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Abstract: This study developed a parallel algorithm to efficiently solve linear programming 
models. The proposed algorithm utilizes the Dantzig-Wolfe Decomposition Principle and can be 
easily implemented in a general distributed computing environment. The analytical performance 
of the well-known method, including the speedup upper bound and lower bound limits, was 
derived. Numerical experiments are also provided in order to verify the complexity of the 
proposed algorithm. The empirical results demonstrate that the speedup of this parallel algorithm 
approaches linearity, which means that it can take full advantage of the distributed computing 
power as the size of the problem increases. 
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INTRODUCTION 

 
 Linear Programming (LP) involves a sequence of 
steps that will lead to the most effective way to allocate 
scarce resources among competing activities. LP is 
widely used in a number of areas to help managers 
make decisions, such as assigning jobs to machines, 
mixing ingredients for a product, determining a 
distribution system and other situations. An LP model 
consists of an objective function to be optimized and 
mathematical statements of the constraints. Given that 
many LP models represent large and complex physical 
systems, a typical medium-sized LP model might have 
20,000 variables and 5,000 constraints [1]. The required 
computing resources for solving a modest LP 
application are therefore huge. 
 The availability of cost-effective parallel 
computers has shown the potential of distributed 
computing power for many large-scale mathematical 
programming problems. Some previous studies have 
developed interesting results in this area [2, 3]. However, 
exploiting parallelism with a mathematical 
programming algorithm is not always easy due to the 
communication complexity between processors, which 
often becomes a bottleneck during the execution 
process. Despite many software tools developed for the 
distributed computing environment, to convert a 
conventional application into a parallel application 
remains very difficult. For instance, many Operations 
Research textbooks [4] have introduced the simplex 
method, which is an algebraic procedure for solving 
linear programming problems. 
 The simplex method improves the feasible solution 
in an orderly manner by performing a series of 
elementary row operations until the optimality is 
achieved. To execute the simple method in a parallel 
mode is apparently difficult due to its sequential nature. 

 In this study, we developed a parallel algorithm, 
based on the Dantzig-Wolfe Decomposition Principle 
(DWDP), to solve linear programming and other block-
type optimization problems. Although [5] introduced the 
decomposition principle in the early sixties, it is still 
widely adopted to cope with large-scale optimization 
problems. Given that larger and more complex 
mathematical models have become commonplace [6], 
the importance of the DWDP is well recognized by 
researchers. Using both analytical studies and 
numerical analysis, we show that the proposed parallel 
algorithm can be executed efficiently in a general 
distributed computing environment. 
 
Description of the algorithm: Consider a linear 
programming problem that can be expressed in the 
following form: 
 
Minimize cT x (1) 
 
Subject to: Ax = b x _ 0 
 
where, A is a matrix of order m by k, c and x are both k-
dimensional vectors and b is a m-dimensional vector 
with each component nonnegative. It is observed that the 
A matrix in many large linear programming problems 
usually has a special block-angular structure, namely: 
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where, all Ai in the technology matrix A are 
independent blocks linked by coupling-equation 
matrices Li. As the angular-structure appears, the 
decomposition principle is substantiated by forming an 
equivalent master program (defined below) and several 
sub problems which correspond to each sub-matrix Ai. 
The solution procedure for (1) involves iterations 
between a set of independent sub problems where their 
objective functions are formed using parameters 
derived from the master program. 
 Suppose each Ai has mi rows and ki columns and 
each Li is an m0 ×ki matrix, for i = 1, 2, …, n. By 
partitioning vectors b, x and c into sizes corresponding 
to each Ai, problem (1) can be rewritten as follows: 
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where, Ωi = {A ixi = bi, xi ≥ 0}  for i = 1, 2, …, n. 
Apparently, the set Ωi is convex and mutually 
independent. 
 We can then define the sub problem i, for i = 1, 2, 
…, n, as: 
 
Minimize (ci

T - λ0
TL i) xi (3) 

 
Subject to: Ai xi = bi, 
xi ≥ 0 
 
where, λ0

T is the vector denoting the simplex 

multipliers corresponding to the constraint 

n
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 In contrast to the sub problem (3), problem (2) 
calls the master program. Based on the property of 
convexity of (2) and (3), which implies that all 
solutions can be written as a linear combination of their 
vertices, a two-level algorithm for the solution of the 
linear programming problem can be developed. The 
master program is on the first level in searching for the 
coefficients of the linear combination and the 
subproblem (3) is on the second level of solving the 
possible optimal vertices. Details of this two-level 
algorithm, which applies the Dantzig-Wolfe 
decomposition principle, can be found in [7]. 
 Assume that there exists a Distributed Computing 
Environment (DCE) in which the processing units are 
independent machines, connected by a network, and a 
centralized processor (or the master processor) serves 
as the coordinator. Such an environment has proven to 
be a viable approach to provide concurrent computing 
power at reasonable costs [8]. The design of an algorithm 
for DCE requires tight load balancing in order to reduce 
the communication overhead and obtain good 

performance[9]. A parallel two-level algorithm for linear 
programming problems that can be implemented in a 
general DCE is described below. 
 
Algorithm 1: Parallel LP Method 
Step 1: Initiate the distributed computing environment 
by creating n processes in the network and assign one 
of these processes as the master process to coordinate 
the computing tasks. 
Step 2: Let basis matrix B = I, is an identity matrix. 
Step 3: The master process solves the current basic 
solution XB, and finds the simplex multipliers λT = B-

1cB
T where λT = (λ0

T, λ  ) and λ  = ( 1 2 1, ,...,λ λ λ ). 

Step 4: The master process broadcasts necessary data 
to each child-process and assigns the ith child-process to 
solve the ith sub problem (as denoted in equation (3)) 
where each child-process calculates 
ri

* = (ci
T-λ0

T Li )xi
*- iλ  for i = 1, 2, …, n. 

Step 5: Once the ith child-process solves the ith sub 
problem, it sends ri

* and xi
* to the master process. After 

all of the processes return their solutions, if all ri
* ≥ 0, 

then the algorithm terminates. Otherwise, go to Step 6. 
Step 6: The master process determines which column 
the basis is entered by selecting the minimum value ri

* 

of the sub problems. Let 
*

i i

i
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e
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 be the column that will 

enter the current basis B, where ei is a unit vector. 
Step 7: The master process updates B-1 and go to Step 
3. In the presented algorithm, Step 1 declares the 
distributed computing environment and creates n child 
processes. Step 2 assigns the initial basic feasible 
solution for the master problem. Each child-process 
uses the simplex multipliers λT, found in Step 3, to 
solve the ith sub problem in Step 4. Note that this step is 
the most time consuming part in a sequential algorithm 
because n linear programming models must be solved. 
The master process collects the solutions obtained from 
each sub problem, determines the optimal solution xi

*  
and the associated optimal objective value ri

* and 
checks the optimal condition in Step 5. If the condition 
is satisfied, xi

*  is the extreme point of Ωi and the 
optimum is found. Step 6 constructs the corresponding 
vector that will enter the basis of the master program if 
the terminating condition is not satisfied. The solutions 
xi

* for the ith sub problems are then sent to the master 
program, which combines these inputs to update the 
basic solution matrix and determines a new λT. The 
result is again sent to each child-process and the 
iteration proceed until an optimality test is satisfied. 
 
Analytical performance: To evaluate the performance 
of the proposed algorithm we will investigate to 
performance complexity. The presented algorithm 
could be implemented into a general distributed 
computing environment consisting of a network of 
heterogeneous computers. 
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 Assume that the parallel algorithm uses a cluster of 
p workstations connected in a DCE and terminated in 
time Tp. Let Ts be the best possible time required to 
solve the same problem using a sequence (uni-
processor) algorithm. The ratio: 
 
Sp = Ts/Tp (4) 
 
Is called the algorithm speed up [10]. Speedup is one of 
the most common indicators for measuring the 
efficiency of a parallel algorithm. For simplicity, 
assume that there are enough processors to execute the 
n sub problem in parallel. If α is the execution time of 
the inherently sequential proportion of the algorithm, 
and β is the remaining proportion that could be 
performed in parallel (the execution time is β/n for a 
system with n processor) then Ts = t(α + β), and 

pT t
n

β = α + 
 

 . Therefore, the speedup could be 

approximated by: 
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 (5) 

 
 When α is a proportion of β, that is, α = wβ, then: 
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 We can further derive the speedup upper bound 
and lower bound limits as follows: 
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 Now, when the number of sub problems, n, is 
greater than the number of processors, p, that are 
available, and assume that n = (p-1) q, the speedup 
could be approximated by: 
 

p

nw n
S

nw 1
(p 1)qw (p 1)q (p 1)qw (p 1)q

(p 1)qw 1 (p 1)qw q

(p 1)w (p 1)

(p 1)w 1

+≅
+

− + − − + −= <
− + − +

− + −=
− +

 (9) 

 The speedup upper bound and lower bound limits 
can now be derived as follows: 
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Upper bound of S limS p 1

→
= = −  (10) 
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= =  (11) 

 
 From the above analysis, it is apparent that the 
ratio w is critical to the speedup of the parallel 
algorithm. In the proposed algorithm, since Step 4 is the 
most computationally intensive part, which is required 
to solve a linear programming model, the ratio w is 
therefore very small and the speedup should be 
approximate to the upper bound limit. That is, the 
speedup would approach n when there are enough 
processors in the DCE. 
 

RESULTS AND DISCUSSION 
 
 The algorithm presented was implemented on a 
distributed network of workstations consisting of 26 
SUN-lx SPARC workstations. These workstations were 
connected via an optical fiber link. The code was 
programmed in FORTRAN/77 using the Parallel 
Virtual Machine (PVM) system. PVM enables a 
collection of heterogeneous computer systems to be 
viewed as a single parallel virtual machine and has been 
widely adopted by researchers [11]. 
 Three types of randomly generated test problems 
were solved to investigate the performance of the 
algorithm. The method for generating the linear 
programming models was similar to the method 
proposed by [12], where the number of constrains ranged 
from 20 to 50 to 124. For each problem type, five sets 
of models were generated using different random-
number generator seeds. The results obtained in Table 1 
represent the average CPU time (five replications for 
each instance) utilized for three different types of test 
problems using 1, 2, 3, 4, 5 and 6 processors in the 
DCE. 
 The main objective of our computational 
experiments was to assess the problem size and the 
number of processors on the performance of the 
proposed parallel algorithm. We also used the 
numerical results to justify the analytical performance 
of the algorithm. Table 1 shows the average CPU time 
with respect to the various numbers of processors. The 
speedup of the proposed algorithm was also calculated, 
based on the equation (4), and its correlation with the 
number of processors is plotted in Fig. 1. 

 
Table 1: Average CPU time (seconds) versus number of processors  
Number of constraints 1 processors 2 processors 3 processors 4 processors 5 processors 6 processors 
20 136.10  93.25  48.50  38.12  29.86  23.65 
50 376.97  248.9  133.55  102.14  78.04  64.70 
124 852.64  553.67  291.54  224.45  201.87  162.4 
*: The average CPU time is from the mean of five replications for each instance 
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Fig. 1: Speedup versus number of processors 
 
 While PVM is easy to implement on a cluster of 
workstations, the performance of the proposed 
algorithm is still impressive. The CPU time is 
apparently shorter when more processors are available. 
The best speedup obtained was 5.38 for the model with 
124 constraints (big problem size), executed in a system 
with 6 processors. Even for the small sized problem 
model (20 constraints), the speedup reached 5.25. In 
general, the speedup increased with the problem size 
and also with the number of available processors. The 
near linear speedup was achieved, which was consistent 
with the complexity derived from the analytical 
analysis. Despite the communication overhead during 
the execution, the proposed algorithm was very 
efficient in solving LP models in a distributed 
computing environment. 
 

CONCLUSION 
 
 Distributed computing on clusters of workstations 
is attractive and cost-effective to researchers for 
evolving processing and networking technologies. This 
study developed a parallel linear programming 
algorithm and evaluated its performance on a DCE. The 
numerical results show that the speedup of the proposed 
algorithm approaches linearity, which is consist with its 
analytical performance. We conclude that the presented 
algorithm is efficient and becomes a useful reference 
solution model for LP applications, especially for large-
scale problems. The proposed algorithm was 
implemented on a PVM system (a portable distributed 
computing environment). This software is free to the 
public and has been installed on many networked 
computing platforms. We are currently working on 

porting our computer codes into other computing 
environments and testing the algorithm on a wider 
variety of test problems. It is safe to state that further 
study of the development of some mathematical 
programming algorithms that could also take advantage 
of distributed computing power requires greater 
research efforts. 
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