Seasonal Autoregressive Integrated Moving Average Model for Precipitation Time Series | Science Publications

Journal of Mathematics and Statistics

Seasonal Autoregressive Integrated Moving Average Model for Precipitation Time Series

Xinghua Chang, Meng Gao, Yan Wang and Xiyong Hou

DOI : 10.3844/jmssp.2012.500.505

Journal of Mathematics and Statistics

Volume 8, Issue 4

Pages 500-505

Abstract

Predicting the trend of precipitation is a difficult task in meteorology and environmental sciences. Statistical approaches from time series analysis provide an alternative way for precipitation prediction. The ARIMA model incorporating seasonal characteristics, which is referred to as seasonal ARIMA model was presented. The time series data is the monthly precipitation data in Yantai, China and the period is from 1961 to 2011. The model was denoted as SARIMA (1, 0, 1) (0, 1, 1)12 in this study. We first analyzed the stability and correlation of the time series. Then we predicted the monthly precipitation for the coming three yesrs. The results showed that the model fitted the data well and the stochastic seasonal fluctuation was sucessfuly modeled. Seasonal ARIMA model was a proper method for modeling and predicting the time series of monthly percipitation.

Copyright

© 2012 Xinghua Chang, Meng Gao, Yan Wang and Xiyong Hou. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.