American Journal of Applied Sciences 1 (2): 90-2204
ISSN 1546-9239
© Science Publications, 2004

Solving Linear Programming Problems
on the Parallel Virtual Machine Environment

1JrJung Lyu?Hsing Luh andMing-Chang Lee
National Cheng Kung University, Taiwan
National Cheng Chi University, Taiwan

Abstract: This study developed a parallel algorithm to effitly solve linear programming
models. The proposed algorithm utilizes the Daniiglife Decomposition Principle and can be
easily implemented in a general distributed computénvironment. The analytical performance
of the well-known method, including the speedup emppound and lower bound limits, was
derived. Numerical experiments are also providedorder to verify the complexity of the
proposed algorithm. The empirical results demonstthat the speedup of this parallel algorithm
approaches linearity, which means that it can thkeadvantage of the distributed computing
power as the size of the problem increases.

Key words: Linear programming, methodology

INTRODUCTION In this study, we developed a parallel algorithm,
based on the Dantzig-Wolfe Decomposition Principle
Linear Programming (LP) involves a sequence offDWDP), to solve linear programming and other block
steps that will lead to the most effective way floaate type optimization problems. Althoudt introduced the
scarce resources among competing activities. LP idecomposition principle in the early sixties, itssll
widely used in a number of areas to help manageraidely adopted to cope with large-scale optimizatio
make decisions, such as assigning jobs to machineproblems. Given that larger and more complex
mixing ingredients for a product, determining amathematical models have become commonpidce
distribution system and other situations. An LP elod the importance of the DWDP is well recognized by
consists of an objective function to be optimizedi a researchers. Using both analytical studies and
mathematical statements of the constraints. Gitam t numerical analysis, we show that the proposed lgaral
many LP models represent large and complex physicallgorithm can be executed efficiently in a general
systems, a typical medium-sized LP model might havelistributed computing environment.
20,000 variables and 5,000 constralfitsThe required
computing resources for solving a modest LPDescription of the algorithm: Consider a linear
application are therefore huge. programming problem that can be expressed in the
The availability of cost-effective parallel following form:
computers has shown the potential of distributed
computing power for many large-scale mathematicaMinimize ¢ x (1)
programming problems. Some previous studies have
developed interesting results in this dfedl However, Subjectto: Ax=b x 0
exploiting parallelism with a mathematical

programming algorithm is not always easy due to th§yhere, A is a matrix of order m by k, ¢ and x apéhik-
communication complexity between processors, whichjimensional vectors and b is a m-dimensional vector
often becomes a bottleneck during the executiofith each component nonnegative. It is observetithiea
process. Despite many software tools developeth®dr A matrix in many large linear programming problems

distributed computing environment, to convert aysually has a special block-angular structure, hame
conventional application into a parallel applicatio

remains very difficult. For instance, many Openasio - -
Research textbook8' have introduced the simplex
method, which is an algebraic procedure for solving A,
linear programming problems. A,
The simplex method improves the feasible solutiona =
in an orderly manner by performing a series of
elementary row operations until the optimality is
achieved. To execute the simple method in a péaralle
mode is apparently difficult due to its sequentiaiure. L An
90

American J. Appl. i, 1 (2), 90-94, 2004

where, all A in the technology matrix A are performancE. A parallel two-level algorithm for linear
independent blocks linked by coupling-equationprogramming problems that can be implemented in a
matrices L. As the angular-structure appears, thegeneral DCE is described below.

decomposition principle is substantiated by formamg

equivalent master program (defined below) and sgver Algorithm 1: Parallel LP Method

sub problems which correspond to each sub-matyix AStep 1: Initiate the distributed computing enviramn
The solution procedure for (1) involves iterationsby creating nprocesses in the network and assign one
between a set of independent sub problems wheie theof these processes as the master process to cai@rdin
objective functions are formed using parameterghe computing tasks.

derived from the master program. Step 2: Let basis matrix B = 1, is an identity matr
Suppose each;Aas mrows and kcolumns and Step 3: The master process solves the current basic
each lis an mOxk; matrix, for i = 1, 2, ..., n. By solution X, and finds the simplex multiplies’ = B

partitioning vectors b, x and c into sizes corregfing 1cs” whereA" = (A", A) andX = (A,X,,...A,).

to each A problem (1) can be rewritten as follows: Step 4. The master process broadcasts necessary dat
n to each child-process and assigns thehild-process to
Minimize) " ¢ x (2) solve the 1 sub problem (as denoted in equation (3))
= where each child-process calculates
) =(G Ao Li)x -A, fori=1,2,...,n.
Subjectto) L.x= Step 5: Once théth child-process solves th& sub
= problem, it sends rand x to the master process. After

X OQ, all of the processes return their solutions, ifralk 0,
then the algorithm terminates. Otherwise, go te $te
where, Q; = {Ax; = b, x, 20} for i = 1, 2, ..., n. Step6: The master process determines which column
Apparently, the setQ; is convex and mutually the basis is entered by selecting the minimum value
independent. Lx _
We can then define the sub problem i, for i =1, 2 of the sub problems. Le{t ('e 'J be the column that will
o M as: enter the current basis B, wherée unit vector.
Minimize (G" - Ao'L)) X; () Step 7: The master process updatésaBd go to Step
3. In the presented algorithm, Step 1 declares the
Subject to: Ax = b, distributed computing environment and createzhitd
x =0 processes. Step 2 assigns the initial basic feasibl

solution for the master problem. Each child-process
where, Ao’ is the vector denoting the simplex uses the simplex multipliers”, found in Step 3, to
o] n solve the!' sub problem in Step 4. Note that this step is
multipliers corresponding to the constralptLx; =b,. the most time consuming part in a sequential aliori
N because tinear programming models must be solved.

In contrast to the sub problem (3), problem (2)']l'he master process collects the solutions obt&fied
calls the master program. Based on the property o

convexity of (2) and (3), which implies that al each sub problem, determines the optimal solution x

solutions can be written as a linear combinatiothefr and the associated optimal objective valie and
. : . checks the optimal condition in Step 5. If the dtod
vertices, a two-level algorithm for the solution thie

linear programming problem can be developed. The'zS satisfied, x is the extreme point of3; and the

master program is on the first level in searchimgtiie optimum 1s f(_)und. Step 6 constructs the corresp[_mdl
coefficients of the linear combination and the vector th.at V.\"” enter.t_he b_a5|s of the master mgglf

. X the terminating condition is not satisfied. Theusioins
subp_roblem .(3) IS on _the secon(_JI level O.f solving th x;" for the " sub problems are then sent to the master
possible optimal vertices. Details of this two-leve

. :) . program, which combines these inputs to update the
algorithm, . wh|gh : applies the 4 Dantzig-Wolfe basic solution matrix and determines a nklv The
decomposition principle, can be foundin

; S . result is again sent to each child-process and the
_Assume that the.re exists a D|str|buteq COmpuunqteration proceed until an optimality test is skdid.
Environment (DCE) in which the processing units are

independent machines, connected by a network, and'@ alvtical f T luate th ¢
centralized processor (or the master processoveser naytical performance. 10 evaluate the periormance

as the coordinator. Such an environment has praven ©f the proposed algorithm we will investigate to
be a viable approach to provide concurrent computin Performance complexity. The presented algorithm
power at reasonable co$ts The design of an algorithm could be implemented into a general distributed
for DCE requires tight load balancing in orderéduce computing environment consisting of a network of
the communication overhead and obtain goodheterogeneous computers.

91

American J. Appl. i, 1 (2), 90-94, 2004

Assume that the parallel algorithm uses a cluster The speedup upper bound and lower bound limits
p workstations connected in a DCE and terminated itan now be derived as follows:
time T, Let T; be the best possible time required to

solve the same problem using a sequence (uniupper bound of S= lims= p (10)
processor) algorithm. The ratio: w-0

S =TdTp (4) Lower bound of $= _lim 5= (11)

Is called the algorithm speed Uf. Speedup is one of From the above analysis, it is apparent that the

the most common indicators for measuring theratio w is critical to the speedup of the parallel
efficiency of a parallel algorithm. For simplicity, algorithm. In the proposed algorithm, since Stép the
assume that there are enough processors to exeeute most computationally intensive part, which is regdi

n sub problem in parallel. i is the execution time of to solve alinear programming model, the ratio &

the inherently sequential proportion of the aldorit therefore very small and the speedup should be
and B is the remaining proportion that could be approximate to the upper bound limit. That is, the
performed in parallel (the execution timefi; for a speedup would approach when there are enough
system with n processor) then, t(a + B), and processors in the DCE.

Tp=t[a+%) . Therefore, the speedup could be

RESULTSAND DISCUSSION

approximated by:
The algorithm presented was implemented on a
distributed network of workstations consisting & 2
P B SUN-Ix SPARC workstations. These workstations were
(Hﬁ connected via an optical fiber link. The code was
programmed in FORTRAN/77 using the Parallel
Virtual Machine (PVM) system. PVM enables a
collection of heterogeneous computer systems to be
viewed as a single parallel virtual machine andieen
(6) widely adopted by researchérs
Three types of randomly generated test problems
: were solved to investigate the performance of the
We can furth_er_denve the speedup upper bOun%llgorithm. The method for generating the linear
and lower bound limits as follows: programming models was similar to the method
proposed b¥/?, where the number of constrains ranged
Upper bound of 8= limS= (7) from 20 to 50 to 124. For each problem type, fietss
of models were generated using different random-
number generator seeds. The results obtained ile Tab
represent the average CPU time (five replicaticors f
each instance) utilized for three different typdégest
Now, when the number of sub problems, n, isproblems using 1, 2, 3, 4, 5 and 6 processors én th
greater than the number of processors, p, that afeCE.
available, and assume that n = (p-1) g, the speedup The main objective of our computational

s 09*P (5)

Whena is a proportion of, that is,a = wp, then:

nw + n
nw+1

S

Upper bound of §=WJiDrn§: (8)

could be approximated by: experiments was to assess the problem size and the
number of processors on the performance of the
nw+n proposed parallel algorithm. We also used the
w1 n;u”?]ericlal ref]ults tobjlustifyhthe ar;]alytical perfgmne
_ _ of the algorithm. Table 1 shows the average CPlg tim
= (1)?\1\;+V\EE 1l)q< (p_(1_)q1v)\;+ W(fr D (9) with respect to the various numbers of processtits.
P-4 P hawr g speedup of the proposed algorithm was also catmljlat
_(p-Yw+ (p— 1) based on the equation (4), and its correlation with
(P-Hw+1 number of processors is plotted in Fig. 1.

Table 1: Average CPU time (seconds) versus numignogessors

Number of constraints 1 processors 2 processors rocegsors 4 processors 5 processors 6 processors
20 136.10 93.25 48.50 38.12 29.86 23.65
50 376.97 248.9 133.55 102.14 78.04 64.70
124 852.64 553.67 291.54 224.45 201.87 162.4

*: The average CPU time is from the mean of fiyalioations for each instance

92

American J. Appl. i, 1 (2), 90-94, 2004

Upper bound
6—
constraints = 124
constrainils = 50
§— constraints = 20
4—
=9
=
B 3+
o
=3
w
9 Lower bound
1- 4 2% = 2 .
0 T T T T 1
1 2 3 4 5 6

Number of processors
Fig. 1: Speedup versus number of processors

While PVM is easy to implement on a cluster of porting our computer codes into other computing
workstations, the performance of the proposedenvironments and testing the algorithm on a wider
algorithm is still impressive. The CPU time is variety of test problems. It is safe to state thather
apparently shorter when more processors are alailab study of the development of some mathematical
The best speedup obtained was 5.38 for the modlel wi programming algorithms that could also take advgmta
124 constraints (big problem size), executed ipstesn of distributed computing power requires greater
with 6 processors. Even for the small sized problenmresearch efforts.
model (20 constraints), the speedup reached 5r25. |
general, the speedup increased with the problem siz REFERENCES
and also with the number of available processonge T
near linear speedup was achieved, which was censist 1. Forrest, J. J. H. And J.A. Tomlin, 1992.
with the complexity derived from the analytical Implementing the simplex method for the
analysis. Despite the communication overhead during optimization subroutine library. IBM Systems J.,
the execution, the proposed algorithm was very 31:11-25.

efficient in solving LP models in a distributed 2. Lyu, J., A. Gunasekaran and V.
computing environment. Kachitvichyanukul, 1995. Towards a portable and
efficient environment for parallel computing. Idt.
CONCLUSION Systems Sci. 26: 1333-1341.

3. Romeijn, H. E. And R. L. Smith, 1999. Parallel
Distributed computing on clusters of workstations algorithms for solving aggregated shortest-path
is attractive and cost-effective to researchers for problems. Computers and Operations Res., 26:

evolving processing and networking technologieds Th 941-953.

study developed a parallel linear programming4. Hiller, F. S., G. J. Lieberman, and G. Lieberman,
algorithm and evaluated its performance on a DG T 1995. Introduction to Operations Res. (New York:
numerical results show that the speedup of theqa®egh McGraw-Hill).

algorithm approaches linearity, which is consigtmiis 5. Dantzig, G. B. And P. Wolfe, 1960. The
analytical performance. We conclude that the pitesen decomposition principle for linear programs.
algorithm is efficient and becomes a useful refeeen Operations Res., 8: 101-111.

solution model for LP applications, especially farge- 6. Chinneck, J. W., 1996. Computer codes for the
scale problems. The proposed algorithm was analysis of infeasible linear programs. J.
implemented on a PVM system (a portable distributed Operational Res. Soc., 47: 61-72.

computing environment). This software is free te th 7. Martinson, R.K. and J. Tind, 1999. An interior
public and has been installed on many networked point method in Dantzig-Wolfe decomposition.
computing platforms. We are currently working on Computers and Operations Res., 26: 1195-1216.

93

American J. Appl. i, 1 (2), 90-94, 2004

8. Sunderam, V. S., 1997. Heterogeneous network1l. Sunderam, V. S., G. A. Geist, J. Dongarra and R.

10.

computing: the next generation.
Computing, 23: 121-135.

Sekharan, C. N., V. Goel and R. Sridhar, 1995.
Load balancing methods for ray tracing and binaryl12.
tree computing using PVM. Parallel Computing 21:

1963-1978.

Parallel

Quinn, M. J., 1994. Parallel Computing: Theory

and Practice (McGraw Hill, N.Y).

94

Manchek, 1994. The PVM concurrent computing
system: evolution, experiences, and trends. Paralle
Computing, 20: 531-545.

Pisinger, D., 1995. An expanding-core algorithm
for the exact 0-1 Knapsack problem. European J.
Operational Res., 87: 175-187.

