Journal of Computer Science

FREQUENT CORRELATED PERIODIC PATTERN MINING FOR LARGE VOLUME SET USING TIME SERIES DATA

G. M. Karthik and S. Karthik

DOI : 10.3844/jcssp.2014.2105.2116

Journal of Computer Science

Volume 10, Issue 10

Pages 2105-2116

Abstract

Frequent pattern mining has been a widely used in the area of discovering association and correlations among real data sets. However, discovering interesting correlation relationship among huge number of co-occurrence patterns are complicated, a majority of them are superfluous or uninformative. Mining correlations among large pile of useless information is extraordinarily useful in real-time applications. In this study, we propose a technique uses FP-tree for mining frequent correlated in periodic patterns from a transactional database. The analysis of time correlation measure tend to improvise the performance based on real time data sets and the result proves the algorithm efficiency by shifting the data sets to various domain towards time series, its correlation and noise-resilient ratio. This work addresses the time correlation factor achieved with the previous evaluated result of time series sequence of FP tree.

Copyright

© 2014 G. M. Karthik and S. Karthik. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.