Research Article Open Access

Positron Annihilation Study on Nickel and Iron Nano-Particles in Natural Rubber Composites

Emad Hassan Aly1
  • 1 , Afganistan
American Journal of Applied Sciences
Volume 8 No. 2, 2011, 147-155

DOI: https://doi.org/10.3844/ajassp.2011.147.155

Submitted On: 15 February 2011 Published On: 28 February 2011

How to Cite: Aly, E. H. (2011). Positron Annihilation Study on Nickel and Iron Nano-Particles in Natural Rubber Composites. American Journal of Applied Sciences, 8(2), 147-155. https://doi.org/10.3844/ajassp.2011.147.155

Abstract

Problem statement: The effect of Ni and Fe nano-particles as a filler on the free volume properties Of Natural Rubber (NR) was studied using Positron Annihilation Lifetime Spectroscopy (PALS). Approach: The PAL measurements revealed that the free volume properties are strongly affected by the amount and type of filler. Results: Particularly speaking, the free volume fraction dramatically decreased by increasing the filler content. Besides, the addition of nano-prticles created new positron trapping sites at filler-rubber interfaces. Furthermore, correlations were made between the free volume hole sizes (Vh) and each of the mechanical and electrical properties successively. A negative correlation was observed between Vh and hardness in the Ni-rubber composites while a positive counterpart was found in the case of Fe-rubber composites. Finally, the polarity of the fillers, being higher than that of the rubber itself, leads to an increase in electrical parameters and an inhibition of o-Ps formation. Conclusion: These results indicate that the investigated composites are considered to be insulating materials as their conductivity values are in the order of an insulator range.

  • 1,212 Views
  • 2,640 Downloads
  • 14 Citations

Download

Keywords

  • Free volume
  • crosslinking density
  • tensile strength
  • dielectric loss
  • Natural Rubber (NR)
  • Positron Annihilation Lifetime Spectroscopy (PALS)
  • Rubber Ferrite Composites (RFC)
  • nanoscopic inorganic
  • polymer nanocomposites
  • Polymer Bonded Magnets (PBMs)