TY - JOUR AU - Saitawee, Lertluck AU - KanokornHussaro, AU - Teekasap, Sombat AU - Cheamsawat, Noppadon PY - 2014 TI - BIOGAS PROCTION FROM ANAEROBIC CO-DIGESTION OF COW DUNG AND ORGANIC WASTES (NAPIER PAK CHONG I AND FOOD WASTE) IN THAILAND: TEMPERATURE EFFECT ON BIOGAS PRODUCT JF - American Journal of Environmental Sciences VL - 10 IS - 2 DO - 10.3844/ajessp.2014.129.139 UR - https://thescipub.com/abstract/ajessp.2014.129.139 AB - Biogas production has been attracting increasing attention as a biofuel of the future because biogas technology not only constitutes a biofuel source, but also can be applied in the various environmental pollutants. Anaerobic digestion of high solid slurries (such as food waste and cow dung) is typically performed in continuously reactor (by force substrate flow) to avoid problems with a thick floating layer or large amounts of sediments. Temperature also seems to have profound influence on the biogas production. The objective of the study was to identify the optimum biogas production for anaerobic co-digestion of cow dung and organic wastes (napierpakchong I and food waste). Influence of temperature (psyhrophilic temperature 25°C and thermoplilic temperature 45°C) and active biogas process on single substrate (food waste feed) and co-digestion of cow dung and organic wastes (napierpakchong I and food waste) was used, within the reactor was studies in 1.80 cm high over a 45 day. Results showed that best digestion was achieved when digested of cow dung, napierpakchong I and food waste) on 1:1:1 and thermoplilic temperature. Maximum biogas production (R4), biogas yield, methane content and %VS reduction was found that 70 L/day, 70 L/VS feed, 65 and 80%, respectively. The result showed that the biogas production increased progressively withhigher temperature.The increased in biogas production in thermophilic temperature and psyhrophilic temperature could be up 28.01 and 26%, respectively. The biogas yield increased 12.5% of co-digestion system, which compared to thermophilic temperature and psyhrophilic temperature (R4 and R2). This behavior might be due to the higher degradability. Therefore, temperature of digester can be used effectively as an operating strategy to optimize biogas production.