Research Article Open Access

Genetic Based Plus Integral Controller for PMBLDC Motor Control using Resonant Pole Inverter

Muruganantham 1 and Palani 2
  • 1 Periyar Maniammai University, India
  • 2 , India
American Journal of Applied Sciences
Volume 9 No. 12, 2012, 2012-2020

DOI: https://doi.org/10.3844/ajassp.2012.2012.2020

Submitted On: 15 September 2012 Published On: 5 January 2013

How to Cite: Muruganantham, & Palani, (2012). Genetic Based Plus Integral Controller for PMBLDC Motor Control using Resonant Pole Inverter. American Journal of Applied Sciences, 9(12), 2012-2020. https://doi.org/10.3844/ajassp.2012.2012.2020

Abstract

Permanent Magnet Brushless DC (PMBLDC) motor drives are increasingly popular in industrial applications due to rapid progress of technologies in power electronics and the growing demand for energy saving. The increasing demand of energy saving from society is the external force for the development of PMBLDC motor drives. It is however driven by a hard-switching Pulse Width Modulation (PWM) inverter, which has low switching frequency, high switching loss, high Electro-Magnetic Interference (EMI), high acoustic noise and low efficiency, etc. To solve these problems of the hard-switching inverter, many soft-switching inverters have been designed in the past. Unfortunately, high device voltage stress, large dc link voltage ripples, complex control scheme and so on are noticed in the soft-switching inverters. This study introduces a novel genetic-proportional Plus Integral (PI) controller based resonant pole inverter using transformer, which can generate dc link voltage notches during chopping which minimize the drawbacks of soft-switching. Hence all switches work in zero-voltage switching condition. The performance of the genetic-based PI controller is compared with conventional PI controller. The experimental results show that the genetic-based PI controller renders a better transient response than the conventional PI controller resulting in negligible overshoot, smaller settling time and rise time. Moreover the proposed controller provides low torque ripples and high starting torque. Both simulation and experimental results are presented to show the superiority of the proposed GA-PI controller based resonant pole inverter.

  • 1,001 Views
  • 2,079 Downloads
  • 0 Citations

Download

Keywords

  • Brushless DC Motor
  • Genetic-Based PI Controller
  • Resonant Pole Inverter
  • Zero-Voltage Switching
  • Zero-Current Switching