@article {10.3844/ajassp.2007.378.385, article_type = {journal}, title = {A New Efficient-Silicon Area MDAC Synapse}, author = {Gafsi, Zied and Hassen, Nejib and Mhiri, Mongia and Besbes, Kamel}, volume = {4}, year = {2007}, month = {Jun}, pages = {378-385}, doi = {10.3844/ajassp.2007.378.385}, url = {https://thescipub.com/abstract/ajassp.2007.378.385}, abstract = {Using the binary representation ΣiDi2i in the Multiplier digital to analog converter (MDAC) synapse designs have crucial drawbacks. Silicon area of transistors, constituting the MDAC circuit, increases exponentially according to the number of bits. This latter is generated by geometric progression of common ratio equal to 2. To reduce this exponential increase to a linear growth, a new synapse named Arithmetic MDAC (AMDAC) is designed. It functions with a new representation based on arithmetic progressions. Using the AMS CMOS 0.35μm technology the silicon area is reduced by a factor of 40%.}, journal = {American Journal of Applied Sciences}, publisher = {Science Publications} }