Research Article Open Access

Online Forums Hotspot Prediction Based on Sentiment Analysis

K. Nirmala Devi1 and V. Murali Bhaskarn2
  • 1 Kongu Engineering College, India
  • 2 Paavai College of Engineering, India
Journal of Computer Science
Volume 8 No. 8, 2012, 1219-1224

DOI: https://doi.org/10.3844/jcssp.2012.1219.1224

Submitted On: 17 May 2012 Published On: 11 July 2012

How to Cite: Devi, K. N. & Bhaskarn, V. M. (2012). Online Forums Hotspot Prediction Based on Sentiment Analysis. Journal of Computer Science, 8(8), 1219-1224. https://doi.org/10.3844/jcssp.2012.1219.1224

Abstract

Problem statement: Online forums hotspot prediction is one of the significant research areas in web mining, which can help people make proper decision in daily life. Online forums, news reports and blogs, are containing large volume of public opinion information. Rapid growth of network arouses much attention on public opinion, it is important to analyse the public opinion in time and understands the trends of their opinion correctly. Approach: The sentiment analysis and text mining are important key elements for forecasting the hotspots in online forums. Most of the traditional text mining work on static data sets, while the online hotspot forecasts works on the web information dynamically and timely. The earlier work on text information processing focuses in the factual domain rather than opinion domain. Due to the semi structured or unstructured characteristics of online public opinion, we introduce traditional Vector Space Model (VSM) to express them and then use K-means to perform hotspot detection, then we use J48 classifier to perform hotspot forecast. Results: The experimentation is conducted by Rapid Miner tool and performance of proposed method J48 is compared with other method, such as Naive Bayes. The consistency between K-means and J48 is validated using three metrics. They are accuracy, sensitivity and specificity. Conclusion: The experiment helps to identify that K-means and J48 together to predict forums hotspot. The results that have been obtained using J48 present a noticeable consistency with the results achieved by K-means clustering.

  • 1,447 Views
  • 2,833 Downloads
  • 2 Citations

Download

Keywords

  • Hotspot
  • J48
  • K-means
  • sentiment analysis
  • text mining
  • Vector Space Model (VSM)
  • noticeable consistency
  • hotspot detection
  • sentiment analysis
  • consistency between