Journal of Computer Science

A GENETIC ALGORITHM FOR A SIMULTANEOUS OPTIMISATION OF COST-RISK REDUCTION UNDER A JUST-IN-TIME ADAPTION

Faraj El Dabee, Romeo Marian and Yousef Amer

DOI : 10.3844/jcssp.2014.2507.2517

Journal of Computer Science

Volume 10, Issue 12

Pages 2507-2517

Abstract

Just-In-Time (JIT) as a lean manufacturing approach plays a significant role in minimising costs and performances of products and services supplied to the global marketplace. However, there are many potential risks that cause significant disruptions to all supply chain members. This study proposes a genetic approach for optimising a novel mathematical model for simultaneously minimising the total cost of a final product and the potential risks related to these benefits. Specifically, it demonstrates the effectiveness of a genetic algorithm in optimising the JIT model developed in our previous paper. Genetic operators adopted to improve the genetic search algorithm are introduced and discussed. Experiments are carried out to evaluate the performance of the proposed algorithm using a simplified example. Comparison of four selection methods is done to define the best method that can be used in the proposed GA. The findings demonstrate the superiority of the proposed approach in the JIT system with focus on simultaneous cost-risk reduction.

Copyright

© 2014 Faraj El Dabee, Romeo Marian and Yousef Amer. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.