Journal of Mathematics and Statistics

PROBABILISTIC PERIODIC REVIEW <QM, N> INVENTORYMODELUSING LAGRANGE TECHNIQUE AND FUZZY ADAPTIVE PARTICLE SWARM OPTIMIZATION

O. M. Hollah, N. A. El-Hefnawy and H. A. Fergany

DOI : 10.3844/jmssp.2014.368.383

Journal of Mathematics and Statistics

Volume 10, Issue 3

Pages 368-383

Abstract

The integration between inventory model and Artificial Intelligent (AI) represents the rich area of research since last decade. In this study we investigate probabilistic periodic review <QM, N> inventory model with mixture shortage (backorder and lost sales) using Lagrange multiplier technique and Fuzzy Adaptive Particle Swarm Optimization (FAPSO) under restrictions. The objective of these algorithms is to find the optimal review period and optimal maximum inventory level which will minimize the expected annual total cost under constraints. Furthermore, a numerical example is applied and the experimental results for both approaches are reported to illustrate the effectiveness of overcoming the premature convergence and of improving the capabilities of searching to find the optimal results in almost all distributions.

Copyright

© 2014 O. M. Hollah, N. A. El-Hefnawy and H. A. Fergany. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.