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Abstract: This study focuses on the solution of implicit difnce equations, which are very difficult
to compute in parallel for the diffusion equatidfor improving the convergence rates and the
properties of gradual-approach convergence of Seg@lassic-Implicit-lterative (SCIl) and
Segment-Crank-Nicolson-lterative (SCNI) algorithmsalizing efficient iterative computation in
parallel by segmenting grid domains, SCIl and S@MNjorithms with accelerated convergence are
studied and improved through inserting classic icitpschemes and Crank-Nicolson schemes into
them respectively. The SCII and SCNI algorithmshwiccelerated convergence, which can be
decomposed into smaller strictly tri-diagonally doamt subsystems, are solved by using a double -
sweep algorithm. In the present study, generatstras of SCIl and SCNI algorithms with accelerated
convergence are constructed with matrix forms. @twvergent rates are estimated and properties of
gradual-approach convergence about diffusion eguaie described by a splitting coefficient matrix
in detail. These algorithms improve the convergemtes in iteration while making the properties of
gradual-approach convergence reach two ranks. ffiseercy of computation is greatly enhanced. In
addition, the algorithms are extended to the cdsev@-dimensional problem by studying Peaceman-
Rachford scheme into which classic implicit schemesinserted alternately. Numerical computations
employing SCIl and SCNI algorithms with acceleratashvergence are made to SGL/Challenge L
with 8 CPUs as examples. Theoretical analyses antkrical exemplifications show that the parallel
iterative algorithms with accelerated convergeraresblving one-dimensional diffusion equations are
more efficient in computation and have much bettenvergent rates and properties of gradual-
approach convergence.

Key words: Diffusion equation, parallel iterative algorithmprovergent rate, property of gradual-
approach convergence

INTRODUCTION discussed. The algorithms can solve implicit défere
equations and have an efficiency in par&lfél For

Recently, parallel algorithms with such goodimproving the convergence rates and the propedies
properties such unconditional stable schemes angradual-approach convergence of the SCIl and SCNI
higher accuracy schemes for solving implicit diélece  algorithms, SCII and SCNI algorithms with acceledat
equations have been improved greatly. Both ASE-konvergence which can be decomposed into smaller
algorithm and ASC-N algorithms, known as segmenttrictly tri-diagonally dominant subsystems and be
implicit methods, are set up to solve different licip  solved by using a double-sweep algorithm are studi
equationS!. They realize the principle of divide and and improved through the inserting classic implicit
rule and efficient computation in parallel by segtimey ~ scheme and Crank-Nicolson scheme into them
grid domains. It turns out that iterative methods af  respectively. General structures of SCIl and SCNI
convergent properties, which was proved by spittin algorithms with accelerated convergence are desitrib
coefficient matri¥!. Segment Classic Implicit Iterative by using matrix form. The improved convergent rates
(SCIl) and Segment Crank-Nicolson lIterative (SC-NI)and properties of the gradual-approach are desthie
algorithms for solving one-dimensional diffusion a splitting coefficient matrix in detail. By usinie
equation, which can be decomposed into smaller trialgorithms, it can save much time to solve implicit
diagonal subsystems, are solved by using a double difference equations in parallel. In addition, the
sweep algorithffl. The convergent rate is estimated algorithms are extended to two-space dimensional
and the property of gradual-approach convergencproblems by studying Peaceman-Rachford scheme into
about one-dimensional implicit difference equatiéms which classic implicit schemes are inserted alteiga
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Finally, theoretical analysis and numerical The schemes above are embedded in difference Eq.
exemplifications show that the parallel iterative 4-6 regular. So the numerical solutions involvingté
algorithms with accelerated convergence are ofdrigh difference representation of the equations governin
efficiency in computation, have much better coneatg diffusion processes usually consist of solving (m-
rate and property of gradual-approach convergence. 1)x(m-1) system which may be written in the matrix
form as:
SCII algorithm with accelerated convergence: The
problem is to find the solution of u(x,t) in the Au¥'=b (7)
domainD:{0 <x <1,t >0} of:
Uk+1 - (u]l-<+1'u;+1’ ¢“+—11)T

ou _d%u

- @) o

ot ox where, b is implicated by Ihj;o(tm) andg, (t,.,) -
ith the bound ditions: Generally, we resort to solve (7) which is basedhmn

with the boundary conditions: splitting of the matrix A as follows:

u(0,t)= g, (), ul@,tF g (t; (2)  A=M-N (8)

and the initial condition as: where, M and Nare given respectively by:

(3) M =diag@, A, ;- A,)

u(x,0)=f(x)
Hl Nl

Let Ax andAt be the step sizes in the directions of x , |My H, N,
and t, whereix=2, m is a positive integer. The N= Tror O O o)
approximate values“uof the solution u(x,t) for the M, H. Ny
problems (1)-(3) are to be computed at the gridtsd, M., H,
t), where x=IiAx, for1=0,1, ..., f = kAt for k =1,2....,
For simplicity, we denote points;(xk) by (I, k). where, A, A,,A,M; and N are matrices of order m

Among the finite difference methods for the m;, mx m, mxm,, m.,;x mx m,; and respectively;
numerical solution of problems (1)-(3), the wellekn  and they are defined as:
classic implicit scheme is as follows:

1+2r r
Ukt + (L 20yt - gt = 4 o 1+2r -r
_ A= R
Wh|Ch: -r 1+ 2r -r
F=A/ A =12, ,m-Lk= 0,12,.. T2
1+ 2r—1+2r -
u =f(x)fori=0,1,m (5) -r 1+2r -r
A = PR
Uy = gO(tk)'ul(n = gl(tk )fOI‘ k =0,1, 2, (6) or 147 -r
. . o 1+2r-5
The scheme (4) is unconditionally stable and has '
truncation error OAt+AX?). 1+2r-s0
In order to improve the convergence rate and -r 1+2r -r
property of gradual approach convergence, the iclass A, = : :
implicit difference equation can be made as follows o 1+2r o1
k+1 kL k1 -r 1+2r
= (rut =+ g+ gl ) /@ 2r) 10 0
,kjll (rut + g+ g ) 1 (@ 2r) 0
M, = , N, =
. 0
By substituting the equations above into the 0 0 1
equation (4) respectively, we have:
where H is naught matrix for i = 1,2,..,k and

2 k 1 1
T |+2 +(L+ 2r= U = gt =

. v m =m-1with 2<sm<m-1. U¥HO js a initial
k l+ (l+ 2r— 1+2r)|"r - 1:-2r ¢+21: lf‘(+ﬁr l?‘t—l z
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vector of U, and let U@ =uM in computing in , [AzM,+N )
this study. [MN], = ! P v (10)
By splitting off (8), a SCIl algorithm with ¥olvar |AIN, SAM pH¥
accelerated convergence can be expressed as:
MUKED = NUkO ©) The result ofAj(M,+N )| will be estimated in
the following section.
To balance the computing in parallel, for i = 1, SinceA;'>0,M =0andN =0, supposing

2,..., k is often made equal in performing. Singdok i
=1, 2,..,k has been strictly tri-diagonally dominant and
N; for i = 1,2,....,k-1 has only one non-zero element,

X = (X, )pp = A, Then we have:

massive computing in parallel about (9) is noficlift AZ(M+N)=X(M+N)

by parallel segmented double-sweep algoritfin 0 x, 0L O x, 0
Analyses of convergent rate and property of 0 %p O L0 X, 0
gradual-approach convergence: In this section, =M M MM
stability, convergent rate and property of gradual |0 X, O L 0 X, O
approach convergence of (9) are analyzed. We yfirstl 0 x,, 0LO x,; O

introduce a famous lemma as folldW/s

. . . Namely:
Lemma: If M = (m;;) is an rxn matrix, N = (i;) is an
nxm matrix and:

17[22rHA;1(M +N)|. = Fomax (6, + X))

m,|>X|m,| fori=12,..n for i =1,2,--,p (11)
j#i
Then: If denoting | f(i,p) =X, +X,, and
X; = (X, X 5000 %, ) for j = 1,2,..,p, the result of (11)
_ m can be obtained by solving the first and last linea
won zma S, 10m ES 1 ) e
= j#i

AX =g, AX, =g,
It is easy to prove that (7) is unconditionallgtde
according to the above lemma. And the estimateltresu By Grammer’s rule, it is easy to get the two vesto

in the iteration of (9) is what follows: X; and X, as:
e T - 19B, /D, . x,, =D/, for i =12,
[MN[, £~ for 1<m <m-1 Xy =1Dp-i/Dy , X;, =r"'Dis/D, for i=12,,p
¥ 14+3r+7
Where:

Then, we haveM™N)£|M™N| <1. So SClI

algorithm with accelerated convergence (9) is D, =detA, ,
convergent. Obviously, the convergence rate ofig9) 1+2r  -r
better than that of SCII algorithfh -r 1+2r -r
The property of gradual approach convergence willg, - .
be discussed in detail in the following. For balagc r 1+2r —r
the computing in parallel, we supposg=A, for 2
i=1,2,...k. So we have: -T2,
M =diag;t At A L2z
=diagB, Ay Ay _ - 1+2r -r
H, AN b = S
2 AM H, AN -r 1+2r -r
AN = Tior (0] O o - 1+21,
AM H, AN
AM H, Then:
Then: f(i,p) = (r' " Dp-i +1°'Di1) / D,
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Since,ﬁ =(1+ 2r)5|-1 - D, foros<l< p and Sinceo\l'l >0,N=0 , and supposiny = (yi,j)po :AIl,
denotinga +B =1+ 2rap = ¥ andD, =1, then we have we have:
BI = (a|+2 _BI+2)/(G2 _BZ)
- = . — O v, 0.0
Similar to the method above is equal td,. So 0 '
. Yop O 0
we have: 4 .
AN=YN=|:
D, =(1+ 2r—5)Dis - FDi2 = @ -B"*)/ (@* - B2)/ (@ + B) 0 Youp O - 0
0 yp,p 0O - 0
Therefore:
Namely:
f(l, p) =[ri—1(ap—i+2 _Bp—i+2) +r p—i(ai+1 _Bi+l)] N .
(@ +D)/ (@” - B?) HAl NHw = miax(y,'p) fori=12,--,p
Taking i as continuous and differentiable in f{J,p Let f(Lp)=yp and ¥ = (Yui,Yai,-yp)' for i =
we have: 1,2,...p. We have:
f(l,p) :[(%)wl +($)i+1 _(%) p-i+2 _(%) p—i+2]r p+j(cx +B) AlYp: ep
o p+3 _npt+
In/ (a B™) And:
Assuming o =r+(1++1+4r)/2 which can be Vo =1>G,_ /Dy for i=1,2,--,p
calculated bya +B =1+ 2randap =r?, it is not difficult
to find that: Where:
<0< 1+2r -r
fi(i,p) =4=0,(i="5" -r  1+2r -r
>0,(i>57) G = ’ - .
-r 1+2r -r
Therefore, f(1,p) is strictly decreasing wher2* -r 1+21,
and strictly increasing when>£= for variable i. So
f(I,p) reaches its maximum at i = 1, p and can bel NeM
rewritten as: . o _
f(i,p) =r""(a’' ~B)/(a ~B)/Dy
f(p) = maxf(i,p)
' Taking ias continuous in form, we have:
Supposing p is a continuous and differentiable N _
again, we have: f:G,p) =[()'+(D'T°In ¢/ (a =B /Dp >0
f‘(p):[(%)’”3+($)p+3—2(%)%3(%)%3]rWZ(Q +B) {a -P)InL <0 Therefore, f(l,p) is strictly increasing about ini

area [1,p] and so we have:
Hence, f (p) is strictly decreasing for variable p ) r o
according to the above discussion. That is to sayf(P)=maxf(i.p)=G,,/D,= I+ 2Na"-f")/ 6" ="")

|A;'M,+N,)|_decreases with the increasing of net o o _ _
. . Again differentiating function f(p) for variable, p
point number p in each segment. We also have: then:

IMAN| = s2580) = 2 —r %2 2+(a - pIx 1 f(p) =21+ 20 (@~ B7)ine /@™ *=B” > 0

[(@* =B 0BT (L)?

(12)

So f(p) is strictly increasing and we have:

In the following section|A;"N,|_and |A;'M | will B

1+2r

57

A;lNH;:rz(l—x'Zp/ (@*-BX 0BT~ (H* (13)

be estimated.



American J. Applied i,

1 (1): 54-61, 2004

With the increasing of net point number p its\yhere, A;, A andA, are matrices of order order ;m

maximum result ig)*. The result of|A;'N | is less
than(£)?in practical computation.
By a similar method ofA;

o » we also have:

2

1+2r

AM| 0BT () (14)

In conclusion, we have:

I}

(15)

o], = - ma
¥ 1+2r

088~ (E)?* for Om =p

where,a =r+(1++/1+ 4r)/ 2.
Finally, we obtain the best result thau N|
approaches(£)? gradually to the increasing of net

points in the segment. And the property of gradual

approach convergendg)? is much better thag %,

Therefore, we have:

Theorem: Segment classic implicit iterative algorithm
with accelerated convergence (9) for solving difins
Eq. 1-3 is convergent. Its convergent rate is beltan
SCII algorithm, and the property of gradual apploac
convergence can approggh’ gradually with the

increasing of net point number in each segment.

SCNI algorithm with accelerated convergence: It is

m;, mx m and mxm,, respectively; and this matrices
are defined as:

M:diag(ﬂl,ﬂz,---ﬁk)
Hl Nl
- r2 M1 Hz Nz
N:2(1+r) (@] (0] (@]
Mk-z Hk-l Nk-l
Mk-l Hk
2+2r -r
-r 2+2r -r
A= . . .
-r 2+2r -r
-f 2+ 2r-5
2+2r-50 -
-r 2+2r -r
A = . . .
-r 2+2r -r
-r 2+2r—2+2r
2+2r—2+2r -r
-r 2+2r -r
A, = . . .
-r 2+2r -r
-r  2+2r

In which, the structure of ;Nand M are similar to

well known that Crank-Nicolson scheme of (1) has(8). H is the zero matrix for | =1, 2,,.k-1; and

unconditional stability and has much better acopas
follows:

—rus+ 2(r+ DU - gt =

i, + 2 ni+ rfy,  (16)

Similar to the transfiguration of the classic iojtl

k

>'m =m-1 with2s m < m- 1. AU*" = b is stable if

r<laccording to the above lemma. The estimate of
convergent rate and property of gradual approach
convergence is given by:

scheme, Crank-Nicolson scheme can be changed in the

following equation:

ut =rut +rufy + 20 Ny o+ + ] 2(m @ (17)

respectively inui! andu';f . Then we have:

j+l

2 k+1 k+1 _ k+1

T2 U, +[2(1+ )= 2(11 r)]U- ~ Yy
= rufly + [+, +[21- )+ U+ U
_ruk+1 +[2(1+ 1) - 2(;.+r)]u'k+1 2(1+ - L!k:zl
= rui—l +[r+ f:rr)]u.ﬂ +[2(1-1)+ 20 r)]u 2(; 7 U2

With a similar method of SCIl algorithm with
accelerated convergence, AU= b can be obtained and
divided into iterative form as follows:
NU n+1](s)+ b

MU [N+1](s+1) — (18)
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rZ

o
M <—
H 4+6r+1r

for 1<m <m-1 (19)

oo

O (L)% for Om, =p (20)

where,a =1+ r++/1+ 2r.

Obviously, SCNI algorithm with accelerated
convergence (18) is convergent 1. In addition, its
convergent rate, property of gradual approach
convergence and accuracy are much better than tfiose
SCII algorithm with accelerated convergence.

A Parallel iterative algorithm with accelerated
convergence for two-dimensional problems. The
problem is to find the solution u (x, y, t) in tdemain
D:{0<x<10<y<1 of:
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with the boundary conditions:
u(0,y,t)= f(y,t), u@y.,t)="£(y.1)
u(x,0,t)= f,(x,t), u(x,1,t)=f,(x,t) (22)
and the initial condition:
u(x,y,0)=f(xy) (23)

Let Ax, Ay andAt be the grid spaces in the x,y an
t directions; whereAx =1/mandAy = 1/n in which m
and n are positive integers. The approximate vaifje
of the solution u(x,y,t) for the problems above &rde
computed at the grid points;(¥;, t), where :
x, =isx fori =0,1,--,m,y,; =jay forj=0,1:--,nand
t =katfor Kk 0,... For
takeAx =Ay=h andAt=t, where h
sometimes denote points (1, j, k) by, (%, t).

Among the finite difference method for the

simplicity, we
1/m. And

numerical solution above, the well-known Peaceman-

Rachford scheme is unconditionally stable and ha
truncation erroro(At® + Ax?) as follows:

@ 2nd - g
=ui‘fj + r(Uille - 24,(1 + Hj-(i‘l )

—ru<:

(24)
~rUf * (@ 2047 -
= Uik,;(% + r(qk;,%j - ZUIT% + Uk-ﬁ )
with the boundary conditions:
k — H k — H
uo,j - f1(]1k) ’ ul,j - fz(]v k)
ufo =fy(1,k) ufy =1,(i.k) (25)
for 1, j=0,1...m and the initial condition:
u, =f@,j) for 1,j=0,1,..m (26)

where,t/h*=r.

So the difference Eq, 24-26 for the Eq. 21-23

consist of solving (m-®(m-1) system, which can be
written in the matrix form as:

|

where, A is defined as:

AU =D,

27
AU =D, @
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1+2r -r 0
-r 1+2r -r
A= ’ - .
-r 1+2r -r
0 -r 1+ 2r
Ul = (uf, ey, T for j=1,2- . m=1

Ul = (U U e e ) fOri=1,2,-,m-1

It is well known that Peaceman-Rachford schemes
can be divided into two processes in alternate
directions. So parallel iterative algorithm with
accelerated convergence of (21)-(23) can be exuless

M U[jk+%](s+1) - NU}H%](S) + bl

(28)
M UEkﬂ](Sﬂ) = NUi[k+l](s) + b2

|

where, M and N are defined as (11). By a similar
method in one-dimensional problems, the convergence
rate and property of gradual approach convergeree a
estimated as follows:

rZ

LS e _
for 1<mi<m-1 (29)
HM'lN [k+1] r
o Te3rer
i (k3 )
MN|CTF DB Te (D)
‘[”M] for
[m N 00 1h (L)?
Om; = panda =r + &34 (30)

It is not difficult to see that parallel iterative
algorithm with accelerate convergence (28) for two-
dimensional problems are convergent. In additidn, i
has a better convergent rate and property of gtadua
convergence than those of parallel iterative atbori
about two-dimensional diffusion probl&m Thus, the
parallel iterative method with accelerated convecge
for one-dimensional problem is extended to the
computation of multi-dimensional problem.

RESULTS

Numerical examplesand numerical results:
One-dimension example: Consequently, numerical
experiments are made for problems of (1)-(3) inclvhi

f(x) =4x(1-x), 9o () = g, ()= 0

The exact solution of the problem is:

U =320 Y e ™ sin(ix) R
k=1,3,5;--
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Table 1: Numerical results of SCIlI algorithm witlc@elerated Convergence (SCII.AC) and SCNI algorithitin Accelerated Convergence

(SCNIL.AC)

r=10,A = 10,Ax = 0.01, k = 200, error = 19

U (10 AE(10%) PE(10%
Xi u(10Y SCILAC SCNI.AC SCILLAC SCNIAC SCILAC SCNI.AC
0.1 2.67084 2.67218 2.67170 1.34212 0.86076 5.02508 3.22281
0.2 5.04109 5.04260 5.04178 1.50410 0.69047 2.98368 1.36969
0.3 6.87319 6.87433 6.87362 1.13072 0.42760 1.64511 0.62213
0.4 8.01911 8.01978 8.01933 0.67003 0.22392 0.83554 0.27924
0.5 8.40767 8.40816 8.40783 0.48855 0.16352 0.58108 0.19449
0.6 8.01911 8.01978 8.01933 0.67003 0.22392 0.83554 0.27924
0.7 6.87319 6.87433 6.87362 1.13072 0.42760 1.64511 0.62213
0.8 5.04109 5.04260 5.04178 1.50410 0.69047 2.98368 1.36969
0.9 2.67084 2.67218 2.67170 1.34212 0.86076 5.02508 3.22281

Table 2: Iterative degrees of SCII algorithm andl&{@orithm with accelerated convergence (SCII.AC)

r=10, m =100, k = 200, error ="§0s the iterative degree

p 3 5 10 20 25 50
Ssai 14 11 8 4 2 1
Ssciiac 7 5 4 2 1 0

Table 3: Numerical results of two-dimensional platalerative algorithm with accelerated convergenc

r=1.0Ax=Ay =Ay = 0.01, x = 0.5, k = 1000 error =70

y 0.1 0.2 0.3 0.4 50. 0.6 0.7 0.8 0.9

u(10?h 0.40824 0.77653 1.06881 1.25646 1.32112 1.25646 .06881 0.77653 0.40824
Uik (10h 0.40810 0.77625 1.06842 1.25601 1.32064 1.256011.06842 0.77625 0.40810
AE(10%) 1.46697 2.79034 3.84058 4.51488 4.74722 4.51488 .84088 2.79034 1.46697
PE(10%) 3.59332 3.59332 3.59332 3.59332 3.59332 3.59332 .59332 3.59332 3.59332

The numerical results are shown in Table 1 by  The exact solution of the problem is:
putting the Absolute Error (AE):

A= = i - Uf

U(x,y,t)= €2 sinmxsinm y

CONCLUSION
and Percentage Error (PE):

By reconstructing differential equations, the SCII

PE= R'= ¢/ Uf x 100% algorithm with accelerated convergence for solving
one-dimensional diffusion equation is developethis

at each point along the mesh line, where u andeJ arstudy. It is convergent in iteration and has a drett
numerical solutions and exact solutions respegtivel convergent rate and property of gradual approach
The numerical results of SCIl and SC-NI algorithmsconvergence than those of SCII algorithm. Furtheemo
with  accelerated convergence  obtained inthe SC-NI algorithm with accelerated convergence is
SGL/Challenge L with 8 CPUs for these methods araliscussed. The convergent rate, property of gradual
more accurate in computing in parallel. It is shown approach convergence and accuracy are much better
Table 2 that the iterative degree of SCII algoritvith than those of SCIl algorithm with accelerated
accelerated convergence is less than that of SCHonvergence. In addition, the algorithm is tended t
algorithm and it decreases with the increasing &f n two-space dimensional problem by studying Peaceman-

point number in each segment (Table 3). Rachford schemes.
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