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Abstract: Problem statement: Genetic correlations among traits refer to the rxtd relatedness
among them due to genetic causes. Estimating geoetielations for quantitative traits is tediofis i
done manuallyApproach: However, the use of the computer software SAS,yamplmixed-model
analysis of variance has facilitated many recamtiss in evolutionary quantitative genetiBesults: In
this two-way statistical modethe variance component corresponding to the ranstatement is the
covariance associated with a level of the randoetofaacross levels of the fix factor. Therefores th

SAS model has a natural application for estimatiygmetic correlations among traits measured.
Correlation studies were undertaken for 10 yieldteal traits on a series of near-homozygous sweet
corn inbred lines obtained from various tropicalie@ populations. The SAS program was used to

estimate genetic correlation coefficients amongtsrabserved, where effects of blocks were
considered fixed while effects of inbred lines asdom. The “ASYCOV” was added to the “PROC
MIXED” statement in order to produce the varianceariance matrix of variance components. The
“TYPE = UN” option requested in “RANDOM” statemengsulted in an unstructured covariance
matrix for each inbred line being estimated, witile “G” and “GCORR” options produced genetic
variance-covariance matrix and genetic correlati@trix between traits, respectively. Results showed
that there was no significant difference betweemege correlations estimated by SAS MIXED model
and those estimated by manual calculati@anclusion/Recommendations: This indicated that SAS
has the natural capability to estimate geneticetations among traits measured, as opposed to fhanua
methods employing quantitative genetics equations.
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INTRODUCTION (Menkir, 2008). Genetic correlation analysis exsldhe
degree of association among important quantitataits

Crop yield is a complex character controlled by(Malik et al., 2005). By utilizing genetic correlations
several interacting genotypic and environmentaidi@c  between traits, secondary traits can be used toowap
There are yield components which are less complexprimary ones that have low heritability or are idifft to
highly inherited and less influenced by the measure (Malosettt al., 2008). Manual calculation of
environmental deviations. Hence, Grafius (1956)genetic correlations is difficult since investigathave to
suggested that selection based on the highly i@ukeri calculate variance components for each charactdr an
components which are significantly related to yiedd covariance between any pair of characters takethen
more effective than selection of yield per se. Theexperiment to obtain genetic variance and covaganc
interrelationships existed between vyield and itsvalues which are mandatory components to calculate
contributing components can significantly improve t genetic correlations. The SASlocumentation is
efficiency of crop breeding programmes throughuke formidable, however and coming up with the appatpri
of proper selection indices (Mohammeaddi al., 2003; “MIXED” statements for estimating parameters like
Kashianiet al., 2010). Direct selection for yield is often genetic correlations is a daunting task for thenitiated
deceptive as it is highly influenced by fluctuating (Delwiche and Slaughter, 2008).
environmental components (Tale&ti al., 2007). The Mixed-model methods primarily use three
correlation coefficient analysis is useful in tledestion  approaches to variance component estimation: (1)

of several

traits simultaneously influencing yield procedures based on expected mean squares from the
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Analysis Of Variance (ANOVA); (2) Maximum measured to obtain genotypic variance. Table 1 show
Likelihood (ML) and (3) Restricted Maximum generalized expectations of mean squares of asalysi
Likelihood (REML), also known as residual maximum variance and covariance for two traits, X and Y.
likelihood (Jun, 2000). Of these, the use of ML is  Genotypic variance of each trait is obtained by th
usually discouraged, because the variance componew@riance components method suggested by Becker
estimates are biased downwards and hence so are t#92) as follows:

standard errors computed from them. This results in

excessively narrow confidence intervals whose02 _ (0% +bo’ )-0% (1)
coverage rates are below the nominad level and ¢ b

upwardly biased test statistics, Type | error rabés

which tend to be well above the nominalevel. The where, (526, (52“ GZBI and b are genotypic variance,
REML procedure is the most versatile methodvariance for inbred linesenvironmental variance and
(Littell et al., 2006). REML estimates of variance number of replications, respectively.

components are unbiased by selection and assertativ.  Genotypic covariance between the traits X and Y is
mating (Gianola and Fernando, 1986). “PROCga|so achieved as follows:

MIXED” in SAS uses the REML approach by default,

but provides optional use of other methods when (Taien M0y )Faren

needed. There are situations for which ANOVA 0c= b )
procedures are preferable. By using the mixed model

the response vector which is the result of randooh a
fixed factors and covariables, a wide range of jess
(co)variance structures can be used to model tkee da
improving tests and estimates of treatment effeCt?ﬁumber of replications, respectively.

(Malosettiet al., 2008). Correlation coefficient of X and Y is a measure of

MATERIALSAND METHODS linear dependencébetween X and Yand can be
explained by normalized covariance as follows:
This study was an advanced stage of a long-term

tropical sweet corn inbred line development progrem .

conducted at University Putra Malaysia where aeseri === 3)

of near-homozygous inbred lines obtained from vaxio V01,0,

source populations were evaluated. The evaluatas w

carried out in a Randomized Complete Block Designwhere:

(RCBD) with three replications. All inbred lines we

of tropical origin namely Bakti-1-$ Manis Madu-$ Sx. v)

TSS Tin-S, Mas Madu-g Thailand-$§, Indonesia-§ Ggl'

TSS Melaka-§ Manis Madu x Indonesiaz&nd SBY- 2

S;. All experimental plots were subjected to uniform

agronomic practices. Data were collected before and . . .

after harvest, which include days to tassellingjsd The above equations of genetic variance and

silking, plant height (cm), number of ears perfaesh ~ covariance and _correlauqn_ coefficient suggest that

ear vyield (kg hd), ear diameter (mm), number of genetic correlation coefﬁmgnt can also be estanat

kernels per row, number of kernel rows per ear and’om the components of variance, as follows:

Total Soluble Solids concentration (TSS) (%).

where, 6g, Gyxv), 0% and b are genotypic covariance,
covariance between trait X and Y caused by inbred
lines, environmental covariance between X and Y and

Correlation coefficient between X and Y
Covariance between X and Y

Variance of X

Variance of Y

Since for every |nbre_d Ilrje, any given pair trgis (Tarpen PG00y ) Tuioeny
and Y) were measured in different blocks, thereldou b 4
be environmental reasons for a relationship between &= (0% +bo’,, )02 (@2 +hoZ, )al (4)
and Y. Hence the environmental variance should be J BIY 09 7~ B \/ BICY) v 7 Biv
taken apart of phenotypic variance of any trait b b
Table 1: Generalized expectations of mean squduksalysis Of Variance (ANOVA) and Covariance (AN@@) for X and Y
Source d.f. E(MS) E(MS) E(MSky
Blocks _ (r-1) oaix) + 1 6%8(x) Saivy*+ 1 6%8(y) o2Biexy) + 1 07B(xy)
Inbred lines (t-l) GZB|(><) +b 02|(><) GZB|(Y) +b 62|(Y) 023|(><y) +b 02|(xy)
Blocks X inbred lines (I'-l)(t-l) GZB|(><) UZBI(Y) GZB|(xy)
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This is similar to the formula described by modely = trait rep;

Falconer and Mackay (1996) as follows: repeated /type = UN sub = rep*gen r rcorr;
random trait /type = un sub = gen g gcorr;
_ Ogxy) run;
e ()
Fe09:Tem In this program “REP”, “GEN” and “Y” variables

_ are used to refer to replications, inbred lines dath
Where: _ _ _ taken from each experimental unit, respectivelye Th
e = Genetic correlation between the traits X and,zriaple “TRAIT” is a dummy variable and differson
Y one trait measured to another. The fixed-effecsscla

oe(x,v) = Genotypic covariance between the traits X(independent) variables including “TRAIT” and “REP”
adyY _ are listed after the dependent variable “Y”. The

e = Genotypic variance of the trait X variables “TRAIT”, “GEN’ and “GEN*REP” are

ey = Genotypic variance of the trait Y considered as random. The option “COVTEST” was

used to provide estimates of the standard errotheof

_Itis very clear that estimate of genetic corielat  ggtimated variance components. The “ASYCOV” was
using the method described above is very diffienil  ;44ed to the “PROC MIXED” statement in order to

time consuming. In contrast, the “MIXED" procedure nroqyuce the variance-covariance matrix of variance
in SAS is a highly flexible program that can bedif& 5 mponents since genetic correlation is a variance-
estimating genetic correlation by using REML 10 coyariance relationship of genotypic variance. The
estimate genetic variance components in mixed-modelc| ASS” statement specifies that “REP”, “GEN” and
approach (Littell et al., 1996). The mixed model «TRAIT" are classification variables and not
applied to estimate genetic variance component® fro -qntinuous variables.
the nine inbred lines studied in three replications  The “REPEATED” statement is used to specify
(environment), was: correlated error structures. The “TYPE = UN” option
specifies the covariance structure as being of the

y=XB+Za+e unstructured type. Depending on the data, it isibes
to fit different covariance structures, such as
Where: Compound Symmetry (CS) or Autoregressive (AR).
y = The vector of n observations for eachThe “SUB = REP*GEN" option specifies the unit
family (response vector) within which observations are correlated, in thise
XandB = The design matrix and the vector of fix the whole-plot experimental unit. The options “Rida
effects including replications and the “RCORR” request listings of the covariance and
means of each trait measured across inbredorrelation matrices, respectively, within a given
lines “REP*GEN?" unit.
Z ando = Design matrix assigning the random effects ~ The option “TYPE = UN” in the “RANDOM”
to the observations and the vector ofstatement specifies the covariance structure for a
random effects, respectively subject’s random effects. The “TYPE = UN” calls for
€ = The vector of non-genetic residuals an unstructured (2x2) covariance matrix comprisirey
associated with each observation andgenetic variance of the random slope$)( the genetic
normally distributeds~N(0, R) variance of the random interceptsj and their

~ covariance d¢,p), since the “G” option requests genetic
Vector o (1=d<w) collects the random genotypic covariance-variance matrix as follows:
effects per trait, where d is number of “TRAIT” &g
which is equal to number of traits measured in the 2
. . (o) o
experiment. Random genetic effects are assumed G:{ 2 ab}
normally distributed,a~N(0, G); With G the genetic
(co)variance matrix.

The following program fits a mixed model to the The “SUB = GEN” option in the “RANDOM”

2
0-ab o b

data to estimate genetic correlation in this study: statement specifies that the intercept and slopenef
inbred line are independently distributed from the

proc mixed covtest asycov method = reml; intercepts and slopes of other inbred lines. Theces

class rep gen trait; “TRAIT” and “REP” in the “RANDOM" statement,
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together with the “SUB = GEN” option, instruct “PRO  Table 2: Mean values and sum of products for thitopeance of the
MIXED” to add a random intercept and a random inbred lines between days to tasseling and silking

“TRAIT” slope for each inbred line to the fixed efts Mean squares

part of the model. The fixed effects part consi$ta fixed Daysto Daysto  Sum of
intercept (automatically included through the “MQODE  Source of variation df.  tasseling silking products
statement) and a fixed slope in “TRAIT”. The “GCORR Blocks 2 8.955 14065  11.215

option requests a printout of the genetic cortati nbredlines 8 15,565 28829 19.261
coefficients among different levels of “TRAIT". Blocks X inbred fines 16 2204 2148 1401

Experimental erroro) in RCBD experiments is
the interaction between blocks and treatments egpli
because of the cross-classified relationship otkso

Table 3: Genetic variance, covariance and cormlafor days to
tasseling and silking

. . Genetic variance for days to tasseling 4.454
and treatments. Observations within the same bloclkenetic variance for days to silking 8.894
from different treatments are correlated (Fry, 1992 Genetic covariance between days to tasseling #idgsi 5.953
The intraclass correlation is a measure of thigGenetic correlation between days to tasseling dkidg 0.946

correlation. Because variance components must be
non-negative, variance component models implicitlyTable 4: Estimated R matrix obtained from SAS otitpu

assume that the intraclass correlation is non-negat Row Col1 (days to tasseling) Col2 (days to silking)
However, there is no conceptual reason why cofoglat 1 (days to tasseling) 2.175 1.427
among observations within the same whole-plof? (daystosiking) 1427 2123

experimental unit musbe non-negative. In fact, in
many practical situations. there are interferenoes JTable5: Estimated R correlation matrix obtaineafrSAS output
competition effects among adjacent experimentaisuni RW Col1 (days to tasseling) Col2 (days to silking)

: : : : 1 (days to tasseling) 1 0.664
that manifest themselves in negative correlations. 2 (days to siking) ~ 0.664 1
RESULTS _ . .
Table 6: Estimated G matrix obtained from SAS otitpu
. . . o) Effect Trait Coll Col2

Results showed that genetic correlation estimate§Y. Trait Silkl 5902 5945
between any two given traits using either manuaE Trait Tassel 5.945 4.463
calculation or SAS MIXED model procedure is
approxmately equivalent. Estlmatlpn of ~genetic Table 7: Estimated G correlation matrix obtainemhfrSAS output
correlation between days to tasseling and days tgg, Effect Trait Coll Col2
silking was randomly chosen to show the aboveg Trait Silk 1.0000 0.9431
statement. Mean values for the performance of the Trait Tassel 0.9431 1.0000
inbred lines for days to tasseling and silking anch of
products between these two traits are shown inerabl The elements of the Estimated G Matrix shown in

Genetic variance and genetic covariance Werraple 6 are genetic variances and covarianceshtor t
achieved for each ftrait using Equations land 2y, variables. 8.902 is the genetic variance forsda
respectively. Genetic correlation was then estlmatesnking 5.945 is the genetic covariance betweenttvo
between traits by using Eq. 5 (Table 3). traits and 4.463 is the genetic variance for days t

_Table 4 extracted from the SAS output Shows ermog,gseling. These values are reasonably equal &etho
variance and covariance belonging to days to tagsel gicylated manually in Table 3.

and days to silking. 1.427 is error covariance leetw Finally by requesting “GCORR” option after the

days to tasseling and days to silking, while 2.1§5 “RANDOM” statement, the code produces genetic

error variance for days_ to tasseling and 2.123rmsre correlation between the two traits (Table 7). Gienet
variance of days to silking. These values are ressy . .
correlation between days to tasseling and days to

equal to those obtained from manual calculation as. . .
shown in Table 2. silking estimated through SAS PROC MIXED was

In  the estimated R Correlation Matrix Table 0.946, equal to what obtained from Equation 5. @ene

(Table 5), 0.664 is the error correlation betwewmnttvo ~ COMTelation can also be calculated using the E$the
traits, which can also be obtained from Table 4 as: Matrix components as follows:

r(E) _ 1427 r(G) _ 5.945
\2.175%2.123 18.902*4.463
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Table 8: Genetic correlation estimates obtainechf8AS proc mixed model (S) and Manual calculatidi (

Husked Dehusked No. of Plant Daysto Daysto Ear No. of No. of kernel
earyield earyield earsfa height tasselling silking diameter kernels/row séar
Dehusked ear yield M 0962
S 0.961
No. of ears h& M 0.914 0.755
S 0.981 0.817
Plant height M 0.949 0.971 NA
S 0.967 0.986" NA
Days to tasselling M -0.287 -0.570" 0.086° -0.322°
S -0.296° -0.570° 0.076° -0.302°
Days to silking M  -0.508 -0.737 0.108° -0.366° 0.946
S  -0.508 -0.732 0.094° -0.346° 0.941
Ear diameter M 0.752 0.768" 0.758  0.494 -0.564" -0.640
S 0.740 0.753 0.774 0508  -0.564" -0.638
No. of kernels/row M 0.569 0.837 0.317° 0.796° -0.494 -0.485  0.500°
S 0.587 0.839" 0.337° 0.813  -0.495 -0.486  0.458
No. of kernel rows/ear M 0.914 NA 0461  0.703°  -0.509° -0.657" 0.927 0.726°
S 0.906 NA 0.544" 0.689° -0.503 -0.659° 0.917 0.731"
TSS M -0.41% -0.527 -0.378° -0.518  -0.445 -0.293° 0.159° -0.686 -0.81"
S  -0.42» -0.532" -0.373° -0.517  -0.446 -0.293° 0.144° -0.697 -0.55"
NA: Not Available
The difference existed between the genetic DISCUSSION

correlations obtained via these two methods was
statistically tested using Paired Sample T-teste Th The non-significant difference between the genetic
result showed that there is no significant diffeen correlation values estimated through manual caticuia
between genetic correlation values obtained fromand the SAS programme indicates that genetic
manual calculation and SAS PROC MIXED (T value =correlation can be estimated precisely using SAOER
0.25, Pr>t = 0.802). This indicates that geneticMIXED model which is a simple and fast procedure.
correlation can be estimated correctly using SA®ER Nevertheless, it should be concerned that if the
MIXED which is a simple and fast procedure. Geneticcomputer used has limited random-access memory,
correlations estimated through the manual cal@dati SAS may fail to produce a correct result in sititi
and SAS PROC MIXED MODEL is shown in Table 8. where genetic correlations for many traits investgl
The genetic correlation values obtained from thissimultaneously. To protect from this failure, the
study were similar to those reported in previousconvergence criteria under the lteration HistorysafS
investigations. Husked ear yield was found to hidsee  output has to be met before execution of the arslys
highest positive genetic correlation with numbeeafs Number of ears per ha, plant height, number of
per ha (r = 0.99). Similar result reported by Madnd  kernel rows per ear, ear diameter and number o ttay
Russell (1984) and Wang al. (1999) indicated that silking that showed highly interrelationship withdked
number of ears per ha was strongly and geneticallfresh ear yield revealed that they were under the
associated with yield. Plant height, dehusked @&ildy influence of certain common genes with husked fresh
number of kernel rows per ear, ear diameter angar yield, thus could be exploited as selectioteda in
number of kernels per row were found to be podifive breeding programs. Husked fresh vyield could be
genetically correlated with husked ear yield (r 80 efficiently increased by increasing number of gaes
0.96, 0.91, 0.74 and 0.58, respectively). Planglttei ha, plant height, number of kernel rows per ear ead
was reported to be strongly associated with gragéfdy diameter, while reducing the number of days toirsjk
(Akanvouet al., 1997; Kashiani et al., 2010; Martin  among inbred lines.
and Russell, 1984; Burak and Magoja, 1991). Ear

diameter was indicated to also have positive geneti CONCLUSION
correlation with grain yield by Burak and Magoja
(1991); Kashiangt al. (2010); Malvaret al. (1994) and SAS PROC MIXED model can be effectively used

Xie et al. (2010). Numbers of kernels per row andas a rapid approach assisting breeders to estimate
kernel rows per ear have also a positive genetigenetic correlations in populations for furthereséibn
correlation with grain yield (Kashiaset al., 2010; Liu,  per purpose. From this study of genetic correlatibn
2009; Wanget al., 1999; Xieet al., 2010; Yousuf and has been revealed that husked fresh ear yieldeseth
Saleem, _20_01). Total soluble solids co_ncentratlod a inbred line populations investigated could be inved
days to silking were found to be negatively coteda through improvement in number of ears per ha, plant
with husked fresh yield (-0.52 and -0.51, resp@ljiv  height, number of kernel rows per ear and ear diame
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