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Abstract: Problem statement: Genetic correlations among traits refer to the extent of relatedness 
among them due to genetic causes. Estimating genetic correlations for quantitative traits is tedious if 
done manually. Approach: However, the use of the computer software SAS, applying mixed-model 
analysis of variance has facilitated many recent studies in evolutionary quantitative genetics. Results: In 
this two-way statistical model, the variance component corresponding to the random statement is the 
covariance associated with a level of the random factor across levels of the fix factor. Therefore, the 
SAS model has a natural application for estimating genetic correlations among traits measured. 
Correlation studies were undertaken for 10 yield-related traits on a series of near-homozygous sweet 
corn inbred lines obtained from various tropical source populations. The SAS program was used to 
estimate genetic correlation coefficients among traits observed, where effects of blocks were 
considered fixed while effects of inbred lines as random. The “ASYCOV” was added to the “PROC 
MIXED” statement in order to produce the variance-covariance matrix of variance components. The 
“TYPE = UN” option requested in “RANDOM” statement resulted in an unstructured covariance 
matrix for each inbred line being estimated, while the “G” and “GCORR” options produced genetic 
variance-covariance matrix and genetic correlation matrix between traits, respectively. Results showed 
that there was no significant difference between genetic correlations estimated by SAS MIXED model 
and those estimated by manual calculation. Conclusion/Recommendations: This indicated that SAS 
has the natural capability to estimate genetic correlations among traits measured, as opposed to manual 
methods employing quantitative genetics equations.  
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INTRODUCTION 

 
 Crop yield is a complex character controlled by 
several interacting genotypic and environmental factors. 
There are yield components which are less complex, 
highly inherited and less influenced by the 
environmental deviations. Hence, Grafius (1956) 
suggested that selection based on the highly inherited 
components which are significantly related to yield is 
more effective than selection of yield per se. The 
interrelationships existed between yield and its 
contributing components can significantly improve the 
efficiency of crop breeding programmes through the use 
of proper selection indices (Mohammadi et al., 2003; 
Kashiani et al., 2010). Direct selection for yield is often 
deceptive as it is highly influenced by fluctuating 
environmental components (Talebi et al., 2007). The 
correlation coefficient analysis is useful in the selection 
of several traits simultaneously influencing yield 

(Menkir, 2008). Genetic correlation analysis exploits the 
degree of association among important quantitative traits 
(Malik et al., 2005). By utilizing genetic correlations 
between traits, secondary traits can be used to improve 
primary ones that have low heritability or are difficult to 
measure (Malosetti et al., 2008). Manual calculation of 
genetic correlations is difficult since investigators have to 
calculate variance components for each character and 
covariance between any pair of characters taken in the 
experiment to obtain genetic variance and covariance 
values which are mandatory components to calculate 
genetic correlations. The SAS documentation is 
formidable, however and coming up with the appropriate 
“MIXED” statements for estimating parameters like 
genetic correlations is a daunting task for the uninitiated 
(Delwiche and Slaughter, 2008). 
 Mixed-model methods primarily use three 
approaches to variance component estimation: (1) 
procedures based on expected mean squares from the 
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Analysis Of Variance (ANOVA); (2) Maximum 
Likelihood (ML) and (3) Restricted Maximum 
Likelihood (REML), also known as residual maximum 
likelihood (Jun, 2000). Of these, the use of ML is 
usually discouraged, because the variance component 
estimates are biased downwards and hence so are the 
standard errors computed from them. This results in 
excessively narrow confidence intervals whose 
coverage rates are below the nominal 1-α level and 
upwardly biased test statistics, Type I error rates of 
which tend to be well above the nominal α level. The 
REML  procedure  is  the  most  versatile  method 
(Littell et al., 2006). REML estimates of variance 
components are unbiased by selection and assortative 
mating (Gianola and Fernando, 1986). “PROC 
MIXED” in SAS uses the REML approach by default, 
but provides optional use of other methods when 
needed. There are situations for which ANOVA 
procedures are preferable. By using the mixed model 
the response vector which is the result of random and 
fixed factors and covariables, a wide range of possible 
(co)variance structures can be used to model the data, 
improving tests and estimates of treatment effects 
(Malosetti et al., 2008). 
 

MATERIALS AND METHODS 
 
 This study was an advanced stage of a long-term 
tropical sweet corn inbred line development programme 
conducted at University Putra Malaysia where a series 
of near-homozygous inbred lines obtained from various 
source populations were evaluated. The evaluation was 
carried out in a Randomized Complete Block Design 
(RCBD) with three replications. All inbred lines were 
of tropical origin namely Bakti-1-S7, Manis Madu-S7, 
TSS Tin-S7, Mas Madu-S6, Thailand-S6, Indonesia-S6, 
TSS Melaka-S5, Manis Madu x Indonesia-S4 and SBY-
S4. All experimental plots were subjected to uniform 
agronomic practices. Data were collected before and 
after harvest, which include days to tasselling, days to 
silking, plant height (cm), number of ears per ha, fresh 
ear yield (kg ha−1), ear diameter (mm), number of 
kernels per row, number of kernel rows per ear and 
Total Soluble Solids concentration (TSS) (%).  
 Since for every inbred line, any given pair traits (X 
and Y) were measured in different blocks, there could 
be environmental reasons for a relationship between X 
and Y. Hence the environmental variance should be 
taken apart of phenotypic variance of any trait 

measured to obtain genotypic variance. Table 1 shows 
generalized expectations of mean squares of analysis of 
variance and covariance for two traits, X and Y. 
 Genotypic variance of each trait is obtained by the 
variance components method suggested by Becker 
(1992) as follows: 
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  Genotypic covariance between the traits X and Y is 

also achieved as follows: 
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BI and b are genotypic covariance,

 covariance between trait X and Y caused by inbred 
lines, environmental covariance between X and Y and 
number of replications, respectively.

  Correlation coefficient of X and Y is a measure of 
linear dependence between X and Y and can be 
explained by normalized covariance as follows: 
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Where: 
ρ = Correlation coefficient between X and Y 
σ(X, Y) = Covariance between X and Y  
σ

2
1 = Variance of X  

σ
2
2 = Variance of Y  

 
 The above equations of genetic variance and 
covariance and correlation coefficient suggest that the 
genetic correlation coefficient can also be estimated 
from the components of variance, as follows: 
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Table 1: Generalized expectations of mean squares of Analysis Of Variance (ANOVA) and Covariance (ANCOVA) for X and Y  
Source d.f. E(MS)X E(MS)Y E(MS)XY 
Blocks  (r-1)  σσ22

BBII((XX))  ++  ii   σσ22
BB((XX))  σσ22

BBII((YY))  ++  ii   σσ22
BB((YY))  σσ22

BBII((XXYY))  ++  ii   σσ22
BB((XXYY))  

Inbred lines  (t-1)  σσ22
BBII((XX))  ++  bb  σσ22

II ((XX))    σσ22
BBII((YY))  ++  bb  σσ22

II ((YY))    σσ22
BBII((XXYY))  ++  bb  σσ22

II ((XXYY))    
Blocks X inbred lines  (r-1)(t-1)   σσ22

BI(X)   σσ22
BI(Y)   σσ22

BI(XY)  
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 This is similar to the formula described by 
Falconer and Mackay (1996) as follows: 
 

G(X,Y)
G 2 2

G(X) G(Y)

r =
,

σ

σ σ
 (5) 

 
Where: 
rG = Genetic correlation between the traits X and 

Y 
σG(X, Y) = Genotypic covariance between the traits X 

and Y 
σ

2
G(X) = Genotypic variance of the trait X  

σ
2
G(Y) = Genotypic variance of the trait Y 

 
 It is very clear that estimate of genetic correlation 
using the method described above is very difficult and 
time consuming. In contrast, the “MIXED” procedure 
in SAS is a highly flexible program that can be used for 
estimating genetic correlation by using REML to 
estimate genetic variance components in mixed-model 
approach (Littell et al., 1996). The mixed model 
applied to estimate genetic variance components from 
the nine inbred lines studied in three replications 
(environment), was: 
 

y X Z= β + α + ε  
 
Where: 
y = The vector of n observations for each 

family (response vector) 
X and β = The design matrix and the vector of fix 

effects including replications and the 
means of each trait measured across inbred 
lines 

Z and α = Design matrix assigning the random effects 
to the observations and the vector of 
random effects, respectively 

ε = The vector of non-genetic residuals 
associated with each observation and 
normally distributed, ε~N(0, R)  

 
 Vector α (1≤d≤∞) collects the random genotypic 
effects per trait, where d is number of “TRAIT” levels 
which is equal to number of traits measured in the 
experiment. Random genetic effects are assumed 
normally distributed, α~N(0, G); With G the genetic 
(co)variance matrix.  
 The following program fits a mixed model to the 
data to estimate genetic correlation in this study: 
 
proc mixed covtest asycov method = reml;  
class rep gen trait; 

model y = trait rep; 
repeated /type = UN sub = rep*gen r rcorr; 
random trait /type = un sub = gen g gcorr; 
run; 
 
 In this program “REP”, “GEN” and “Y” variables 
are used to refer to replications, inbred lines and data 
taken from each experimental unit, respectively. The 
variable “TRAIT” is a dummy variable and differs from 
one trait measured to another. The fixed-effect-class 
(independent) variables including “TRAIT” and “REP” 
are listed after the dependent variable “Y”. The 
variables “TRAIT”, “GEN” and “GEN*REP” are 
considered as random. The option “COVTEST” was 
used to provide estimates of the standard errors of the 
estimated variance components. The “ASYCOV” was 
added to the “PROC MIXED” statement in order to 
produce the variance-covariance matrix of variance 
components since genetic correlation is a variance-
covariance relationship of genotypic variance. The 
“CLASS” statement specifies that “REP”, “GEN” and 
“TRAIT” are classification variables and not 
continuous variables. 
 The “REPEATED” statement is used to specify 
correlated error structures. The “TYPE = UN” option 
specifies the covariance structure as being of the 
unstructured type. Depending on the data, it is possible 
to   fit different covariance structures, such as 
Compound Symmetry   (CS)   or Autoregressive (AR). 
The “SUB = REP*GEN” option specifies the unit 
within which observations are correlated, in this case 
the whole-plot experimental unit. The options “R” and 
“RCORR” request listings of the covariance and 
correlation matrices, respectively, within a given 
“REP*GEN” unit. 
 The option “TYPE = UN” in the “RANDOM” 
statement specifies the covariance structure for a 
subject’s random effects. The “TYPE = UN” calls for 
an unstructured (2×2) covariance matrix comprising the 
genetic variance of the random slopes (σ

2
a), the genetic 

variance of the random intercepts (σ
2
b) and their 

covariance (σab), since the “G” option requests genetic 
covariance-variance matrix as follows: 
  

2
a ab

2
ab b

G
 σ σ

=  σ σ 
 

 
 The “SUB = GEN” option in the “RANDOM” 
statement specifies that the intercept and slope of one 
inbred line are independently distributed from the 
intercepts and slopes of other inbred lines. The effects 
“TRAIT” and “REP” in the “RANDOM” statement, 



Am. J. Agri. & Biol. Sci., 5 (3): 309-314, 2010 
 

312 

together with the “SUB = GEN” option, instruct “PROC 
MIXED” to add a random intercept and a random 
“TRAIT” slope for each inbred line to the fixed effects 
part of the model. The fixed effects part consists of a fixed 
intercept (automatically included through the “MODEL” 
statement) and a fixed slope in “TRAIT”. The “GCORR” 
option requests a printout of the genetic correlation 
coefficients among different levels of “TRAIT”. 
 Experimental error (σe) in RCBD experiments is 
the interaction between blocks and treatments applied 
because of the cross-classified relationship of blocks 
and treatments. Observations within the same block 
from different treatments are correlated (Fry, 1992). 
The intraclass correlation is a measure of this 
correlation.  Because variance components must be 
non-negative, variance component models implicitly 
assume that the intraclass correlation is non-negative. 
However, there is no conceptual reason why correlation 
among observations within the same whole-plot 
experimental unit must be non-negative. In fact, in 
many practical situations, there are interferences or 
competition effects among adjacent experimental units 
that manifest themselves in negative correlations.  
 

RESULTS  
 
 Results showed that genetic correlation estimated 
between any two given traits using either manual 
calculation or SAS MIXED model procedure is 
approximately equivalent. Estimation of genetic 
correlation between days to tasseling and days to 
silking was randomly chosen to show the above 
statement. Mean values for the performance of the 
inbred lines for days to tasseling and silking and sum of 
products between these two traits are shown in Table 2. 
 Genetic variance and genetic covariance were 
achieved for each trait using Equations 1and 2, 
respectively. Genetic correlation was then estimated 
between traits by using Eq. 5 (Table 3). 
 Table 4 extracted from the SAS output shows error 
variance and covariance belonging to days to tasseling 
and days to silking. 1.427 is error covariance between 
days to tasseling and days to silking, while 2.175 is 
error variance for days to tasseling and 2.123 is error 
variance of days to silking. These values are reasonably 
equal to those obtained from manual calculation as 
shown in Table 2.  
 In  the estimated R Correlation Matrix Table 
(Table 5), 0.664 is the error correlation between the two 
traits, which can also be obtained from Table 4 as:  
 

( ) 1.427
r E

2.175* 2.123
=  

Table 2: Mean values and sum of products for the performance of the 
inbred lines between days to tasseling and silking  

  Mean squares 
  ----------------------------------------- 
  Days to Days to Sum of  
Source of variation d.f. tasseling silking products 
Blocks  2 8.955 14.065 11.215 
Inbred lines  8 15.565 28.829 19.261 
Blocks X inbred lines 16 2.204 2.148 1.401 

 
Table 3: Genetic variance, covariance and correlation for days to 

tasseling and silking 
Genetic variance for days to tasseling 4.454 
Genetic variance for days to silking 8.894 
Genetic covariance between days to tasseling and silking 5.953 
Genetic correlation between days to tasseling and silking 0.946 

 
Table 4: Estimated R matrix obtained from SAS output  
Row Col1 (days to tasseling) Col2 (days to silking) 
1 (days to tasseling) 2.175 1.427 
2 (days to silking) 1.427 2.123 

 
Table 5: Estimated R correlation matrix obtained from SAS output 
Row Col1 (days to tasseling) Col2 (days to silking) 
1 (days to tasseling) 1 0.664 
2 (days to silking) 0.664 1 

 
Table 6: Estimated G matrix obtained from SAS output 
Row Effect Trait Col1 Col2 
1 Trait Silk 8.902 5.945 
2 Trait Tassel 5.945 4.463 

 
Table 7: Estimated G correlation matrix obtained from SAS output 
Row Effect Trait Col1 Col2 
1 Trait Silk 1.0000 0.9431 
2 Trait Tassel 0.9431 1.0000 

 
 The elements of the Estimated G Matrix shown in 
Table 6 are genetic variances and covariances for the 
two variables. 8.902 is the genetic variance for days to 
silking, 5.945 is the genetic covariance between the two 
traits and 4.463 is the genetic variance for days to 
tasseling. These values are reasonably equal to those 
calculated manually in Table 3. 
  Finally by requesting “GCORR” option after the 
“RANDOM” statement, the code produces genetic 
correlation between the two traits (Table 7). Genetic 
correlation between days to tasseling and days to 
silking estimated through SAS PROC MIXED was 
0.946, equal to what obtained from Equation 5. Genetic 
correlation can also be calculated using the Estimated G 
Matrix components as follows: 
 

( ) 5.945
r G

8.902* 4.463
=
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Table 8: Genetic correlation estimates obtained from SAS proc mixed model (S) and Manual calculation (M) 
   Husked Dehusked No. of Plant Days to Days to Ear No. of  No. of kernel 
  ear yield ear yield ears ha−1 height tasselling silking diameter kernels/row rows/ear           
Dehusked ear yield         M 0.962**                  
 S 0.961**                  
No. of ears ha−1    M 0.914**  0.755**                
 S 0.981**  0.817**                
Plant height      M 0.949**  0.971**  NA             
 S 0.967**  0.986**  NA             
Days to tasselling         M -0.297ns -0.570**  0.086ns -0.322ns           
 S -0.296ns -0.570**  0.076ns -0.302ns           
Days to silking M -0.508**  -0.732**  0.108ns -0.366ns 0.946**          
 S -0.508**  -0.732**  0.094ns -0.346ns 0.941**          
Ear diameter     M 0.752**  0.768**  0.758**  0.494* -0.564**  -0.640**        
 S 0.740**  0.753**  0.774**  0.508**  -0.564**  -0.638**        
No. of kernels/row     M 0.569**  0.832**  0.317ns 0.796**  -0.494* -0.485* 0.500**      
 S 0.582**  0.839**  0.337ns 0.813**  -0.495* -0.486* 0.458*     
No. of kernel rows/ear   M 0.914**  NA 0.461* 0.703**  -0.509**  -0.657**  0.927**  0.726**    
 S 0.906**  NA 0.544**  0.689**  -0.503**  -0.659**  0.912**  0.731**    
TSS M -0.414ns -0.522**  -0.378ns -0.518**  -0.445* -0.293ns 0.159ns -0.686**  -0.81**  
 S -0.422ns -0.532**  -0.373ns -0.517**  -0.446* -0.293ns 0.144ns -0.692**  -0.55**  
NA: Not Available 
 
 The difference existed between the genetic 
correlations obtained via these two methods was 
statistically tested using Paired Sample T-test. The 
result showed that there is no significant difference 
between genetic correlation values obtained from 
manual calculation and SAS PROC MIXED (T value = 
0.25, Pr>t = 0.802). This indicates that genetic 
correlation can be estimated correctly using SAS PROC 
MIXED which is a simple and fast procedure. Genetic 
correlations estimated through the manual calculation 
and SAS PROC MIXED MODEL is shown in Table 8.  
 The genetic correlation values obtained from this 
study were similar to those reported in previous 
investigations. Husked ear yield was found to have the 
highest positive genetic correlation with number of ears 
per ha (r = 0.99). Similar result reported by Martin and 
Russell (1984) and Wang et al. (1999) indicated that 
number of ears per ha was strongly and genetically 
associated with yield. Plant height, dehusked ear yield, 
number of kernel rows per ear, ear diameter and 
number of kernels per row were found to be positively 
genetically correlated with husked ear yield (r = 0.97, 
0.96, 0.91, 0.74 and 0.58, respectively). Plant height 
was reported to be strongly associated with grain yield 
(Akanvou et al., 1997; Kashiani   et al., 2010; Martin 
and Russell, 1984; Burak and Magoja, 1991). Ear 
diameter was indicated to also have positive genetic 
correlation with grain yield by Burak and Magoja 
(1991); Kashiani et al. (2010); Malvar et al. (1994) and 
Xie et al. (2010). Numbers of kernels per row and 
kernel rows per ear have also a positive genetic 
correlation with grain yield (Kashiani et al., 2010; Liu, 
2009; Wang et al., 1999; Xie et al., 2010; Yousuf and 
Saleem, 2001). Total soluble solids concentration and 
days to silking were found to be negatively correlated 
with husked fresh yield (-0.52 and -0.51, respectively). 

DISCUSSION 
 

 The non-significant difference between the genetic 
correlation values estimated through manual calculation 
and the SAS programme indicates that genetic 
correlation can be estimated precisely using SAS PROC 
MIXED model which is a simple and fast procedure. 
Nevertheless, it should be concerned that if the 
computer used has limited random-access memory, 
SAS may fail to produce a correct result in situation 
where genetic correlations for many traits investigated 
simultaneously. To protect from this failure, the 
convergence criteria under the Iteration History of SAS 
output has to be met before execution of the analysis. 
 Number of ears per ha, plant height, number of 
kernel rows per ear, ear diameter and number of days to 
silking that showed highly interrelationship with husked 
fresh ear yield revealed that they were under the 
influence of certain common genes with husked fresh 
ear yield, thus could be exploited as selection criteria in 
breeding programs. Husked fresh yield could be 
efficiently increased by increasing number of ears per 
ha, plant height, number of kernel rows per ear and ear 
diameter, while reducing the number of days to silking 
among inbred lines. 
 

CONCLUSION 
 
 SAS PROC MIXED model can be effectively used 
as a rapid approach assisting breeders to estimate 
genetic correlations in populations for further selection 
per purpose. From this study of genetic correlation, it 
has been revealed that husked fresh ear yield in these 
inbred line populations investigated could be improved 
through improvement in number of ears per ha, plant 
height, number of kernel rows per ear and ear diameter.   
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