Review Article Open Access

Multimodal Sentiment Analysis: A Comparison Study

Intisar O. Hussien1 and Yahia Hasan Jazyah1
  • 1 Arab Open University, Kuwait
Journal of Computer Science
Volume 14 No. 6, 2018, 804-818

DOI: https://doi.org/10.3844/jcssp.2018.804.818

Submitted On: 19 March 2018 Published On: 11 June 2018

How to Cite: Hussien, I. O. & Jazyah, Y. H. (2018). Multimodal Sentiment Analysis: A Comparison Study. Journal of Computer Science, 14(6), 804-818. https://doi.org/10.3844/jcssp.2018.804.818

Abstract

Sentiments and emotions play a pivotal role in our daily lives. They assist decision making, learning, communication and situation awareness in human environments. Sentiment analysis is mainly focused on the automatic recognition of opinions’ polarity, as positive or negative. Nowadays, sentiment analysis is replacing the old web based survey and traditional survey methods that conducted by deferent companies for finding public opinion about entities like products and services in order to improve their marketing strategy and product of advertisement, at the same time sentiment analysis improves customer service. Large number of videos is being uploaded online every day. Video files contain text, visual and audio features that complement each other. Multimodality is defined by analyzing more than one modality, Multimodal Sentiment Analysis refers to the combination of two or more input models in order to improve the performance of the analysis; a combination of text and audio-visual inputs is an example. The automatic analysis of multimodal opinion involves a deep understanding of natural languages, audio and video processing, whereas researchers are continuing to improve them. This paper focuses on multimodal sentiment analysis as text, audio and video, by giving a complete image of it and related dataset available and providing brief details for each type, in addition to that present the recent trend of researches in the multimodal sentiment analysis and its related fields will be explored.

  • 1,659 Views
  • 1,066 Downloads
  • 2 Citations

Download

Keywords

  • Audi and Visual Information
  • Affecting Analysis and Text
  • Multimodal
  • Sentiment Analysis