
American Journal of Applied Sciences 1 (2): 90-94, 2004
ISSN 1546-9239
© Science Publications, 2004

90

Solving Linear Programming Problems

on the Parallel Virtual Machine Environment

1JrJung Lyu, 2Hsing Luh and 1Ming-Chang Lee
1National Cheng Kung University, Taiwan

2National Cheng Chi University, Taiwan

Abstract: This study developed a parallel algorithm to efficiently solve linear programming
models. The proposed algorithm utilizes the Dantzig-Wolfe Decomposition Principle and can be
easily implemented in a general distributed computing environment. The analytical performance
of the well-known method, including the speedup upper bound and lower bound limits, was
derived. Numerical experiments are also provided in order to verify the complexity of the
proposed algorithm. The empirical results demonstrate that the speedup of this parallel algorithm
approaches linearity, which means that it can take full advantage of the distributed computing
power as the size of the problem increases.

Key words: Linear programming, methodology

INTRODUCTION

 Linear Programming (LP) involves a sequence of
steps that will lead to the most effective way to allocate
scarce resources among competing activities. LP is
widely used in a number of areas to help managers
make decisions, such as assigning jobs to machines,
mixing ingredients for a product, determining a
distribution system and other situations. An LP model
consists of an objective function to be optimized and
mathematical statements of the constraints. Given that
many LP models represent large and complex physical
systems, a typical medium-sized LP model might have
20,000 variables and 5,000 constraints [1]. The required
computing resources for solving a modest LP
application are therefore huge.
 The availability of cost-effective parallel
computers has shown the potential of distributed
computing power for many large-scale mathematical
programming problems. Some previous studies have
developed interesting results in this area [2, 3]. However,
exploiting parallelism with a mathematical
programming algorithm is not always easy due to the
communication complexity between processors, which
often becomes a bottleneck during the execution
process. Despite many software tools developed for the
distributed computing environment, to convert a
conventional application into a parallel application
remains very difficult. For instance, many Operations
Research textbooks [4] have introduced the simplex
method, which is an algebraic procedure for solving
linear programming problems.
 The simplex method improves the feasible solution
in an orderly manner by performing a series of
elementary row operations until the optimality is
achieved. To execute the simple method in a parallel
mode is apparently difficult due to its sequential nature.

 In this study, we developed a parallel algorithm,
based on the Dantzig-Wolfe Decomposition Principle
(DWDP), to solve linear programming and other block-
type optimization problems. Although [5] introduced the
decomposition principle in the early sixties, it is still
widely adopted to cope with large-scale optimization
problems. Given that larger and more complex
mathematical models have become commonplace [6],
the importance of the DWDP is well recognized by
researchers. Using both analytical studies and
numerical analysis, we show that the proposed parallel
algorithm can be executed efficiently in a general
distributed computing environment.

Description of the algorithm: Consider a linear
programming problem that can be expressed in the
following form:

Minimize cT x (1)

Subject to: Ax = b x _ 0

where, A is a matrix of order m by k, c and x are both k-
dimensional vectors and b is a m-dimensional vector
with each component nonnegative. It is observed that the
A matrix in many large linear programming problems
usually has a special block-angular structure, namely:

1 2 n n

1

2

n

L L L L

A

A

A .

.

.

A

 
 
 
 
 

=  
 
 
 
 
 

⋯

American J. Appl. Sci., 1 (2), 90-94, 2004

91

where, all Ai in the technology matrix A are
independent blocks linked by coupling-equation
matrices Li. As the angular-structure appears, the
decomposition principle is substantiated by forming an
equivalent master program (defined below) and several
sub problems which correspond to each sub-matrix Ai.
The solution procedure for (1) involves iterations
between a set of independent sub problems where their
objective functions are formed using parameters
derived from the master program.
 Suppose each Ai has mi rows and ki columns and
each Li is an m0 ×ki matrix, for i = 1, 2, …, n. By
partitioning vectors b, x and c into sizes corresponding
to each Ai, problem (1) can be rewritten as follows:

n
T
i i

i 1

Minimize c x
=
∑ (2)

n

i i 0
i 1

i i

Subject to : L x b

X
=

=

∈ Ω

∑

where, Ωi = {A ixi = bi, xi ≥ 0} for i = 1, 2, …, n.
Apparently, the set Ωi is convex and mutually
independent.
 We can then define the sub problem i, for i = 1, 2,
…, n, as:

Minimize (ci

T - λ0
TL i) xi (3)

Subject to: Ai xi = bi,
xi ≥ 0

where, λ0

T is the vector denoting the simplex

multipliers corresponding to the constraint

n

i i 0
i 1

L x b
=

=∑ .
 In contrast to the sub problem (3), problem (2)
calls the master program. Based on the property of
convexity of (2) and (3), which implies that all
solutions can be written as a linear combination of their
vertices, a two-level algorithm for the solution of the
linear programming problem can be developed. The
master program is on the first level in searching for the
coefficients of the linear combination and the
subproblem (3) is on the second level of solving the
possible optimal vertices. Details of this two-level
algorithm, which applies the Dantzig-Wolfe
decomposition principle, can be found in [7].
 Assume that there exists a Distributed Computing
Environment (DCE) in which the processing units are
independent machines, connected by a network, and a
centralized processor (or the master processor) serves
as the coordinator. Such an environment has proven to
be a viable approach to provide concurrent computing
power at reasonable costs [8]. The design of an algorithm
for DCE requires tight load balancing in order to reduce
the communication overhead and obtain good

performance[9]. A parallel two-level algorithm for linear
programming problems that can be implemented in a
general DCE is described below.

Algorithm 1: Parallel LP Method
Step 1: Initiate the distributed computing environment
by creating n processes in the network and assign one
of these processes as the master process to coordinate
the computing tasks.
Step 2: Let basis matrix B = I, is an identity matrix.
Step 3: The master process solves the current basic
solution XB, and finds the simplex multipliers λT = B-

1cB
T where λT = (λ0

T, λ) and λ = (1 2 1, ,...,λ λ λ).

Step 4: The master process broadcasts necessary data
to each child-process and assigns the ith child-process to
solve the ith sub problem (as denoted in equation (3))
where each child-process calculates
ri

* = (ci
T-λ0

T Li)xi
*- iλ for i = 1, 2, …, n.

Step 5: Once the ith child-process solves the ith sub
problem, it sends ri

* and xi
* to the master process. After

all of the processes return their solutions, if all ri
* ≥ 0,

then the algorithm terminates. Otherwise, go to Step 6.
Step 6: The master process determines which column
the basis is entered by selecting the minimum value ri

*

of the sub problems. Let
*

i i

i

L x

e

 
 
 

 be the column that will

enter the current basis B, where ei is a unit vector.
Step 7: The master process updates B-1 and go to Step
3. In the presented algorithm, Step 1 declares the
distributed computing environment and creates n child
processes. Step 2 assigns the initial basic feasible
solution for the master problem. Each child-process
uses the simplex multipliers λT, found in Step 3, to
solve the ith sub problem in Step 4. Note that this step is
the most time consuming part in a sequential algorithm
because n linear programming models must be solved.
The master process collects the solutions obtained from
each sub problem, determines the optimal solution xi

*
and the associated optimal objective value ri

* and
checks the optimal condition in Step 5. If the condition
is satisfied, xi

* is the extreme point of Ωi and the
optimum is found. Step 6 constructs the corresponding
vector that will enter the basis of the master program if
the terminating condition is not satisfied. The solutions
xi

* for the ith sub problems are then sent to the master
program, which combines these inputs to update the
basic solution matrix and determines a new λT. The
result is again sent to each child-process and the
iteration proceed until an optimality test is satisfied.

Analytical performance: To evaluate the performance
of the proposed algorithm we will investigate to
performance complexity. The presented algorithm
could be implemented into a general distributed
computing environment consisting of a network of
heterogeneous computers.

American J. Appl. Sci., 1 (2), 90-94, 2004

92

 Assume that the parallel algorithm uses a cluster of
p workstations connected in a DCE and terminated in
time Tp. Let Ts be the best possible time required to
solve the same problem using a sequence (uni-
processor) algorithm. The ratio:

Sp = Ts/Tp (4)

Is called the algorithm speed up [10]. Speedup is one of
the most common indicators for measuring the
efficiency of a parallel algorithm. For simplicity,
assume that there are enough processors to execute the
n sub problem in parallel. If α is the execution time of
the inherently sequential proportion of the algorithm,
and β is the remaining proportion that could be
performed in parallel (the execution time is β/n for a
system with n processor) then Ts = t(α + β), and

pT t
n

β = α + 
 

 . Therefore, the speedup could be

approximated by:

pS

n

α + β≅ βα +
 (5)

 When α is a proportion of β, that is, α = wβ, then:

p

nw n
S

nw 1

+≅
+

 (6)

 We can further derive the speedup upper bound
and lower bound limits as follows:

p pw 0
Upper bound of S limS n

→
= = (7)

p pw
Upper bound of S lim S 1

→∝
= = (8)

 Now, when the number of sub problems, n, is
greater than the number of processors, p, that are
available, and assume that n = (p-1) q, the speedup
could be approximated by:

p

nw n
S

nw 1
(p 1)qw (p 1)q (p 1)qw (p 1)q

(p 1)qw 1 (p 1)qw q

(p 1)w (p 1)

(p 1)w 1

+≅
+

− + − − + −= <
− + − +

− + −=
− +

 (9)

 The speedup upper bound and lower bound limits
can now be derived as follows:

p pw 0
Upper bound of S limS p 1

→
= = − (10)

p pw
Lower bound of S lim S 1

→∝
= = (11)

 From the above analysis, it is apparent that the
ratio w is critical to the speedup of the parallel
algorithm. In the proposed algorithm, since Step 4 is the
most computationally intensive part, which is required
to solve a linear programming model, the ratio w is
therefore very small and the speedup should be
approximate to the upper bound limit. That is, the
speedup would approach n when there are enough
processors in the DCE.

RESULTS AND DISCUSSION

 The algorithm presented was implemented on a
distributed network of workstations consisting of 26
SUN-lx SPARC workstations. These workstations were
connected via an optical fiber link. The code was
programmed in FORTRAN/77 using the Parallel
Virtual Machine (PVM) system. PVM enables a
collection of heterogeneous computer systems to be
viewed as a single parallel virtual machine and has been
widely adopted by researchers [11].
 Three types of randomly generated test problems
were solved to investigate the performance of the
algorithm. The method for generating the linear
programming models was similar to the method
proposed by [12], where the number of constrains ranged
from 20 to 50 to 124. For each problem type, five sets
of models were generated using different random-
number generator seeds. The results obtained in Table 1
represent the average CPU time (five replications for
each instance) utilized for three different types of test
problems using 1, 2, 3, 4, 5 and 6 processors in the
DCE.
 The main objective of our computational
experiments was to assess the problem size and the
number of processors on the performance of the
proposed parallel algorithm. We also used the
numerical results to justify the analytical performance
of the algorithm. Table 1 shows the average CPU time
with respect to the various numbers of processors. The
speedup of the proposed algorithm was also calculated,
based on the equation (4), and its correlation with the
number of processors is plotted in Fig. 1.

Table 1: Average CPU time (seconds) versus number of processors
Number of constraints 1 processors 2 processors 3 processors 4 processors 5 processors 6 processors
20 136.10 93.25 48.50 38.12 29.86 23.65
50 376.97 248.9 133.55 102.14 78.04 64.70
124 852.64 553.67 291.54 224.45 201.87 162.4
*: The average CPU time is from the mean of five replications for each instance

American J. Appl. Sci., 1 (2), 90-94, 2004

93

Fig. 1: Speedup versus number of processors

 While PVM is easy to implement on a cluster of
workstations, the performance of the proposed
algorithm is still impressive. The CPU time is
apparently shorter when more processors are available.
The best speedup obtained was 5.38 for the model with
124 constraints (big problem size), executed in a system
with 6 processors. Even for the small sized problem
model (20 constraints), the speedup reached 5.25. In
general, the speedup increased with the problem size
and also with the number of available processors. The
near linear speedup was achieved, which was consistent
with the complexity derived from the analytical
analysis. Despite the communication overhead during
the execution, the proposed algorithm was very
efficient in solving LP models in a distributed
computing environment.

CONCLUSION

 Distributed computing on clusters of workstations
is attractive and cost-effective to researchers for
evolving processing and networking technologies. This
study developed a parallel linear programming
algorithm and evaluated its performance on a DCE. The
numerical results show that the speedup of the proposed
algorithm approaches linearity, which is consist with its
analytical performance. We conclude that the presented
algorithm is efficient and becomes a useful reference
solution model for LP applications, especially for large-
scale problems. The proposed algorithm was
implemented on a PVM system (a portable distributed
computing environment). This software is free to the
public and has been installed on many networked
computing platforms. We are currently working on

porting our computer codes into other computing
environments and testing the algorithm on a wider
variety of test problems. It is safe to state that further
study of the development of some mathematical
programming algorithms that could also take advantage
of distributed computing power requires greater
research efforts.

REFERENCES

1. Forrest, J. J. H. And J.A. Tomlin, 1992.

Implementing the simplex method for the
optimization subroutine library. IBM Systems J.,
31: 11-25.

2. Lyu, J., A. Gunasekaran and V.
Kachitvichyanukul, 1995. Towards a portable and
efficient environment for parallel computing. Int. J.
Systems Sci. 26: 1333-1341.

3. Romeijn, H. E. And R. L. Smith, 1999. Parallel
algorithms for solving aggregated shortest-path
problems. Computers and Operations Res., 26:
941-953.

4. Hiller, F. S., G. J. Lieberman, and G. Lieberman,
1995. Introduction to Operations Res. (New York:
McGraw-Hill).

5. Dantzig, G. B. And P. Wolfe, 1960. The
decomposition principle for linear programs.
Operations Res., 8: 101-111.

6. Chinneck, J. W., 1996. Computer codes for the
analysis of infeasible linear programs. J.
Operational Res. Soc., 47: 61-72.

7. Martinson, R.K. and J. Tind, 1999. An interior
point method in Dantzig-Wolfe decomposition.
Computers and Operations Res., 26: 1195-1216.

American J. Appl. Sci., 1 (2), 90-94, 2004

94

8. Sunderam, V. S., 1997. Heterogeneous network
computing: the next generation. Parallel
Computing, 23: 121-135.

9. Sekharan, C. N., V. Goel and R. Sridhar, 1995.
Load balancing methods for ray tracing and binary
tree computing using PVM. Parallel Computing 21:
1963-1978.

10. Quinn, M. J., 1994. Parallel Computing: Theory
and Practice (McGraw Hill, N.Y).

11. Sunderam, V. S., G. A. Geist, J. Dongarra and R.
Manchek, 1994. The PVM concurrent computing
system: evolution, experiences, and trends. Parallel
Computing, 20: 531-545.

12. Pisinger, D., 1995. An expanding-core algorithm
for the exact 0-1 Knapsack problem. European J.
Operational Res., 87: 175-187.

