rational players).  
 With total uncertainty about types and no 
asymmetries between them, if the population size of 
type A players a is known, then rational players can use 
it as a probability of successful recognition. More 
precisely, x = a and y = 1-a. In this case, 1-x-y shall 
again be zero and rational players will be indifferent as 
to their choice of strategies. Even with population size 
being unknown, rational players can use expectations 
and the same result shall apply: x = E(a) and y = 1-E(a), 
which again gives 1-x-y = 0. E(a) need not be the same 
across type A players; even if they formulate different 
expectations, the conclusion that they remain 
indifferent as to the choice of strategies is safe.  
 For 1-x-y to be non-zero, there must be some trait 
to distinguish type A and type B agents, known to 
rational players, such that successful recognition of the 
former happens less or more frequently than successful 
recognition of the latter. In other words, rational players 
must be able to formulate x and y based on some 
information that distinguishes the two possible types of 
their opponents; for example, if a = 1/2 and rational 
players know that half of the irrational players are 
black-haired, then when rational players encounter a 
black-haired opponent, they recognise the opponent as 
rational with probability 1/2 and as irrational with 
probability 1/4. In this example, 1-x-y = 1/4 and Case b 
of the conclusions presented in the previous section 
applies. (This situation presents no “information gap” 
for type A players, as at first might seem. It could be 
argued that, in the particular example, rational players 
are called to play r* in the 1/4 of the interactions and d* 
in the 1/2 of the interactions, but what happens in the 
remaining 1/4? If the randomisation starts anew, then in 
that 25% probability of allegedly having an information 
gap, the rational agents could again think the opponent 
is rational with probability 1/2 and irrational with 
probability 1/4. But this would elevate the probability 
of thinking the opponent is rational to 5/8 (1/2+1/8) and 
the probability of thinking the opponent is irrational to 
5/16 (1/4+1/16) and there would still be an information 
gap in the 1/16 of the interactions. If the iterations 
continue likewise, somehow reminding of the structure 
of a fractal, then eventually the information gap would 
vanish and 1-x-y would become zero. This could be a 
tricky argument claiming that it would never make 
sense for 1-x-y to be anything else than zero; the 
mistake with this logic overlooks the fact that type A 
players shall actually play d* not in 1/2 of the 
interactions, but in ax+(1-a)·(1-y) of the interactions 
and play r* in a·(1-x)+(1-a)·y of the interactions (in the 

specific example, these probabilities are 5/8 and 3/8 
respectively). For ax+(1-a)·(1-y)+a·(1-x)+(1-a)·y = 1, 
there is ultimately no such “information gap”).  
 It is important to underline here that x and y are 
objective probabilities-as opposed to subjective beliefs. 
Whether a rational player believes, for whatever 
idiosyncratic reason, that they are meeting with a 
rational agent with some probability x or y is irrelevant; 
by construction, the maximisation problem involves 
objective probabilities for x and y (for if they are just 
based on beliefs and these beliefs are not confirmed, 
then the maximisation shall fail). Another issue with 
probabilities x and y is that they need not be the same 
for all rational agents; type A players might calculate x 
and y based on different information they have about 
the population. This means that, unlike the certainty 
case where the whole population of rational agents had 
a unique best action, strategies here may differ across 
rational agents. This makes type A agents’ behaviour 
harder to predict, for some of them shall fall within case 
b of the solution presented above, while some others 
will fall within case c, which is case b’s stark opposite 
(not to mention that anything goes if 1-x-y = 0). 
However, except for the special (but nonetheless very 
reasonable) case where 1-x-y = 0, any strategic choice 
of rational players is in fact an attempt to make 
advantage of type B players’ adaptive behaviour. That 
the rational players may choose to play always “Hawk” 
when they think they are playing with a rational 
opponent is in fact an act of aggression towards the 
irrational players, for this happens when the rational 
players are not relatively successful in recognising the 
types of their opponents and as a consequence, these 
“Hawk” strategies shall eventually be directed to 
irrational players more frequently than not.  
 The probabilities x and y have so far been treated 
as exogenous. Their values are crucial in determining 
the optimal choices of d and r in the maximisation 
problem (9) above. However, it might not be altogether 
true that type A agents cannot change x and y at all. After 
all, x and y are formulated by the information available 
to rational agents and as such, they can be altered with 
the (conscious) acquisition of more information relevant 
to the identification of the opponent’s type. 
 What makes this discussion interesting in this 
particular setting is that a quick inspection of (9) 
reveals that different configurations of x and y yield 
different expected returns. It can easily be seen that 
when 1-x-y = 0, the expected return for rational agents 
(equal to vL/∆) is the minimum they can get, if 
compared to the other cases where 1-x-y is non-zero. In 
other words, type A players can always do better if x 
and y are such that 1-x-y is not zero. This means that 
the case where rational agents recognise rational 
opponents regardless of what the opponents really are 
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(that is, when x = 1-y) is always inferior to a case where 
these recognition probabilities are different. Thus, 
rational players have an incentive to avoid x = 1-y; 
whether this will actually entail more success in 
recognising the type of the opponent correctly does not 
matter, for anything other than x = 1-y shall be preferred 
to x = 1-y. As a consequence, type A agents shall try to 
condition their recognition performance (by acquiring 
information) in such a way that 1-x-y is either positive or 
negative and regardless of whether this will make them 
better at actually recognising the type of an opponent 
successfully. To put it in a more concrete way, the colour 
of an agent’s hair may mean nothing about how rational 
they are, but it pays for rational agents to know that, for 
example, more irrational than rational agents have black 
hair, because this makes x different from 1-y. 
 And if, for instance, it happens (by mere accident) 
that there are more irrational agents with black hair than 
rational agents with black hair, agents with black hair 
receive different treatment than others. This happens 
because type A players enjoy greater expected returns 
when they base their recognition performance on any 
piece of information that may distinguish the two 
populations and for doing that, any arbitrary trait that 
shall stand as yet another heterogeneity will do. In other 
words, except for the heterogeneity in rationality, 
rational agents favour additional dimensions of 
heterogeneity within the population, because they help 
them fare better in the interactions. And if such 
additional dimensions of heterogeneity do not really 
exist, they might as well be “artificially” sought up by 
the rational agents themselves, for they are devices that 
help type A agents increase their expected payoffs: 
there need not be any correlation between the colour of 
one’s hair and if one is actually rational; all that suffices 
is an observation (which may as well be an accident at 
that) that instructs rational players on how to recognise 
rational and irrational players differently. This perhaps 
can explain why people are eager to discriminate on 
one another and are quick to deduce general rules that 
are based on one’s characteristics-and then adjust their 
behaviour accordingly. And if these beliefs are also 
communicated between agents (that is, if the reasons 
why x and y take some particular values are common 
knowledge), it is then no wonder that social groups 
usually come with labels attached. 
 
More heterogeneity: Mixing rational with irrational 
agents makes sense only partially, for both profiles are 
extremes and in-between situations are also likely to 
exist. A player may not be hyper-rational and able to 
arrive at the above maximisation conclusions, but this 
does not necessarily mean that they will have the 
behavioural profile of an ant or a bee. A more realistic 
scenario would therefore involve more “levels of 

rationality” and thus, greater heterogeneity within the 
population as to the rationality of the agents.  
 Modelling such a scenario would inevitably be 
analytically hard, but a possible way out would be to 
implement it with a computer simulation. Such a task 
would, of course, involve making explicit assumptions 
as to the speed of learning and the probabilities of 
“mutations” (if positive at all); also, the dimension of 
the heterogeneity would have to be predetermined. 
 A potentially promising way to implement this 
would be to assume an ordered range of populations, 
each one of them “more rational” than the ones before 
them. The population at the top of the rationality scale 
would behave like type A agents of this study, while at 
the other extreme would lie type B agents. A population 
i between these two extremes would behave like type A 
agents with probability pi and like type B agents with 
probability 1-pi and therefore, a population k would be 
considered as “more rational” than population m if-f 
pk>pm. In the most general case, this rationality space 
could be continuous, with an infinite number of different 
populations. Each population i would acknowledge (with 
certainty or with probabilities of successful recognition 
like) the existence of all other populations less rational 
than i, but would be “blind” as to the existence of the 
more rational. A mutation here would be a (random or 
otherwise) accession of an agent belonging to population 
i to a population higher than i in the rationality scale. 
Such mutations being possible, a convergence to a 
homogeneous population where all agents are of type A 
is expected. To revisit the certainty case studied in the 
first part of this text, if type B agents became aware of 
type A agents’ strategic advantage, they would start 
acting like them and the heterogeneity would disappear 
(but at the same time, so would the strategic advantage). 
 A related work in this direction is Camerer et al.[7]: 
The authors distinguish agents as to the degree of the 
common knowledge of rationality they can perceive 
and offer an empirically driven and dynamic learning 
model. After having parameterised bounded rationality, 
one of their concerns is to fit the model with data and 
pin down the frequencies of players with different 
rationality bounds within populations. Apparently, their 
results are valuable for identifying plausible initial 
conditions for an evolutionary analysis, should one 
want to work with a heterogeneous population as in the 
model presented in this text. 
 However, according to what meaning one would 
want to attach to rationality (which obviously needn’t 
involve any kind of maximisation), the task of ordering 
different rationality profiles does not seem an easy one. 
Generally, the above discussion makes obvious that 
there are several decisions to be made while modelling 
a setting like this and that such theoretical 
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pronouncements are bound to have a big impact on the 
according conclusions, if social conjectures are being 
sought after. Clearly, an evolutionary setting like the 
one studied here cannot solely rely on standard biology 
and the need for substantial input from social sciences, 
such as sociology, anthropology or even history, is 
more than evident. Sugden[8] provides a comprehensive 
discussion on why it is inadequate for evolutionary 
game theory to remain attached to biology-and the 
relevant mathematics). Can the modeller allow that type 
B agents can learn from the behaviour of type A agents 
and, if yes, how exactly this learning process can be 
assumed to work, given that type A agents do not 
always have an incentive to support it? What may 
change if type B agents do not become any more 
rational but learn to tell if their opponent is type A or 
type B? If type B agents are not just automata but real 
human beings, would it not be more realistic to assume 
that mutations in one direction are less or more likely 
than others? Questions like these come with no short 
answers, for it might be appropriate to address them in 
one way for some social context and then in another 
should this context change. It seems that an ad-hoc 
approach of games is inevitable, a need that was already 
clear in game-theoretic circles, at least since 
Schelling’s[9] classic “The strategy of conflict”.  
 

CONCLUSION 
 
 The introduction of this text reproduced a comment 
by Mailath[2] which expresses the view that portraying 
individuals as unsophisticated is not too realistic. This 
is not considered to be really problematic; in fact, 
Mailath[10] argues that concerns about EvGT’s realism 
are “misplaced”. He writes that “the role of models is to 
improve our intuition and to deepen our understanding 
of how particular economic or strategic forces interact. 
[…] The games are intended as examples, experiments 
and allegories. Modelers do not make assumptions of 
bounded rationality because they believe players are 
stupid, but rather that players are not as sophisticated 
as our models generally assume”. Of course, the 
modeller is all the way justified to dismiss the hyper-
rational agent of conventional game theory, but it is 
quite a whole different thing to replace this profile with 
that of an agent who is clueless about their 
surroundings and can learn or imitate only in the 
specific ways suggested by the selection dynamics 
under use. The point here is that, on the way to 
substitute a lot less demanding profile for the hyper-
rational individual, the theory came up with a set of 
presumptions that can be challenged just as easily. 
Mailath asserts that this is inevitable if the modeller 
wants “simple and tractable games […] that can be 
solved”. To be sure, nobody can deny that simple and 

simplified models can yield interesting and insightful 
conclusions, but on the other hand, it is not really 
fruitful to rest on these models’ ideal settings and not 
explore more complicated and realistic scenarios only 
because the latter may cause analytical problems. 
 The discomfort with both the neoclassical paradigm 
and the evolutionary models lies not so much in that their 
assumptions are implausible on their own right; the 
problem is rather that the theories assume a certain type 
of economic agents and then consider any deviation as a 
special and uninteresting case. Thus, while there 
certainly can be individuals who, for example, act in 
accordance with rational choice theory, or agents who 
fall into the category of bounded rationality (whatever its 
form), none of these profiles can exclusively be used as 
an assumption for a generic enough framework. After all, 
biologists themselves never claimed that their 
evolutionary models apply to all spieces; in a recent 
retrospective article, Smith[11] seems almost hard-pressed 
to actually name species that behave according to the 
predictions of the evolutionary models, concluding that 
these models are good for pronouncing some qualitative 
conjectures, which can sometimes (as opposed to “in 
most cases”) get confirmed. 
 The central suggestion here has been that a promising 
way for putting more realism in evolutionary models is to 
let different rationality profiles co-exist and model the 
individuals under study as an heterogeneous population, 
consisting of individuals that differ in rationality. In the 
model presented above, the heterogeneity altered the 
predictions of the conventional analysis and, to the eyes of 
type A players, it made the antagonistic interaction seem 
more like a prisoners’ dilemma kind of game. Naturally, 
this is not to say that the particular model is realistic to any 
satisfactory degree, but it knowingly seems as a step 
towards acknowledging the need for not taking one 
specific rationality profile for granted. Its greatest merit is 
that it began by a more accurate view of the population’s 
rationality (albeit the arbitrariness in deciding upon the 
initial state) and offered a few findings that would not 
occur otherwise. In addition to this, such a venture can 
obviously trigger fruitful discussions on what rationality 
really is, in how many different ways one can be rational 
or how this rationality may evolve, let alone lead to 
positive conclusions relevant with emerging conventions 
and discriminatory phenomena. 
 From a methodological perspective, the primary 
motives for suggesting heterogeneity in rationality are 
flexibility and generality. Since behaviour of 
individuals is unarguably context specific, it is not hard 
to find reasons for disagreeing with the predictions of 
most models that presuppose a specific behavioural 
profile and to come up with counterexamples or 
empirical paradoxes. On the contrary, allowing for 
parameterisation of rational behaviour leads to models 
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with broader applicability, that can easily be customised 
for many games. Of course, there is a trade-off: 
enabling this kind of interweaving between EvGT and 
behavioural game theory is bound to increase the 
theory’s level of abstraction and make the problem of 
indeterminacy more acute. This is a logical compromise 
for models that have more explanatory power and stay 
in line with the findings of experimental studies. 
 As its analogies with mechanics have it, economics 
sees individuals as lifeless particles of matter, their 
actions being directed by preference orderings and utility 
functions. The parallel with biology gives economic 
agents more credit and endows them with a conscience 
and instincts, albeit animal-like. This is certainly better, 
but not good enough: fitness for animals cannot easily be 
translated in terms of fitness for humans, whose motives, 
expectations, mental abilities, moral codes and levels of 
sophistication are so variable and ambiguous. It then 
follows that the models of biologists are generally in 
need of substantial and radical amendments before 
claiming to apply to the world of humans. Tractable and 
simplifying models may have their own theoretical value 
and mathematical elegance, but for an efficient study of 
human interactions and evolution, there can be no easier 
way other than trying to instill to these models some of 
the complexity of human nature. 
    
Appendix A: Problem (3) is an inequality constrained 
maximisation problem, the constraints being that r must lie 
within [0,1]. The problem can be easily solved without 
resorting to the Lagrangian or writing down the Karush-
Kuhn-Tucker conditions: Because the second derivative of 
the objective function is equal to 2(L+0-v)>0, the first-
order condition shall give a minimum rather than a 
maximum. By writing down the first-order condition and 
temporarily forgetting about the constraints, this 
minimum, denoted r , is given by the formula: 
 

g 2v
r

2 (L g v)

−=
⋅ + −

 

 
 Obviously, if r>r  then the objective function is 
increasing with r, while, if r<r  then the objective 
function is decreasing with r. Because r ]1,0[∈ , one of 

the following three cases shall apply: 
 
• r >1: This means that f is decreasing everywhere in 

[0,1], which means that r* = min{r} = 0. But r >1 
means that g-2v>2(L+g-v) or that-g>2L which 
cannot hold, since both g and L are positive. Thus, 
this case is not valid.  

• r <0: This means that f is increasing everywhere in 
[0,1], which means that r* = max{r} = 1. This 
happens when g-2v<0.  

• 1r0 ≤≤ : This means that the minimum lies 
somewhere in the interval [0,1] and hence, the 
objective function is first decreasing and then 
increasing within this interval. Thus, the objective 
function is maximised either when r = max{r} = 1 
or when r = min{r} = 0. But when r = 1 the 
objective function gives L+g-v+2v-g = L+v>0, 
while when r = 0 the objective function becomes 
zero. Therefore, r* = 1.  

• Case a is invalidated, while both cases b and c give 
the solution that r* = 1.  

 
Appendix B: This appendix presents the solution for 
the following maximisation problem: 
 

2 2

d,r
max{Ar Bd Cdr Dr Ed F}+ + + + +  

 
Where: 
A = (1-x-y)·[ -a·(1-x-y) -y]·a·(L+g-v), 
B = (1-x-y)·[ -a·(1-x-y) -y+1]·a·(L+g-v), 
C = (1-x-y)·[2a·(1-x-y)+2y-1]·a·(L+g-v), 
D = -av·(1-x-y), 
E = av·(1-x-y) and 
F = vL/(L+g-v). 
 
 The coefficient F can be dropped as a constant. Also, 
all other coefficients A, B, C, D, E include the term 1-x-y 
and thus this term can be dropped off all coefficients, as 
long as it is not zero. Interestingly, if 1-x-y = 0, then the 
objective function is a constant, which means that type A 
players are indifferent as to their choice of d and r, for their 
expected returns are always the same. Thus, when 1-x-y = 
0, or x+y = 1, then there is indeterminacy and any strategic 
profile can be an equilibrium. 
 To simplify notation, M is used to denote the 
expression -a·(1-x-y)-y and ∆ is used to denote L+g-
v>0. By simplifying the term a from all coefficients and 
by assuming 1-x-y>0, the maximisation problem 
becomes: 
 

2 2

d,r
max{M r (Μ 1) d (2 1) dr vr vd}∆ + + ⋅ ∆ − Μ + ⋅ ∆ − +  (A1) 

 
 There are four constraints to this problem, of which 
at most two can be binding: 
 
r 0, r 1, d 0, d 1≥ ≤ ≥ ≤  (A2) 
 
 The associated Lagrangian is: 
 

2 2

1 2 3 4

L M r (Μ 1) d (2 1)
dr vr vd λ r λ (r 1) λ d λ (d 1)
= ∆ + + ⋅ ∆ − Μ +

⋅∆ − + + − ⋅ − + − ⋅ −
 (A3) 

 
 The first-order conditions are: 
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1 2

L
2M r (2M 1) d v λ λ 0

r

∂ = ∆ − + ⋅ ∆ − + − =
∂

 (A4) 

 

3 4

L
2 (M 1) d (2M 1) r v λ λ 0

d

∂ = ⋅ + ⋅ ∆ − + ⋅ ∆ + + − =
∂

 (A5) 

 
1λ r 0=  (A6) 

 
2λ (r 1) 0⋅ − =  (A7) 

 
3λ d 0=  (A8) 

 
4λ (d 1) 0⋅ − =  (A9) 

r 0, r 1, d 0, d 1≥ ≤ ≥ ≤  (A2) 
 

1 2 3 4λ 0, λ 0, λ 0, λ 0≥ ≥ ≥ ≥  (A10) 
 
 Because at most two of the constraints (A2) can be 
binding, the following cases can be examined 
separately for potentially giving a solution: 
 
• r = 0, d = 0 
• r = 1, d = 0 
• r = 0, d = 1 
• r = 1, d = 1 
• r = 0, 0<d<1 
• r = 1, 0<d<1 
• 0<r<1, d = 0 
• 0<r<1, d = 1 
• 0<r<1, 0<d<1 (the unconstrained problem) 
 
 Before proceeding to each of the above cases, it is 
useful to notice that M = -a·(1-x-y)-y can alternatively 
be written as M = -a·(1-x)-(1-a)·y, which obviously 
means that: 
 

1 M 0, or 0 M 1 1− ≤ ≤ ≤ + ≤  (A11) 
 
Case 1:  If r = 0 and d = 0, then (Α7) and (A9) mean that 
λ2 = λ4 = 0. Then, (A5) gives λ3 = -v<0, which contradicts 
(A10). Thus, r = 0 and d = 0 is not a solution for (A1). 
 
Case 2: If r = 1 and d = 0, then (Α6) and (A9) mean 
that λ1 = λ4 = 0. Then, (A4) gives 2M∆-v-λ2 = 0, which 
cannot hold, because of (A10) and (A11). Thus, r = 1 
and d = 0 is not a solution for (A1). 
 
Case 3: If r = 0 and d = 1, then (Α7) and (A8) mean 
that λ2 = λ3 = 0. Then: 
 

(A4)=> -(2M+1)·∆–v+λ1=0 and 
(A5)=> 2·(M+1)·∆+v–λ4=0 

 
 Solving for λ1, λ4, these two last equations yield λ1 = 
(2M+1)·∆+v and λ4 = 2·(M+1)·∆+v. Because of (A11), the 
latter of these expressions satisfies (A10). For the former 
expression to be valid, it is required that (2M+1)·∆+v≥ 0, 

or M≥ (-v-∆)/2∆. If this condition applies, then r = 0 and d 
= 1 is a candidate solution for being a maximum. 
 To check the second-order condition, the bordered 
Hessian is: 
 

0 0 0 1

0 0 1 0

0 1 2 ( 1) (2 1)

1 0 (2 1) 2

− 
 
 Α =
 ⋅ Μ + ⋅ ∆ − Μ +
 − − Μ + Μ∆ 

 

 
whose determinant is |A| = 1>0, which means that the 
solution is a maximum indeed. 
  
Case 4: If r = 1 and d = 1, then (Α6) and (A8) mean 
that λ1 = λ3 = 0. Then, (A4) gives: 
 

2M∆-(2M+1)·∆-v-λ2 = 0, or λ2 = -v-∆<0, which 
contradicts (A10). Thus, r = 1 and d = 1 is not a 

solution for (A1) 
 
Case 5:  If r = 0 and 0<d<1, then (Α7), (A8) and (A9) 
mean that λ2 = λ3 = λ4 = 0. Then: 
 

(A4) = >-(2M+1)·∆d-v+λ1 = 0 and 
(A5) = > 2·(M+1)·∆d+v = 0 

 
 Adding these two last equations by parts yields 
∆d+λ1 = 0, which can only hold if d = 0 and λ1 = 0, 
which contradicts the starting assumption. Thus, r = 0 
and 0<d<1 is not a solution for (A1). 
 
Case 6: If r = 1 and 0<d<1, then (Α6), (A8) and (A9) 
mean that λ1 = λ3 = λ4 = 0. Then: 
 

(A4) = > 2M∆-(2M+1)·∆d-v-λ2 = 0 and 
(A5) = > 2·(M+1)·∆d-(2M+1)·∆+v = 0 

 
 Adding these two last equations by parts yields d = 
1+λ2/∆, which can only satisfy (A2) if λ2 = 0. This 
would however mean that d = 1, which contradicts the 
starting assumption. Thus, r = 1 and 0<d<1 is not a 
solution for (A1). 
 
Case 7: If 0<r<1 and d = 0, then (Α6), (A7) and (A9) 
mean that λ1 = λ2 = λ4 = 0. Then: 
 
(A4) = > 2M∆r-v = 0, which contradicts (A11). Thus, d 

= 0 and 0<r<1 is not a solution for (A1) 
 
Case 8: If 0<r<1 and d = 1, then (Α6), (A7) and (A8) 
mean that λ1 = λ2 = λ3 = 0. Then: 
 

(A4) = > 2M∆r-(2M+1)·∆-v = 0 and 
(A5) = > 2·(M+1)·∆-(2M+1)·∆r+v-λ4 = 0 

 
 First of all, (A4) implies that M is non-zero. 
Solving (A4) for r gives that r = 1+(v+∆)/2Μ∆. For this 
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result to be valid, (v+∆)/2Μ∆ must be in the interval (-
1,0). The condition that must apply for this to happen is 
that M<(-v-∆)/2∆.   
 To check the second-order conditions, the bordered 
Hessian is the same as shown in Case 3, bar the first 
row and the first column (since there is no binding 
constraint on r here). Then, the determinant is |A| = -
2M∆, which is positive because of (A11) and because 
M is non-zero. Thus, again, the solution is a maximum. 
  
Case 9:  If 0<r<1 and 0<d<1, then (Α6), (A7), (A8) and 
(A9) mean that λ1 = λ2 = λ3 = λ4 = 0. Then: 
 

(A4) = > 2M∆r-(2M+1)·∆d-v = 0 and 
(A5) = > 2·(M+1)·∆d-(2M+1)·∆r+v = 0 

 
 Summing these last two equations by parts yields d 
= r. By substituting d = r into any of these equations 
gives that ∆r = -v, which cannot hold. Thus, 0<r<1 and 
0<d<1 is not a solution for (A1). 
 If 1-x-y<0, the problem must be resolved anew, 
with the signs of (A1) reversed. If the same procedure 
is used, it is easy to find, that there is, again, a unique 
solution, featuring (not unexpectedly) a kind of 
symmetry if compared with the solution found above: 
More specifically, in the case where 1-x-y<0, if M>(v-
∆)/2∆, then r* = 1 and d* = (∆-v+2M∆)/2·(Μ+1)·∆, 
while if M ≤ (v-∆)/2∆, then r* = 1 and d* = 0.  
 Thus, to sum it all up: 
 
a. When 1-x-y = 0, the objective function is a 

constant.  
b. When 1-x-y>0, then: 
 b1. If M ≥ (-v-∆)/2∆, then d* = 1 and r* = 0. 
 b2. If M<(-v-∆)/2∆, then  
  d* = 1 and r* = 1+(v+∆)/2Μ∆.  
c. When 1-x-y<0, then: 
 c1. If M>(v-∆)/2∆, then  
  d* = (∆-v+2M∆)/2·(Μ+1)·∆ and r* = 1. 
 c2. If M ≤ (v-∆)/2∆, then d* = 0 and r* = 1. 
 
Appendix C: What follows is a list of the symbols used 
in the text, for quick reference.  
 
-L: the payoff for player i when i selects H and j 

selects H  
g: the payoff for player i when i selects H and j 

selects D 
v: the payoff for player i when i selects D and j 

selects D 
p: the Nash equilibrium in mixed strategies 
q: the probability with which an irrational player 

chooses H 
r: the probability with which a rational player 

chooses H when they think they are playing with 
an irrational player (or when, in fact, they are 

actually playing with an irrational player, when 
there is no uncertainty) 

d: the probability with which a rational player 
chooses H when they think they are playing with a 
rational player 

x: the probability with which a rational player 
successfully recognises a rational opponent 

y: the probability with which a rational player 
successfully recognises an irrational opponent 

a: the fraction of rational agents within the whole 
population  

∆: introduced for notation purposes; it is defined as ∆ 
= g-v+L 

Μ: introduced for notation purposes; it is defined as M 
= -a·(1-x-y)-y 
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