Physics International

ON SOLUTIONS IN THE HYDRODYNAMIC APPROXIMATION OF SOLAR AND STELLAR WINDS WITH VISCOSITY

Panagiotis N. Koumantos, Panaiotis K. Pavlakos and Xenophon D. Moussas

DOI : 10.3844/pisp.2014.136.139

Physics International

Volume 5, Issue 2

Pages 136-139

Abstract

In this article we present some results in existence and uniqueness of strong and classical solutions of the hydrodynamic equations modeling solar and stellar winds. The system of Navier-Stokes equations for solar and stellar winds is considered in its corresponding differential evolution equation form (d/dt+A)?(t) = F(?(t), t), where F is a given non-linear function and -A is the infinitesimal generator of the analytic semigroup arises by the hydrodynamic Stokes operator.

Copyright

© 2014 Panagiotis N. Koumantos, Panaiotis K. Pavlakos and Xenophon D. Moussas. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.