Journal of Computer Science

A NOVEL APPROACH BASED ON GENETIC FUZZY CLUSTERING AND ADAPTIVE NEURAL NETWORKS FOR SALES FORECASTING

Attariuas Hichama, Bouhorma Mohameda and El Fallahi Abdellahb

DOI : 10.3844/jcssp.2013.949.966

Journal of Computer Science

Volume 9, Issue 8

Pages 949-966

Abstract

This article proposes a new hybrid sales forecasting system based on genetic fuzzy clustering and Back-Propagation (BP) Neural Networks with adaptive learning rate (GFCBPN).The proposed architecture consists of three stages: (1) utilizing Winter’s Exponential Smoothing method and Fuzzy C-Means clustering, all normalized data records will be categorized into k clusters; (2) using an adapted Genetic Fuzzy System (MCGFS), the fuzzy rules of membership levels to each cluster will be extracted; (3) each cluster will be fed into parallel BP networks with a learning rate adapted as the level of cluster membership of training data records. Compared to previous researches which use Hard clustering, this research uses the fuzzy clustering which capable to increase the number of elements of each cluster and consequently improve the accuracy of the proposed forecasting system. Printed Circuit Board (PCB) will be utilized as a case study to evaluate the precision of our proposed system. Experimental results show that the proposed model outperforms the previous and traditional approaches. Therefore, it is a very promising method for financial forecasting.

Copyright

© 2013 Attariuas Hichama, Bouhorma Mohameda and El Fallahi Abdellahb. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.